UNIT-4 HIGHER ORDER DERIVATIVES AND AI‘I‘LI(_-,\“DM

SUMMAry

" The second derivaive of p = f(x) can be wntten with any of the following notations:
e 1 r
:—f;;» Yo @) D)
The third derivative can be written in a similar way. Farnz4, the nih derivitive is Wriltep g-
S*x),
* The second derivative of parametric functions x{r) and y(r) can be found as follows:
&) dedy_dyaix
Ay _d| i | dr gt i g o
I Rl (s ool ot T ' ST
dv’dt| dv gy dr dv [r_ ¥
dr dr n’r-‘_
The popular notation for the Taylor thearem of order ""is.i.
g o ool
ff.\'n+fl')=f(.v..}+f(.rn3'r'!+f'(.r,)%—+...+f (x.,:l;,'—'+... : 4

. H e
= The popular notation for the Maclaurin's theorem of orderf_h?-
3 ] A = wk & i

Sxo+ )= £(0)+ £ (0)h+ f‘(ﬂ]%q—,..{- f"f':"'::".* O L
= L Iftwo lines are parallel, then their slopes are equal, ;

I I two lines are perpendicular, then the product of their slopes equals -1,

il The tangent equation at g peian‘[.\h.Jq,]is{y-yn) =mix—x ).

. The normal equation at a puIntP(.n.',.._1',,}is{'|-~_'|.;])= ﬁ}(r—xg).
< If fix) is differentiable on the open interval (a, ), then the function f(x) is
strictly increasing on (@ B)ifF(x)> 0 forg <y < b.
strictly decreasing on (q, DF S ()< 0forg<y< b, .
If'a continuous function F1x) has a relative extremum gt <, then € must be a eritical value of S,
= The graph of a funetion f{x) is concave upward on an open interval (g, b, where f*(x)>0,andit
is concave downward where Sx)<o,

< W= f(x) is continuous on (o, 5) and has an inflection palfnl atx = g, then cither f*(c)=0
or f"(e) does not exist,

- A poimt Pic, £ (c)) on the graph of a differentja) function y = S(x) where the concavily
changes is called a point of inflection,

B I a function has a poim of inflection Ple, f () at a partition ¢ and it is possible 1
differentiate the function wice, then Sle)=0,

!o Ky _;I;TTF___:'"“‘"“‘_“‘—*—-—

MEr Bhayyam was “rE1an mathema ician, Stronomer and il -

Nishapur in north castern Iran, He Was most notghle wd e ihp:ll:q:ozi.;-l::ﬂ' ::_c :\.::she;"hgr:;:
because of his work on the classification ang solution of cubic equation r}':“-fhc.::; . “vod
the geometric solution by the intersection of conjes, T cz.: e dc prov o
understanding of the paralig] axiom. As an a5ironoimer designed the JllI I_|.l e] :Ia 1 :
Solor calander. He was the first person, who considercg Oh6 the b, Fa_| cal e_uh;..r, ;;
abtuse angle for summit angles of a Khi_lj'rm saccher Quadrilatgra) i o m.utc.ng 1 an

exhaustive and painvise mutually exclusive, : » Hree cases which are
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DIFFERENTIATION OF
VECTOR FUN CTIONS

Sealar and ‘I-"cclorl:‘un:ﬂm
L Deline scalar and viector funclion, il.
52 Limit and Continujty,
i Define limit of a vector function and employ the usual technique for algebra of limirs of scalar function 1o
demonstrate the l”orluwingpm;:mfcsol'limnsnra veetor function.
= The limit of the sum (difMerence) of two vector functions is the sum (difference) of their limits,
*  The limit of the dot product of two veetor functions js the dot product of their limits,
*  The limit of the eross raduct of two vector functions is the cross product of their limits,
*  The limit of the product of 3 scalar function and a vector function is the product of their limits.
-l Define conlinuity of a vector function and demonsirare through examples,
53 Derivative of Vector Function.
i. Diefine derivative of g veclor function of a single variable and elaborate the result;
LA = filh + fitry +Silepk, where £i(r), f5(0), fil¢) are differentiable functions of a scalar vanable L, then

Explain domain and fange of a vector function,

-ﬂ!—rzﬂf+f1j+—fﬂl'.
dt ot dlt et
54 Vector Differentiation.
i.  Proveihe following formulae of differentintion:
da d oo J o df  dg
—=0, : —[ftg)l==328 - “—+—Z
. e . d;[f el dr e " d'.-wf]-# ot dr'r
o dg df o dg df
Sl El=f—=+=. g - —- A==k
i P Lt &

& dleln .,.f{_."i,]_
dej ¢ | #\"a & ’
where  is a constant w:::lur_fumlion._fundgak vectar ﬁm.c!iuns.nnd¢ is a sealar function ofg.
iil.  Apply vector differentiation 1o caloulate velocity and acceleration of a position vector () == = o)k

