HIGHER ORDER DERIVATIVES

AND APP LICATIONS
By e of this i, i s silienis will be able 07 )

4.1 Higher Order Derivatives
L ! higher order derivatives of algebraic, trigonometric, exponential and logarithmic functions.
i " the second d wrivative of implicit, inverse trigonometric and parametric functions.
i, MAPLE command diff repeatedly to find higher order derivative of function.
4.2 Mifhnnn s and Taylor's Expansions
i. « Maclaurin's and Taylor's theorems (without remainder terms). Use these theorems to expand sin x,
stanx, @', &, log, (14 ) and In {1+ ).
ii. MAPLE command taylor to find Taylor's expansion for a given function.
43 Application of Derivatives
i. geometrical interpretation of derivative.
i 't ihe equation of tangent and normal to the curve at a given point.
iti. 1 sl ihe angle of mersection of the two curves,
. ! .lihe point on 1 curve where the tangent is parallel to the given line.
44 Maxima and Minima
i e increasing and decreasing functions.
[ Presc e that iff(x) s a differentiable function on the open interval (a,b) then
=/ {x)is increasing on (a.b) if /" (x)> 0¥ xe (a,b),
= /(x) is decrensing on (a,b) if 7 (x) <0, x& (a,b),
iii. | samine a given Sunction for extreme values.
iv.  “iaie the second derivative rule to find the extrems values of a function at a paint.
v. ' eosecond derivitive rule 1o examine a given function for extreme values.
v, edve real life preblems related to extreme values.
vil,  Use MAPLE command maximize {minimize) wmmpulemumm{mnumun] value of a function.
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Introduction

‘i1 higher order derivatives has useful physical interpretation. If y = f(f) is the position of an
2

olyer o nme t* then %:f‘m is its velocity at time ‘t’ and Z—fis its acceleration at time °r'.
it

Aveora o the Newton's law of motion "The acceleration of an object is proportional fo the total

Jewe g om it”. So, the second order derivatives has importance in mechanics. The second order

derivarees is also important to graph the functions, Now, in this unit we will leam in details about
highe: ..r.lcr differentiat on and its applications.

E— | ¥l1gher order derivatives

o function y = f ¢x) has a first derivative ¥, then the derivative of ¥, if it exists, is the second
derivaine of = f ), written as y" . The derivative of ", if it exists, is called the third derivative of y =/
(). writien as 7. By continuing this process, we can find fourth derivative and other higher derivatives.
For ¢« nieple, if _,"[.r}= 2+ 2 +3x° =52 +7, then the higher derivatives are the following:

e _f.l:x)_a;_ 4x" + 617 +6x =35, first derivative of y
: dy_d(d) 150 i
i ’...(ﬂ,dr dx(d] 12x" +12x+6, second derivative of
ddly) _ :
. I-‘)_‘_'=};[Z§] =24x+12, third derivative of p
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~ velocity at a time t.

UNIT-4 IIIG!IEI{ ORDER DERIVATIVES AND -\mlC&Tlﬂﬂs

AEIITA, 1 |Find the second derivative of the fu!lmng functions:

4x+32
fa). f(x)=8x"-9x'+6x+4 (B) _,l‘(x)n o vpregr c e P T

can be written with any of the
a. If the given function is f(x) = %' =9x% + 6x+4, then, the following notations:

first and second derivatives of the given function through | d¥ LV ) DL

linearity pmperly are the following: ?

3 The third derivative can be written

I )— = ——r(Sx —9x" + 6x+4)=24x"~18x+ 6 in a similar way. For derivative
nzd, the derivative holds the
notation 77 (x), n=4,5,...

F(x)= %:%{24x'-l&x+6}=¢sx_].g

2 dx+2
b Ifthe given function is f(x)= y:E_ e

function through qual:cnt rule are I.h.-: fh]IOWIHE

,thcn the first and second derivatives of the given

dy _ d (4x+2 {3x-l}~—[4x+2) {4.24—2}—(31 1) 4 d[ﬁ]‘d—"v-i—:u
dx dz[h- .]" (3x=1) Tl w ¥
' _@Gx-D-@)@x+2) __-10
(Bx—1)° (3x-1*
Cdyd [dy)_(O0x=1) - (-10)2)3x-113) _ ﬁﬂ{Sx ) 60
iR m'?‘ﬁ(ﬁ] Gx-1)° Gx-0'  (3x-1y

In the previous unit, we saw that the first derivative of a function represents the rate of change of
the function. The second derivative, then, represents the rate of change of the first derivative. If a
function describes the position of » moving object at time t, then the first derivative gives the velocity of
the object. That is, if ¥ = s(f) describes the position of the object at time t, then w(r)=s'(f) gives the

The rate of change of velocity is called acceleration. Since the second derivative gives the rate
of change of the first derivative, the acceleration is the derivative of the velocity. Thus, if a(t) represents
the acceleration at time t, then

v _dr
alt)= g g (0

BT, 2] An object is moving along a straight line with its position s(t) (in feet) at time t (in
seconds): s(f)=1' =21 =Tr+9

fa). Find the velocity at any time 1. (b). Find the acceleration at any time .
{c). The object stops when velocity is zero. For t =0, when does that occur?

i The velocity at any time ¢ is the first derivative of s{) w.rt. &2 v= % =3 4=

The zeceleration at any time ¢ is the first derivative of W) wrt.r. a= ;ﬁ =61-4
t
c Use (i, < 0 to obtain the time:  3¢° -4t =7=0

Gr=N+0=0, r==1, :"3.

The object will stop at ; sceonds, since we want time ¢ = (0,

e 1Y i 1 v A
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m;ml“;rowder derivatives of algebraic, trigonometric, exponential and logarithmig™
netions

The successive derivatives of some functions are gal]wrcd. to obtain the general form of py,
derivatives in the following eases:

L The nth dervative of f{x) = (ax +b)"
If f(x)=(ax+5)", m is positive integer, then the successive derivatives of the given functioy
developed a general term for the nth derivative of a function:
S(x)= (ax+5)"
(%)= malax+5)™"

L (x)= m(m=a*(ax+5)""

£7(x)= mn(m=1)m=2)...(m—n+1)a"Nax+b)™" (i)

= ﬁ aax+b)""", if mis positive integer

If m = =1, then the nth derivative of f(x) =E;5]Ti’_} is obtained by inseﬂiﬁg
m = =1 in equation (i): )
e i (1) nla”
ST = (1=2)=3). (-n)(a"Wax + b) '——{ v
i The nth derivative of /(x) = In(ax +5) s

If f(x)=In{ax +b),then the successive derivatives developed a general term for the nth derivaiive
of a function:

/()= In(ax +b)

I (x}=

(i)

{ l)a

(ax+b)’
L2

ro

fx)=——

L1 = (D2BNA). (=D Nax + by~ = V=D

(ax+b)
fli.  The nth derivative of f(x)=a™
If f(x)=a™, Mﬁewmtwdmmmmmlmbumm&nmdmmﬂ
Sflx)=a™ ;
S @)= a“lnsa%-iml =ma™loga

£ ()= mioga (e =mloga( & loga—4 (m) )

las iy R R ey S
sk W co

HIGHER ORDER DERIVATIVES AND APPLICATIONS
T _m T
=m'a™(loga)

S =m"a™(loga) "
If @ = e, then the nth derivative of f(x)=¢™ is obtained by insertinga =¢:
Six)=¢
S ()= me™
I (@)= mim)e™ = m*e™
=™ )
iv.  The nth derivative of f(x) = sinfax +&):
If f(x]-sm(ax-l-b} then the swcessm derivatives developed a general term for the nth

derivative of a function:
J(x)=sin{ax+5)

S (%)= acos{ax + b):a:in[anb-r-;]
f'{x)=azcos[nf+b+a§J-n-‘sin[a.ﬂ-b-l-z—;-]

f-':x]=a’ﬁ)$[ax+b+_2—:-]= a"gin[m_'.b.‘.lz‘z)

f= a'sin[ax+b+%] (vi)
v. ‘The nth derivative of f(x) = cos{ax +b):
If f(x)=cos{ax+b), then the successive derivatives developed a general term for the n-th
derivative:
S (x)=cos(ax +b)
J(x)=—asin(ax+b)= dons[w:q-b-i- E]

f'(x]=-azsin[nx+b+1;-]= azm;[ax.q.bq.%t]