In the same way that we studied numerical calculus after we leamed numerical arithmetic. We
can now study vectors caleulus. Since we already studied vecor arithmetic in unit-3 of srade-xi
h_'lathcmatics. Quite simply, we might have a vector quantity that varies with TESPCCt to another variable,
cither a scalar or g veetor. In this unit we shay] study the vector functions and the applications of the
differential caleulus. We shall exteng the basic concepts of caleulus in 5 simple and natura way. The

smd,:,r of vector caleylys makes the more useful in the geometrical, physical apd engineering
applications,

E' Sealar ang Vector Functions™

The relationship of caleylys and vector methods forms what is calleg vector cn!::rus‘. The key |

A function 1 (v) is q rule which operates on an input x (x js an i
/ t | i X ¥ scalar quantity) and duces
always just 5 single sealar output v, This ives i proper notation of a scalar fnnclign: 4 S
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UNIT-5

For example,

h
= Alxy)= n:smeamofmmngh&mdependsuntm x

mm:m';wmﬂos OF VECTOR FUNCTIqyg

£ units of items. Here xis the input, y s g
r]-_—zxa?.' : nmdepcndson.\rnumbﬂo t
lc:r‘tu‘rput and c(; 3 ;:s..t. ?.T.T.'Z rule which operates on an input.¥ to pmg(n.::]e a _}s(-;]glf iﬂ;’-‘mmlﬂw
In response of x = 2 jtems (2 is scala),the st (€08 lsmatfam]lar{::scause it transforms one input x 1
This function is then called a sealar (single variable) func

produce just one ourput C. and width y, Here x, and y are the two inpy

perates on puls 10 produce a single output quantity 4

and the rul - t two inputs x and y to p a sing| )
| i e‘:::‘t ‘}_, a::d‘:hl_‘:l:n(': and 1 are scalars), the area is (is also a sealar) A(2, 1) =(2) (1) =,
n response of x = =

square umits.

This function is then called a scalar

and y to produce just one output Al : s St
Iv be extended to define a scalar mu tivari

chEi;l:::;‘:nu?:::lar function is to transform scalar quantities in a single scalar quantity, |5

there any rule that will ransform scalar quantities in a vector quantity? Yes, the rule is the vector
functions. Vector functions are used to study curves in the plane and space.

(double variables) function, because it transforms two inpus

Vector Function
b A veclor funcrion F=(flt)e (), hir)) is @ function of one variable that has only one “input

value”. The “output” values are in two and three dimensional vector spaces instead of simple numbers. In
other words we can say F is called a vector function of 't F=F(r).

If 7,7 and F are the unit vectors associated with a rectangular coordinate system (discussed in deails in

unit-3 of grade-xi) then a vector function F(r) is written as
i, F)=£0i+ L0
i, FO)=£0i+£O]+ A0k
We can say that a function F(r) is defined if all its components fi, /2 and ﬁ are defined.

Example W RELTI F[E] and F(r) if F(r):sm{r}ucus(.‘)_;

2 spac::s

3 spaces

We have given F [I"_I sm(t)w ms(t);
As, sin (1) and cos (1) are defined for all values of t, 50, F(t) is defined forall ¢ -

Aspolsfomls)-

F(x)=sin(m)i+cos(x) j =~ j

T
For :—2,

Forf=m ,

ji. Domain and range of a vector function

N [amuin .
“The set of al t values used as input in () is called the domain of a vector-valued function F()~
b, Hange 3
The set of F(f) values that the vector function F(r) takes as s varies, is called the range of a ve
valued function F().
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e DIFFERENTIATION OF VECTOR FUNCTIONS

[2LUTE, 2 | Find the domain for the following vector functions:
faf  F()=2i-3 +'F N

«  The vector function is:
F=(/0. 400, )= 2i- 3]+ ¢k
The function [ (f) =2t is defined for allr ; J2(6) =3¢ is defined for all values of t; fiti)=1" is
defined for all values of t except ¢ = 0. Thus, the domain of a function F(r)is & - {0}.
b F@O=(£O. L0 L)) =sinei+(1-1)" j+Inek
The function f|(¢) =sins is defined for all t; f,(1)=(1-" is defined for all values of t except

t.=1; £,()=Int is defined for ¢ > 0. Thus, the domain of a function Fir)is 1> 0, 1 = 1. The range
in each case is of course a vector quantity.

Fly=sinti+(1-0"j+ Inek

Operations with veetor functions
It follows from the definition of vector operations that vector functions can be added, subtracted,
multiplied I:»y a scalar function, and multiplied together c.g. =

IfF and G mwmorﬁmcnmsnfﬂ::mlmh!en,nnﬂbmmmmhr function. then F + G, F —G and
Fxvamﬁmms_mdF Guasﬂ]’af&mcmn__ \

/ Limit and Continuity

. For the most part, vector limits behave hkn scalar limits. The proper definition of the limit of a
vector function is given below.

m Limit of a vector function and properties of limits of a vectors function '

“Let a vector function F(f) be defined for all values of ¢ in some neighbourhood about a point
t= ta except possibly at itself and let L be a constant vector called limit vector. The function F(r)is
said to approach the limit vector L as *t approaches ," if for any given real number ¢ > 0 such that
|F(:)-E|a whenever 0£|t—,|£8 symbolicaily, it is written as limF() =T
Nowhokumrnﬂmdnguuﬁuptnpuﬁe;bfvacmtvﬂmdﬁmﬁuns.

i The limit of the sum (difference of two vector functions is the sum (difference) of their limits.

If fi'i‘?'[‘)-' L and El’-.u(_?(r}- _H,wam Land M are constant vector functions then:

a ;im[F(;)+ G ] -um?-::mimﬁ(f)uhﬁ b, lim[?-"(:] —'é(r)] -timF(n 1imE(:)=I -M

i, Tllchrmiufﬂie.dot prnm:t of two vector ﬁmchommlhedutpmducl oflh.cu Imuls

It’hmF[l')—-—L and llmG{l) M, where Land M are constant vector functions then:
hm[F{:}G(t)]-lmF(r) limG(r)= LM

The limit of the cross product of two vecwcrﬁmuuu: is the cross product of their limits,

If IunF(:] L and Im:.G(.l] =M, where Land M are constant vector finctions then:

1;5;[&*(% 6] =limF(ox limG(e)= Ix M
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L s e | T

L The limit of the Modug of g <calar function and a vector function fffhc prodict of their |='mitg_
Ir iim ?':'] = I and Hm m T T ,I" is n constant vecior and ¢ is a scalar constant ﬂlﬂ]:
-ty |'Hl T

gl o V=i Pt men
3 Find !1_I.r‘l F(r), when the vector function is F(1)= I:.‘z—3];+ e'}:i- sinzek,
m lim F()= |r1_11[ Fani- - .’rJ}+_}7‘jI’f}kA]
t{ff*n_‘l(r' - 3)]?+[g@11rc'}]j+[!jﬂ sinm:[E

= (b= 3].-:+ e:;-'m‘- sin 2k =i+ 4".}. sin2r=0

Wﬂnﬂnuity of a vector function

A vector function F(1) 1+ 1 he continuous at ¢ =it

[}
Do You Know ?

A continuous veetor valye funclipg
is also continuoys at BVEry paint jn
its domain, y

fy s in the domain of i1 v function Fir)
imF(ty= Fi,)
gy

il 4 | For what values of tis (. oeior function F(r)= [sim.{l-r),"] continuous?

@RI 7he components of a vecior function are: SlO)=sint, f(=(01-0)", 1epr
The function f(¢)is continuous for all L fi(e)is continuous where. |- ¢ » 0: (¢ #1). Thiss, Ay is
contmuons, when tis a real number other than 1. : Tl St

5 Forwhat values of tis F(7) =(sing,(1=1)",In ) continuous?

m The components of a vector function are: j’,(:}é sinit, fl-f-‘) =(l-1)" _r‘,(:}; Int, te R
The function f(r)is comtinuous for allt; £.(r) is continuous where l—t=0 -(tla.nt is, where ¢ #1); (1)

is continuous fort > 0. Thus, F (1) is continuous function whenever t is any positive number other than 1.
Thise=0,121. 1 4

, J. Willard Gibbs was an American scientist. He made his great contributions in the

ficld of mathematics, physics and chemistry. He was the firs American who obtained

Albert Einstein praised him as “(he freatest mind in Amerjea history”
Oliver Heaviside (Britain and Amcrican national) Gibls developed .
express the new laws of‘c!nclrmgnell iy

o ’..\c;'_i-‘
ks iy O
IEFLRESTINTION OE VEL TR

 Exevsise -

I. Find the domain for the following vector functions:
a FO)=2i-3j+r'i b Fl=t-nisij--2)'k
¢, Fi= sinl;'+uusrj'+ tan 1k d. Fl6)=cossi-cat r;'d-cﬂ.'.'ccrE
2, Perform the operations of the following expressions with
E{.’}=2rf-—5}+ kG =(1 -.r)}i-%i. Hit)=sinti+¢ j:

a. 2F()-3G() b, IF(+4GH) o T Fn d. Floy= fiin

1. Evaluate the limits of the following expressions:
P SX e : :'—I-_*:"—Jn-z». 2 R
a. Jlt_tlll[l'rq-e‘ _;+smmk:| b, Im;n[r—_—t.- m—; [ = 1) ﬁ-}
c. irm[ﬂ’ﬂi+]—‘_"."‘_‘}+ e'*;?] d _|im[’—'“{—29i—m4tuj}
] i [e] I |
4, Test the continuity of the following expressions for all values of t:
a. F(=1i+3j-(1-nk. b. Gr=1i-r'k
- - - - -— [ 4 3
c F(:)=e’(ri+r"j+3k} d Gi=4 ,J;";
& =4