I (x)=-4 sin(au b+ ?'T'],—. a’cu\s[ax+b+ 3_21‘_)

frx= a"cos[ar+b+ E] (vii)

t\llllpl;

b3 ] Find the 5th derivatives of the fullowmg functions:

fa). flx)=(6x+4)° b). flx)= 4.1' 3 (). f(x)=In(4x+7)
.
. flx)=6 o) floy=e™ (). S(x)=sin(5x+7)
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a W f(x)=(6x+4) wilha=6b=4andm=29, unenlheS“‘dﬂiwliW"m"Eimﬁm%u

obtained by inserting n =5 in equation: f"(x)= __-F a"(ax +B)™"
) 5]:6’(61:-1-4}” 2 oxvy'= OEXMENsK6r+ 4= (15120(6x+4)')
b, lff{x}-{q 3} witha=4 and b= im.{,;?dmvatmufﬂwgwmﬁmummuhmnmdhy

(=1)"nta”
(ax +b)'"
(—1] 514’ -4’5!

SO (4x+3)° (4:-!-3-}
c. If f (x) = In(4x +7) with a = 4 and & =7, then the 5% derivative of the given function is obtained by
(=1)""(n-I)la"

(ax+b)

—n'agt 4%
@x+7)’ “@x+n’

inserting n=5 in equation:  f(x)=

inserting n = 5 inequation:  f"(x)=

'( I=——=——

d. If f(x)=6" witha=6and m =4, Ihmﬁms“'dmvameofﬂnpmﬁmdmumnbmudw .

inserting n = 5 in equation: f(x)= mu"‘(i.ogu]

£i(x)=46"(og6)*
e Iff(x}=g"wi1hm-4.ﬂwnlheS‘dmmwoflhepvmﬁm:tlmisuhlainedhyin:seﬂingn-im
equation: S(x)=m"e™
Fix)=4%"

£ I f(x)=sin(5x+7) with = 5 and & =7 then the 5th derivative of the given function is obalaed
_f"[x):a‘sin[ax+b+%]
Fx)=s'sin [Sx+?+ 5?"]

by inserting n = 5 in equation:

[EEEY Second

w Find the second derivative of x*y+2)" =3x+2y.

The equation is x*y+2)°=3x+2y :
The first implicit derivative of (j) W.KL. x is: @

d W_d
;(x:yq.z_y )- dx(Jx-l—Zy'_l

d d oy @ b
E(:‘y)-l-;ﬂy’) SO0+ 5 @)

dy_ o @
2:?+x’%+6)'=5=3+2;

1105 WWW .

==
“Second derivative of implicit, inverse frigonometric and parametric (unctions -

UNIT-4 HIGHER ORDER DERIVATIVES AND APPLICATIONS

{x*+6y1—ﬂ%= I-Zxy (i)
The second implicit derivative of first implicit derivative (i) waLxis: %[(:‘Ny‘- 2:-%] - —:;(3-111']
4 (56521 +<x'+ay‘—z>i[“’—’.]= 4 5L

{2x+lZyQ-D)-—+[ 2468 -:n 2=0-2y- 2:;

_gy_zxiﬁ'_

[2x+12y—y)a—:y~+(x +6y1-2]?= =

d
(x+6y _z)ﬂ’ J’=_gy-(zx+zx]-—412y[d:]’

Aprageofa]) Aol o))
l:-,,{ (a*+6y°-2) ¢

‘2[ bx—dxty ]‘Gy[9+4x’y:—‘121?
< X461 -2 (x* +6y° =27
- 46y =2
--z[y bx—dx’y * Sdy+24x’y’~ -T2xy*
Fr6y -2 (P+6y -2
(x* +6y*=2)
—2(p(x® + 63" — 20 + bx=4x p(x + 637 —2)+ S4y+ 242"y — T2
x (x*+ 6y -2}
; (46" =2)
_=20(x' 436y + 44 120%) - 24y° 4x*) 465 +36) k=12 — 4:'}'-‘24:’)"+8ry+54y+24r"y] —T29"
(=" +6y*-2)"
—2(:‘y+3ﬁy’+4y+1211y’-24f-41 y 6 + 36— 1 2r—dx' = 242"y + 8 y+ 54y + 2457 - T2t
(& +6y"-2)
dy __2036y" +12y"5 - 24" - 36y x— 3y’ + 4y’ + 58y + 6x' ~12x)
dx’ . 6y + 2 -2)°
Find the second derivative of cos™'y+ y = 2xy .
@D The given equationis cos”ly+y =2z M
The first implicit derivative of (i) w.rt, x is: - - ¥