7 Derivative of Vector Function

A veetor function F deter. ..aes a curve in space s the collection of terminal points of the vectors

F(1).If the curve is smooth, this is natural to ask whether Firyhas a derivative. Our experience with single
variable caleulus in previous units prompt us to wonder what the diferentiation of the vector valued function
might be and what it might tell us. For now, let's recall some important ideas from unit 3 of this book, We
defined the derivative of the sealar function f(x). Which is the limit as Ar — Dof the ditference quotient %’r-
Av

e.g. Given a function £(r) that measures the position of an object. moving along an axis its, derivative /(1)
is defined as. f-;:)=mﬂﬂ£—“ﬂi ; m

and measure the instantanous rate of change of fi1) with rspect 1o 1 in particular for a fixed value ¢ = q,
S*(a) measure the velocity of the moving object as well as the slope of the tangent line to the curve y = f(y)
at the point (a, £ (a)). As we are working with vector valued functions. we will use the above ideas and
perspectives into the context of curves in space and output that are vectors.

@-{.3 "5/ Dovivative of a vector function of a single variable

IF 16, = gy S+ fi(nk, where AL it are differentiable functions of a scalar variabley,

then ﬁ;ﬁ+£ ;,_‘_lﬂ'.“-
v ot ilr

The derivative of a veetor-valued function Ferhis defined be,  Fir)=Lin -Fl"_‘::_}'ﬂﬁ i)
LT {
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UNIT-5 DIFFERENTIATION OF VECTOR mmﬂ%

for these values of t at Whichtlwlimitmmmmmm Leibniz notation F' f—:)rderi.‘-'ativeut-

F(), and %[Tvu)] The following theorem establishes a convenient msfllod for computing the deriyayy,,
of a vector function,

Theorem~1: The vector function F(0)=(/f,(0./:(0, f,0)=/0i+ {0+ (1) is differentiable
a point ¢=¢, whenever the component functions f(f), f;(f] fHnof F':")m all differentiable ata
point £=¢,: ie. F'()=(f 0, ©O.L0)= [0+ £ 0]+ £ 0k

Proof: If a vector function F(r) is differentiable, then their component functions f(¢); f:(;} and f(
exist, then the scalar derivatives f7(£), /3 (r) and f; (1} by first- principle rule

F(t)=lim F{H.ﬂ.r) FL}

. At »

i Mﬁ.ﬂ - [ LE+AD-A | . HE+AY-/() |2

-[Eﬂ At i) L At L - At ol

= {0+ [ O]+ Ok
In the Leibniz notation, the derivative of F(r) is denoted by: r:F = %H_ %ﬁ%k (iii)
ety 6 | For what values of tis G()={¢] i+ {oﬁs_.')f-l-(:-_‘.)kd;ﬁ‘eremuble?
m The component functions f,(f)= cos? and f,(f) =~ 5 are differentiable for all values oft,

but f;(r) = ¢|is not differentiable at 1 = 0. Thus, the vector function G(#) is differentiable for all £+ 0.

Find the derivative of the vector function F(t) = ¢' [+ sint j+ (¢ + 5n)k.

m Since, the given function is Fiy=ei +sm.','+(f +5£]k
Differentiate both smdes w.rt, ‘1™

)_d
d.::r [

iesintj+ (0 +S:}k]

d - & ~ -
‘:‘f --—[e ).-+—(smr)_m—(:’+5t}k=e’i+¢nsfj+{3r‘+5)k

[SET¥ Vector Differentiation

Several rules for computing derivatives of vector functions are
listed below, which can be.proved by applying rules for limits of vector
functions to appropriate theorems for scalar derivatives.

mrmula of differentiation

Remember =

A vector Falso writtenas F-

B

i “_ = ane
i 25=0 —[.I"t:] t—: i, E[‘,j.-] q,_..,.,_‘,r
d
iv. 5l 81= f“ Ef-‘ iy Er“"']“f" *?*x vi. f} ?f"‘f}
d: it
Mm,ansnmnslaan:tnrfuucuon fmsm“ﬂlarﬁmcuomm qns:sm:r il
da
L %o
dr

UI(H A+ [ (1+ A0 ]+ £ (e+ AV -[ A+ £,0)] + A '