Zcosy+y) = (29)

Biitting vines. of
x +5Jf' -2 dx

it AR

d
3 loos™+ i(yl =2 %(-V)

s M r:-‘.r d d
7—1 yldr yo 1(3&””;[}"1]
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L HIGHER ORDER DERIVATIVES AND APPLICATIONS - DGR URUER UERY A YES AN AFFLILA LU
L
-1 . dv i =4 dr |dt (i)
[T_I = +1E—2y+2xdx Bation (2) ‘o, 56 vallon Ty | @ [z
s|n11)|lﬁ.ﬂd form for 1® order dt

The second implicit derivative of first lmplu:ll derivative(ii) derivative 35

P d 1 , ar]_ ¢ +2xip-] d__ 2pf1- 37 The quotient rule of differentiation is used to simplify the right hand side of equation (ii):
P P | il P ™ ™3 [P ST W (dy) ded E!J_Ezi[f’f] By d
: . d| dr |_didil\dt) didil\dt) dt g dt di’ (i)
d[ =1 dv -1 dy . dv . dy o d dr| dx Y 5 (dx}‘
—_— - — i J 2—~ 2 A c—— _—
‘“[Jl—fﬂlif |-r=+' dr’ T dt de dr
= ' = 2 2 Use (ii) in (iii) to obtain the general term for second derivative of parametric functions x (f) and
2—"- 3+0]£‘-+ A d{=4%+2xd—": e
-y i (I-y e i
. P dy ded’y _dydx dv v odvddx
4 ; dy . d'y i o ISP S P R dy d|d|d g’ digfdi g et b it £ o
Emumgmﬂﬁc:m&er#mdtamuhmn. { ],y=+ il = (l-y’ﬁ P = % ._d#dt ! == — = replace e
di (EJ dr de
¥ . ﬂ b s+4 2p1-y* : 4 . o g S
dy {1+y=)§ dr y], 1-Ji- 3 4 2xf1- 7 In light of result (iv), the first and second derivatives of the parametric functions
v’ =1 +1=2x -1 +1-2x x{ty=1+6, y(0) =" +26* +1 with %-wF—z %-3: +4dt, E--G.Md
1-5¢ 1-5 .
3 are the following: dy _dydt 3t‘+4:=:{3f+4)-3¢+4
2y| y+a(=)* +1)E de  dt dr 2t 2 2
= +1- i fimy Eﬂ_ﬂd"
[2“ 7 H1=fi-F) -t -7 -2efi-p | i) dy_di g’ dt g _ Q06r+4)-(Gr+40(2) 127 4860 -8t 67 3
de’ dx 8’ 8¢ ¥ @
ExampleN3l Fmdthesemnddenvalwe‘;y when the parametric functions are: [E]’ _
x0 =1+, 0= +2 +1 M_MAPLE command diff repeatedly to find higher order derivative of >
m The first derivative of the parametric functions x = x(f) and y = y(1) w.r.L. x is: a function :
5 i ;Q Ntmnedurmmnfmmwmmandd.ms illustrated in the following example.
=t :
}%. drde dx ) w Differentiate  f(x) =a" + Psiiee +x + 2 wart *x*
@ oo
The second derivative of the parametric functions is obtained by taking the derivative of Command

#y & > dif (¢ + 2osinfz) + x4+ 2,x)-
jon(i): S2=fdt | L )dt (8 i and divide it g »
ey 2y 4\ g |4 & d R +28in(x) + dweosl(x) - xsingx)
s = For second derivative, afler command, press the "Enter" k i i ivati
e e p €Y two times to obtain the second derivative of’

i~ | 107 NOTEERSME NOTEeRSALE




HIGHER ORDER DERIVATIVES AND APPLICATIONG

Exercise

Find the indicated higher derivatives of the following functions:
i 1
T f(x)=3x"+4x+5, [(x) b fR=xt_, r(x)

e st)=+E+7, ) o y=3tL
2. Use implicit rule to find out the second derivative of the following functions:
a 51.‘:4_&:),! b b. _rzf'JF =7
e ¥-2x=0 fod dtx=g+y
3 Use pararn:tnc differentiation to find out ny for the following parametric functions x (1)
and y (1):
3. x=d4r 4], y=60"+ b x=3ar +2, y=6%9
: 3ar 3ar’
€. x=at¢$2.l_yzﬁ$m2'-' d x=—7 L y= ]+-'

4. Find the indicated higher order derivative of the following function.

A flx)y=("+4x=5)", f"(x) b flx}=tan’(x), /(%)
C S@=e" 00 4 fE=xnlx], S0

5. Use MAPLE command “diff* to find the indicated higher order derivative of the following
functions.

L e g A b.  fi{x)=sin(sinx), f(x)
6. Find the indicated derivative of the following by using rule.

a. y=0x+7)", 7 derivative

b. f(x)=In(2x-4),10® derivative

¢ glx)=4cos(3x +8) , 6" derivative

d. hx)=7e""" , 12" derivative

f+3
afeeds ot
By using the chain rule and other differential rules, some of the derivative mmpula,tmns can be radius 10

perform. For complicated derivatives mathematicians, scientists and engineers use oocmpuler so ftwares. Such 23
mathematica, maple and Matlab, use computer software to compute,

d d | (44 sin’ (2
dr 1+ cos(x)
d 1+ ese(x)
-.— =+4)1tsinl(

Although we have all mathematical tools to compute above type of problems by hand. But the m_‘,“w"nl
involving computer software may be more efficient. __-—J
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Maclaurin’s and Taylor's Expansions

Often the value of a function and the values of its derivatives are known at a particular point and A
from this information it is desired to obtain values of the function around that particular point. The-
Taylor polynomials and Taylor series allow us to make such estimates,

Maclaurin’s and Taylor’s theorems. Using these theorems to e:pinﬂ llm, e
x, tan x, a*, %, loga(1+x) and In(1+x)
A Taylor's Theorem
If £ (x) and its n derivatives atx=x, are f (xo), f* (xodsoon S (xo) then the nth urﬂu‘]‘aylnt .
polynomial p (%) may be'written as!
= z - P .
2= L0+ =50 () + E )t EEBL o 0
This polynomial provides an approximation to f (x). The polynomial and its n derivatives are
very much matched with the values of f(x) and its first n derivatives evaluated atx=x, :
Pa(x) = S (%), P05 = S1(5), PL(Es) = (), o PAR) = £(%)
[BYTII, 8 | The function y= f(x) =" and its derivatives evaluated atx, =0 are known by f(0)=1,
SUO=1, £(0)=1, fF(0)=1, £0)=1. Use fourth order Taylor polynomial about x, =0 to estimate
S{0.2)at x=0.2.
m‘ﬁu fourth order Taylor polynomial p, (x) is obtained by t-:rmmmng the Tay]ot polynomial
(i) after fourth order derivative term:
Pid= 1)+ S ey ST oy | o) Y
Insert x, =0 in (ii) to obtain: ' :

iﬂ“f{'«'-‘“f fﬂ)-*"*f'(ﬂ)“"'f'(‘])'—"'f (0)
-]+x+§+§|—+—- d i)

The Taylor polynomial (l!i) is usod to obtain approximation of a function y= f(x)=e*atx=02:
i
Pilx)=1+x+ 2—+§+ T

P02)=1402+ ":'2!)’ 0ay o

Taylor's  and . Maclaurin's
3l 4! are also known as

=1+0.2+0.02+0.00133+0.00007 = 12214 [Taylor's and Maclaurin's b, (U

Notice that the Taylor polynomial approximation equals the actual function value
»=[(02)=¢" =12214atx = 0.2,

A

=

2

Taylor's Series: The Taylor polynomial I i
Tay o The ylor polyn rmashavehe:nusedtneﬂmmtememlmofy-f{x]l.t\farmu:xnhm

i Ho e T = b
h::c;lm ﬂ)'lﬂf?ﬂlmnlsmmﬁ:db)-y ff'“‘-‘nhﬂwmmlcy-f{x]ummﬁx " iz ik
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UNIT-3

*If more and more tenns arc used in the Tayl ——'-_,Ef,__ﬂus will produce a better ang beig

approximation oy = fix).
To answer I.htﬁc:flm:{lmns. we introduce the Taylorscrrﬁ As more and more temms are included iy y,,