Uth-S IMFFERENTIATION OF YECTOR FUNCTIONS

dp A% d
Proof: i, Leta be a constant vector function then %[n) =%[a,i+a,,l +a,k)= _g-a,m :—u,J +Ea,k

i, -—[,rtg]__tﬁ

M
o) :;[f]'b Lf{+ A0 gle+ AN]-[F (1) % (1)) = Lim J'E!+Nl LGy i )_;l:rl

ﬂi’ a4
e . A _;_
di dl k3 ;['r !] i

il -—[@fig].q;g.—.pﬂ
Proof: -—[q)j'] ['F(“ M) f (1480~ v{nﬁ_r] z

A
it + A0 F{t+ 0= li + anrml [-p(: + 800 = elr). fll:-]
.lf-ﬂ'[ Ar Ar =
- . [ olt+ a0 —g(0) L
.ﬂm(u-m)[f “*‘*‘3 S ":'] +£¢m[¢( 2 ]_ﬂt} oL 2w

Hence, %[#]w%-*%-f- —[w"]-w—d-——f

iv. %[f.g]:j_ﬁq,_dj_g
+ (GF10)
Proof: _[ f8)=Lim Lfie+angl m) fi0).2(0]

mr+ Anglt+ ar} f{: +an.g0)] Lim Lfie+ Mm‘.f) fre]

= Lim f({+ &1) [‘g{Hm"' gm}t Lm["m =1 ) 'ﬁ”].g(lj = j'd'g +—g
el

dr
Hence, = —-[fs] .fﬁ‘- + o€
2 E{J’ xg]=f*—r +£‘£+z
Af)x r+m} Se)=gln)
Proor —[f*:] gin [f(=+ ) gli+a0)] - )]
[_ru+m}xgu+m) f(u-mxgmhb {f(r-t-m]xg(r) fin=gn)]
Lim
.nl—oﬂ

=me[r+m;~x[ﬂ”m Hﬂ]‘_im[!lﬁﬁg 'r—lxstr) -f*%*%ms(f)

Hence, —[_{xg! fxi’-+ir~xg

(ExampleNE] Let Fit =}+r}'+:‘§ and E[ﬂ:ﬁﬂ’ j+3§ are the vector functions. Verify the
B v fF e il
E{Fx(}'){t)-?x G+Fx=

m For verification, the L.H.S is:

derivative:
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ik e Y| N B | B
IJ =f— ;J' ! '_.f-l r-!+k’ uﬂ
dt| & 3] T 3 It €

3

” % = o Y d ¥ T _i s s
= OG-0 PR O G O ey :

=03=2¢' - e )i+ 37 j+ (¢ - 200k

dF £ F . & i ;
=2%G=10 1 2 |=(3-2)i-(27)]+ (-0f -
e 3
= | Fod :
:F,{‘:;_G; A =.:_;=e'}}u(_3}}+(é -0k are used in the RHS 1o obtain
il T
RHS= %"F-x G+ .Ex%—,?- = (-2 - Pe)i+ (26 + )]+ (=14 & )k
=(3- Ete‘-ﬁe‘}?-t ﬁr’}}ﬂe‘-h}.@ which is identical to the L H.S,
Thus, the L.HS = R.H.S, ; J

- - -

IFF(n =i+ 'z’_}-l--"f and G(f) =34 -k are the two vector functions andiy) is

. < (F3) |

any scalar function, then evaluate the following derivatives: (a). %(2F+."5)

]

d = = d A oa = - i = ‘_'! S s s
a. —;(ZF+r’G]=}}-[? [s+e';+!’k'}+:’|:3r.=fe“j-2fﬂ- !] =-§E[(2+3."}i+ (2e'+% "5, .-
= Isr‘j+(2e’+3’:8-'.'r‘f‘;}j'f'(dl‘-sli)k=]5:“;1'[2‘2,4-!!8_‘{3"-[)};-}- ‘"(I“!I::‘*
b -5[?‘.5]= f:.[-:fle- J+CR). G ve j-2b)] o ey W
= %{3.-% 1-2t")= 6t +0-6r* = ~(61% = 6r)

M= P =205+ ) e 2k or Ar_ds s drs

—r : 1 a d o at
Find the velacity of the particle whose position veetor S F=7(f) = 56 4 41 ] - cos(t)i

i - R0 FORSALE

UNIT-5

[ Solution JENSY
Veloeity =':;i'[‘." =£_

i
il Acceleration

In the caleulus of single variable, we defined the aceeleration of a particle as the second derivative
of the position vector. There is ng change for the vector ealculus.

DINFERENTINTION OFAVECTOR FUNCTIONS

e S1i4 4] - costri

(560 + w}—mmh = ';-;:5: - -ITr < snfrk

“Let r=Ft)=xi+ y}+ 2k be 1 twice differentiable vecior valued function, representing the position vecior
of a particle at time *r". Then the acceleration vector is the second derivative of the position veetor rir)
a=F)=x' Wi+ y' 0+ i or E=-‘£—:’=%‘;‘-}- %}--‘%ﬁ
RESIIEN] Find the acceleration ofthe particle whose position vector s
F{0)= (36 + 5 = (46 + 20~ 1)} +singr)i
Since,  FAO=(3" + Sl (4 4 2= )+ sin)i