A Ff‘?"m' 'Dﬂlynu'rnlnl we abtain an infinite series, km“"’l"ﬁ’m r’;ﬁ” 5
pley= fix,)+ (\—t.,lf(-r.H——-f'(x Mot SR )

iFor sbme Taylor series, the value of the series ﬂ‘l‘“h the value of the function for every value of x. Thatig, gy,
Taylor serics approximations of ¢, sinxand cos x cqual the values of ", sin x and cos x for every valye ofx,
However, some fanctions have a Taylor series which equals the function only for a limited range of x values, pg

which equals its Taylor series only when —l<x <],

| eskample, the value of a Rnction f(x) = :
(1+x)

JiIGHER ORDER DERIVATIVES AND AI’PLICA“% e
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B. Maclaurin's Series

A special case of a Taylor series occurs, when the function y = f(x} is known only at the origiy
x, = 0. This special condition imposed mTaonr se:ies. develops the Maclaurin's series:

pla)= 101+ 37'0)+ & oy + L 10y 0
Thc Taylor and Maclmmn s series af y=f(x) aboul a particular point x, are of course:

RS RPN = U= 1 PR .

J’t.r)-.-'(‘-'!}+9"l0:-+m 0+ SO +"“ re i

I we ust:c-.rq =, then equanom (ll} and (jii) Mkt the
popular notation for the Ta).ornnr.l Mnclaurin s series of order n:

fx,+h)= f(xn}+if!'{:u}+ f‘[x,,}q- 3:f.(‘ﬂ]+ +_._|r'.:_‘-°) {iv)

y ;‘
Sl by =il

£ St h)

J'l-‘a'*h]'-“ﬂﬂl"f!f'(u}' ![0)+ )‘"[0}+ e f"((]] v)

——tX
Qlx=h % ' xqth
Figure 4.1

The graphical view nfn f’umctnun ¥=fx) axxz:;,ls shown
in the Figure 4.1.

The popular notation for the Taylor & Mula.udn s “mgfnmn, are:

i Sl +h)= .-'"l\'u)"'ﬁf‘{m*—f'(fo'l"' f'(-’fn) e —f"(-fo)

if. Slxg+h)= [10)+ A (0)+ —If((l)'i— ——f'[ﬂ} 1:.,_—_}"'(0)

If o function v= f(x) is known at a particular point %00, then the Taylor series (¥) atd
sorward or backward pointx=x, +h ut'a function y F(x) are;

S Ux+iy= SGr)*bf* lxd*'ﬁ S )+ ':,EJ"" (%) .. x=x,+h

e g g EAp A e
» _J”."u"'” f(xu] M{In]+iir|:‘tﬁ)"3-lr(xo]+ x=x,-ﬁ

RoT FORSAE
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Mow, look at the following examples the pﬂ!i:udurl.: ta the use of Taylor and Maclaurin’s &
Thcomm is illustrated in these examples. '
Ty, 9 |Use Taylor's series to approximate the v:uhu,nfﬂ function f(x)='ata pointx, =2.

The function and its derivatives atx, =2
fia=e', f(2)=¢ =1389L [(x)=¢", f'(2)= & =73891, [(xy=et, ST (2= =T38%1
are used in Taylor series (ii) to obtain the Taylor series approximation of ¢ata point xu=2:

¢ = 1@ =07 @+ S e S @

-2
=7339|+1389|u-2]+73391“ 2’ +73st:-|“‘ 159

. Maclaurin’s theorem for the I’nru:linm of the typrfl‘lxi =u )
AT 10] Use Maclaurin's series 1o approximate the value of a function f{x)= " ak a pointy, =0.
The fimetion and its derivatives at x, =0
f)=a S0)=1, fx)= n’lug_,u. S =loga

[(x=a"(loga), (0 *(los,a)‘
are used in Maclaurin series (iii)to obtain the Maclaurin series approximation nfa aa pointx, =0:

u-=;‘¢o;+xf(m+ﬁ’—’—rm+ﬂr (0)+ e

-I+:rlag_,rr+ (Iog‘ﬂ) +—ﬂ°ﬂ,¢!] +..

E. Mackwurin’s lhnm-um for the functions of the type fix) =e*
a1 | Use Maclaurin's serics 1o approximate the value of a function f(x)=¢" ata pointx, =0.