ST R e RS R ol e s
L= Ly 2 =4t = =— (3 = = 2 =1y —sindnik
ldp{r}x:d:{(.i! + SN = (4r" + 20=1)] + sinio)k | GOC -2 =1y + sind

%_—,6:3-(8;1-2}}”05{:‘}3
[

== %[%’}%[m-(s; + 3}:!+ ms{r]E]

=FE]= 6;~3}:- sink

e r

iii.  Speed

. In the calculus of single variable the speed was the
absolute value of the velocity. In the vector caleulus it is Ihg The direction of motion can  he
magnitude of velocity. vector. ! . v

Let 70 be a differentiable vector valued function | CW€uIe by using
representation of the position of a particle in time " the speed °s” of

+ the particle is the magnitude of the velocity vector. Speed= 5 =[Fue) = 7o)

: Fin the speed of particle whose position vector is 7ir)= 3/« 45 =sinnk after 30 seconds,
m Sinee, ) =3ri+47+sinink = V() =-‘%<?a=%(3.-.’¢ 47 =sintnky

?U)-ﬁwos(:}h S P(E0) =3+ cos(300) = =3 N3

2SI 13]) A particle's pasition at time* +* s determined by the vector 7r) = cos(r)i + sinfr)j+ 'k .

,Fl'm] the particle's velocity, speed. direction and aceeleration w A time 7= 2, Interpret the particle’s
motion; .
H
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UNIT-5 DIFFERENTIATION OF VECTOR Fuy, Dh"éﬁ A
m If the particle’s position at a time t is , then 7(f)=costi +sin¢ j+ 7% then, the Parti UNIT-S DIFFERENTIATION OF VECTOR FUNCTIONS
‘ velocity and aceleration are:  F(r) = %.;}';': g[ms(;)?+gin[r]}+t’£:r= —sin I‘:'+¢us:j-‘+3f= i
: "
a[tj=%=%[%':]= %[-g.in,(;]fq- ms{t)}+3;=E]=—cw(t)'r"__sin(!]}-p.s(rﬁ N, il the cerrest option.
= % - - - e i A quantity having magnitude and direction is called:

The velocity atatime ¢ =2 is ¥(2) = =sin(2)i+cos(2) )+ 3(4)k = =0.911-0.42 j+ 12k, use radiang - Gw). vector - (b), scalar el velocity (d). derivative

The acceleration ata time t=21is a(2)=—cos(2)i-sin(2)j +6(Dk =042/ -0917+12F e f;:‘““""’ "“""Wﬂﬁxmgm no d"f::“ is “i‘l;"d: A

The speed is [F]= yf(=sint )+ (cost)+ (3f)'= V149" .Atatime =2, il If Farieej-sin(kand G=ri+r'j+skthen FxG=

The speed is {?Lﬂl 149(2)' = /145 ita. [5,=+__sin‘(fl ]i—tsf‘+;sin{r)}}~[:+:')§ by, [5.! +-—""rm]i+{sr‘+uinm)j +(f =0k

The direction of motion is: 2 =) [—sinr?+casr_}+ 3r’E] .. [5;4- sinf) ]f-(s;' +sinO) ]+ (e~ 9k (d), [sﬁ +ﬂ}- (56 + asinenj + (e 1)k

[F]~ Vias 7 ‘

s | P 15, v Let Ferisej-sin()kand G=fi+r"j+5kthen F-G= .
M“ﬁmm"h‘d"“““m"f”‘“ﬁ”“i‘:—=7='["$i'12r+mﬁ+12k]ﬂ=—-0,91f~0.42_;°+12£ . P+l45sin()  (b). Folvdsiof) (¢} 3 -T+dsin) (d). P+1-Ssin(0)
fi. e ' v IfF@=(+3)i+20]-(0-0k then limF(-2)=is: _

(). Bi+50j+4F _ (b). Bi+10j-4k  (c). 8i+60j-4k  (d). Si+50j+4k
i IfF=pi-@+)k then F-2)is:

Exercise

‘ : . - : (). Wi=12F - @) 12-4F . (o). 1Zi+ak ). 12i-8k
1 Find the vector derivative of the following vector functions: vii, 1rF=2E+J}+4EandJF|= :
a. F(t)=ti+0 j+(t+)k . b F(s) = I:SE-I-&‘:'}‘I-.T:E:H- (23’?—.-:}-; 3k) " 8 ; (b). 5T o @i &
e F"(B)-cus&[:#hnﬁj-l&k] : viii. I 7= 574 3]+ F then velocity vector 7is: p "
2. - Find the second order derivatives of the following vector valued functions. . (. 106 +37 ). Si+3dk . (o) 2i+3f (d). 10r-3k
a Fy=ti+3°j-8°% b, F{-_?J=f3+:‘}f—(s+l}’j+3;‘k ok vaeh:ityw;qin(rﬁ-zm:):lnilhmmqlsmﬁbni-
¢ Fx)=lhxi-xk - 5 d. Fi)=sin*07 - cos’ 0 - o). -sing{t]?+2cus(r)}-—4§ (b). cos(r)i—2sin(f)j + 4k
3 D:ﬁ_t-‘rentim l}:e MIWPg sc:‘a‘la: ﬁmﬁcﬁuns: 4 o el 3 i ). —cos(t)i+ 2sin(r)] (d). cos()i~2sin(r)]
a f)=[xi+(x+1) ). [2xi-3x° f) b. g(x)=|sinxi-2xj+cosxk 2 Lim(CF @)=
4. Find the particle's velocity, acceleration, speed and direction of motion for the indicated value of t, , o s L. | = o4 c
when the position vector of a particle’s in space at time t is #(r): o e k. CF) (t). C-F(1,) (e). C+Fin) (dh. m
a r)=ti+fj+2katz= b. . F(r)=costi+sint j+3tk at :=%
e ri)=ei+e’ jre"karr=In2
5. If #(r)is a differentiable vector functions of t such that F{t) =0, then show that
40 F@) [Fo.Fa)iFo : 4
alF@ JFol Jref -

. : | [0 52
e 139 mmﬁﬂ m“m 140
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The Parametric equation for ihe plane curve C generated by the set of ordered pairs in 2-space is:
L 00> ). v () = (£ 1), 2 (1)) e,
The parameqric “quation for the plane curve C generated by the set of ordered triples in 3-gpace i
G0 2) = v o), i), S0 = (), g (o fe () . :
A vector fimction Fuy is cominuous at 1= £, if f, is in the domain of F7) !12‘1 Fin= Fly)
The derivative of a vector function F7) is the vector function "F(r) determined by the limig

. oo NE. - -F
Fiy=iim 2L - lim (C+Ar)= _U]_

il Ay A At

whenever this limit exists, In the  Leibniz notation, the  derivative of Mty s
Y Fit+ Ar) - Fit) :

—= lim = |im =~ =<0

At AN Ar aeeso Ar

I an object moves in such a way that s position at any time f is the position veetor or displacemeny Ry,
then the

denotey by

© Velocity js = ars ;'{I}
alf
° Acccleration is g = LV _ L5 e
dr e

o Atany time 1, the speed is iF": 'i-;h V;}-r p‘,}“=,,|';/ﬁ P2+, the magnitude of the velocity asd
: 2 g
the divection of motion is TJ 7
I3
)
e
L.C. Maxwell was Scottish mzthematician, He made a great contributions in the field
of mathematical physies, e formulated the classical theory of clectromagnetic
radiation. Maxwell's equations for electromagnetism [ias been called the second great
unification in physics. By the first unification in physics wag raised by Sir Isaac
Newton. In his publication A Dynamical theory of electromagnetic field" he
demonstrated clectric angd magnetic fields irave] through space as Wwaves moving at the

speed of light. On the bases of his idea in electromagnetism Gibs and Oliver
developed vector analysis, *

James Clark Maymwell
{183 1)-{1575)

Create an ant on 4 chant paper by hand or yge any
technological mean, Your creation shouly demonstrage
a topic from this unit, ¥

Create something using your imagination of use the
mathematical concepts discussed in this unit 1 Creaty e
your real world object

ey s
Find the areq between the x-axis and the curve ¥

f[x)=x*-2xﬁ'amx ==ltox=3,

First find out the X-intercepts of a curve S(x)=x"-2x that
can be found by solving the equation of 2 curve:

F2x=0 = x=0,2

The subintervals of the interval [~1,3] are therefore [-1,0], [0,2)and
[2,3]. The total area of the region in the required interval [-1,3] is the
sum of the areas of the syl regions in the subintervals [-1,0], [0,2)and

Figure 6.8

L] 2
4= [+f(x):a&+ji—f(x1m+f[+f(x}m. f(x)20in[-1,01,{2,3)
=] [ H
x_’£|

] 2 i | x) zxﬂ
=J:(f_th—!&hwd'*'fw_hw: %,'_2_;;'[, ‘!T-TEJr 3 2

' -1 8 ! 27 88,44 .4
=(0*—0:|—[—3——-l)—[;—-4)—(ﬂ—ﬂ] +[-;-9)—[;—4}—3—+3+3—3(3) 4

The sketch of the region is shown in the Figure 6.8.

WLE command “inf” to evaluate definite and indefinite integrals ™
€ use of maple common *ins” is illustrated in the following example, :
SEN21 | Use MAPLE command ‘int” to solve. : :
fa).  Indefinite integral of a function SO)=x"+x"+ 3%+ 541 wrtvariable r.
fb).  Definite integral of a function S(x¥)=x" w.r.tvariable x.
fe).  Definite integral of a function J(x)=xe" in the interval [0,1].

@ Command: iy
>+ 2 42 px g 1,x);

—}.ﬂ+%;"+3l.é+-,",-.r‘+:
Using Palettes: Use cursor button to select integral palette. Click-integral palette, insert the function

- Tequired, then press "ENTER" key to obtain the integral of a given function:

> I."+x‘ + 245+ e

1 b s, 1 o 5 -
5;’+4x+3x‘+2x'+:

b Command: ’ & Command:
> ind 2, x=0.1); > imt{x-exp(x), x=0_1);
; 1 1
3
Using Palettes: Using Plalettes:
i 1
> [2a > [ resploler
1] o
1
= 1
3

VT FORSALE
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1 Jo va 1 ] | f _unn‘-& INTEGRATION i
Do you know a 200 vear old problem o ;
The relationship between derivative and integrals as an inverse operation TN e
was noticed first time by \sqacbarmw{lﬂ&—gil}!.".'] in the 17° century. He Review Exercise
WaRa 'm'f”-"‘ IafSir Isaac Newton. Newton and Leibniz are knﬂw:;:;;!; 1. Choose the correct option.
inventor of caleulus. They made the use of calculus as conjuctor, i q A
a mathematical stat 24 which is suspected to be truc. But has not ::;.ep.;?f:‘:u {'_rﬁrﬂdlﬂl lﬂnﬂel‘l;atw‘elsnllzed. - _ .
proven yet. The fundamental theorem of integral calculus was not » I i rentiation (b). integration {c). probability {d). linear equations
officially proven in all its glory until Bemhard Riemann (1826-1866) . tanBedf=__
demonstrated it in the 19% century. During this 200-years a lot of (2). Injsing|+C (). Injcos8|+C  (c). —lnjcos|+C (d). —In|sind]|+C
mathematic like real analysis had invented before Riemann could prove L 2
that derivatives and integrals are inverse.

iii. jm- .
(a). ln|x+1"r‘+a*|+c (b). sin"%-l-(.‘ (c). sin"[ﬂu: (). ms"[§]+f.'

1. Evaluatethe following defiit integrals: : j ‘ : j'g,.,r& - w | ﬁ,& -
a,  |Sxdx b, |x'dx c. [(2x™ =3)dx A x 1. |t-6| 1, |¢=86
j} ljl y 1 {a). —z;lﬂ’ﬁ‘i'c (b). Elnlmi‘i‘ c
1 [ 3 1 : LY () LA I L LY
e [12(3-4)xdc T [i—f— —d g [m=(5+n]dx h. [sec’0dd : (©). 2['“ i ‘“L; ‘I*C] (). 6[1"'6*"*5}"5
2 _;{e +3] 5 2 o - J. o
1 v. [(x-4)dc=
" 14 Evaluate the following definite integrals: P 2
Ted_ H . ——dx+C . ==
IS_fz_éL:ﬁd, : . g 114 dr @). -dx+ ) ®). T-ax+C
1 -1 pt sl ©. -Ztdx+C ). 482 47 .0
3. Use definite integral to find out the area between the curve f{x) and the x-axis over the indicated | s i
interval [a, b]: vi [ fx)g(x)de=
5 j; :;-;:4; ";' T:][o 4] :’ ﬁi;zfx_if*-; '3[10'33 , @ S020)+ [ g ) () ). f(D)g(x)-[e(x)f (x)d
c. xX)=x" —6x 5 3 =a3x=x, (L , s
4. Setup definite integrals in problems a to d that represent the indicated shaded areas: ©- f6Y8t)~[g @S @) fx)g)-[g(x)flx)de
a. b, £, d. vii.  [tan'(x)dv=
! (a). %tan’(xh x—tan(x)+C (b). %lan‘(x)-o- x=tan(x)+C
3
(). zm*[x]-x-'- tan(x)+C _ (d). 3tan’(x)+x+tan(x)+C
vii. jxf:‘L¢=
@. Wnjx-g+c b). Linlet—sde LE oLy x
e8| _(b) 2lu]:: 641+2|s+1[ Emi_ili.c
1 1, |x 1. | x i B
(€). —In|x* -6d|- —ln|—+ l‘-o-—lni——l +C (i =laf=+1 +lm‘5..1| c
5. An il tanker is leaking oil at a rate given in barrels per hour by .‘;'_555':'_;%;_11 s : 2 2 s 2 I8 23 rhal P M
X, l:d*-
Where t is the time in hours after the tanker hits a hidden rock (when ¢ = 0). _Ee
a. Find the total number of barrels that the ship will leak on the first day. - | by £ = &
b. Find the total number of barrels that the ship will leak on the second day. L2 Sy T e @ ==
c. What is happening over the long run to the amount of oil leaked per day? X [Pdcm
Use MAPLE command 'ﬂ!l"t? evaluate 2 . S ame———
a. f{x) =2+3x+1lwrnl x b. F{x)= & sinx ward, %' {a). 1 {b) 2 (c). 3 . 4