The function and its derivatives atx, =0
S fiR=et. FO =1, L=, S0=1 Six)=cl m0)=1
are used in Maclaurin series (i) o obtain the Maclaurin’s series approximation of €' at a point x, =0:

e' =14 x4 £+£+...
a3
F. Maclaurin's theorem for the function of the type fix)= sinfz)
12]  Use sfaclaurins series to approximate the value of a function f (¥) = sin (x) at a

pointx, =0

C'?m The function and its derivatives atx, =0
f(x)=sinx, f(O)=sin(0)=0, [ (x)=cosx. ["(M=cosg)=1
F(x)=—sinw, M (0= =sin(0) =0, [~ (x)=-cosx. [7{0)=-cos(0)=~1
are used in M:.:lf.lurin series (iit) to obtain the Maclawrin series approximation of'sin x at a point x,= 0 ;

sinx=£(0) r(r)f{’-'}*{x) o+ “’ 0.

3 5 »
el o e 8

T T T ks
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UNIT-4 HIGHER ORDER DERIVATIVES AND ﬁm"‘-‘ﬁl’mﬂs

5 )= K c}
S5 VT Weodiin for 1oe Banetion of the apefix=costy )
13413 Use Maclaurin's series to approximate the value of a function f{x)= cosx atapoint x =
m The function and its derivatives atx; = 0. y
J{x)=cosx, f(0)=cos0=1, f'(x)=-sin% f‘('3)=“5’“°_='3
1" (x)=—cosx, f*(0)=—cos0=—-1, f"(x)=sinx.f"(0) =5in0=0 ’
are used in Maclaurin series (ill) to obtain the Maclaurin series HPP“'-'"““‘“"“_ of a function cosxy a
r
pointx, =0: cosx= £ (0)+f (0)+ ;;T;'(n;.;' (0)+.
< X =g
=14 x(0)+ E!-l:v—n-l‘ 3!-{{]]+...—_!. 7 + .”-!----
P Vil e, [ e faacting of the (pe f r=ran(x)
W Use Maclaurin’s series to approximate the value of a function J(x)=tanx atapoint x,= 0,
The function and its derivatives atx, = 0 .
F(x)=tanx, £(0)=tan0=0, f* (x)=sec’ x, ' (0)=sec’0=
£ (x)=2see” xtanx, f7(0)=2()(0)=0, ™(x) = 2sec’ x+4tan® xsec’ x
f7(0) = 2sec’ 0+ 41an* Osec™0=2
are used in Maclaurin's(ill) to obtain the Maclaurin's series approximation of a function tanx at a point
x,=0: |an.r=f(D)+.rfttll}+;—.1j‘{ﬂ]+-;—:f'(0}+... :

=0+x(u+"?'!m)+%(z) ........ -x+2-;i!+...

b Wiaelswrin s thoetirom S the Turdiion of the type fix) = logo (1)

TSRS 15) Use Maclaurin’s series to approximate the value of a function f(x) = log,(1 +x)at a point
Xy = 0. .
m The function and its derivatives atx, =0
S(x)=log,(1+x), f(0)=log {1)=0

f':ﬂ*_'ﬁlﬂg.ﬂfrl:uj-lug'e=hg‘g

f'(-’f)=‘n+l—ﬂ,|08.¢, f(O)=-loge

I x)= (lf'ﬂ’ Iﬂﬂ.e. Fia (1)) =2103.B

are used in Maclaurin's series (i) to obtain the Maclaurin’s seri " i i jon
S(x)=log,(1+x) atapoint x,=0: claurin’s series approximation of a fnct

mg‘([.'.x):f({})+[r)f(0)+£:—}'f{ﬂ)+%?—’f“(l}]+

= I RTY
=0+ xlog e 2 Iug.e+2-3—!-|uz'¢_.m

x 25
- xlag_e-atog‘e+—3!—hg'¢._“_

NoT FeRAALE
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log, (1+x)= xlag,e—%lag.¢+§log,e—-...
A Muelaurin's theorem for the Binetion of the e fixd= Bt

B 16] Use Maclaurin’s series to approximate the value of a function J(x) = la(l+x)at a point

x,=0.

m The function and its derivatives atx, =0
. 1 L&
F(x)=In{1+x), f(0)=In{)=0, f(x)—m'f(ﬂl-l

1 = :-——2 =
L O S O=-h [ @ s S O=2

are used in Maclaurin’s series (ji) to obtain the Maclaurin’s series approximation of In{l1+x)at a

s 2 3
pointx, =0 mu+:}=f(0)+xf(0]+%r{u)+ %f'(un...

: x A o - TG
=0+x(l}+-;—|(—|)+§-!r(2)+...=x—E-!—+Ziu;..::x—?-l-?-—T-h.,
Use Taylor's theorem to compute the series of the following functions at x; =3.
i. flx)=sinx ii. f(x)=cosx iii. f(x)=tanx iv. fix)=¢"

v. fix)=¢" vi. fix)=logs(l +x) vil. f{x)=In(l +x)

MAPLE command “Taylor” to find Taylor’s expansion for a given function |

The use of MAPLE command *Taylor® is illustrated in the following example.
II'\-.||||||I|_:"-W Use Maple command taylor for the function

fa). fix)=¢ by Taylor's series expansion to first four terms.

(B). fix) =sinx by Taylor's series expansion to first 5 terms.

a. Command:

s mylor{e,x=0,4);
Context Menu: A
> Y

> series| e%x,x,4) R‘ )

1+ Infe) x4+ g2 4 %m&.*ﬁ +0(v')

Ll ek Sl e’y 1ol

This result is obtai right click on the last end of the ex 10 ing "Seri
Pk m“mq_ e gh pression by selecting "Series < x" on
b. Command: J

> aylorisin(x),x=0,5);

£ c=d it pole)
Context Menu: °
> sin(x)
> series( sinlx),x, 5) A
= o)
NOT FERSALE
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UNIT.4 HIGHER ORDER 7

mpﬁcation of Derivatives g

In this section, we wi Tiaw 10 use dori tives o ;
. we will see 1 b 1 i i
angles in between twa curves, the maximum and niaimum valucs of a function as well as the 11].:#\'“'}-

where the function is increasing ordecreasing. &

: PR
W Geometrical interpretation of derivative

Consider a function v = f {x) as shown in the Figure 4.2,
Let P(x,,y,) bea point on a corve v = f{x). ¥
The change Ax in v develops a change Ay iy ] y
The coordinates of a point O are therefore
O+ .+ Av. y, + &), Notice that the slope of the secant
linie Po
E L i‘n\‘ﬂ"’ Ax) - f(.\'n:l (‘}
Av Ax
If we take values of @ closer 10 P, then @ o
approaches P. and Avanp.oaches 0 an. the slope of

the secant line PQ automatically approaches the slope
of the tangent line at a particular point P and is denoted by: .

Amtepmrine the tangent, and nomnal lines b,

Equations of tangent and normal to the curve ata given pointﬂ‘ _

If the slope of the tangent line an a curve y=1 () at a p'aniE:':ul:'mr paint P(x, 1) is (%), then
ihe tangent line on this curve ot 2 particular point P(x,;¥,) is the nonhomogeneous line (developed from
the definition of the point form of the siraight line): L woas

y=yo =S (%)x—xg) .
y= 3= mlx—x) =" (x,) -

The normal line is the line perpendicular to the tangent line on this curve at a particular point

" -1
Pl o ¥,) with slope on:
-1
(v=yg)= ——(x=%,)

Iix)
. L = i :
(y_',.“)__;(_-:—m. m= [ (x,) (i1) .

PRPEETSI 18] Find the equations of the tangeni and normal lines on a curve y= x* at a point P24}

If the given curve is y'= ", then, he slope of the tangent line is the first derivative of the V€7

curve at a particular point P(2.4):
Jixy=2x
F(2y=2(2)=4=m, say. ata point P(2,4)
The tangent line (i) on the given curve at a particular poin PE2.4) is:
J"'J'n;nﬂ't"'xul 2
(p—=H=Ax -2}

—dr+y-A+8=0= -Ars ped=0=dx-y_4-g

T FOREALE
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The normal line (i) on the given curve at a particular poimt P2, 4) is:

(—yo)= = (x=x,)
m

-1
l;v—4]=-:(x— 2)
d(y-4)=-(x-2)
x+4y-16-2=0=x+4y-18=0
ih'.!mpll:":m Find the equations of the tangent and normal lines on the curve y=9- X atapoint, whon
y crosses the x— axis.
m The coordinates of a particular point P at which the given curve y=9- o crosses e v axis
are y={ ] i
Put y=0in p=9— to oblain a set of points: 0= y=9-x =xi=0 = x=343=(3.0L1-3.0)
If the given curve is y=9- , then, the slope of the tangent line is the first derivative of the
given curve at a particular point P(£3,0):
S (x)==2x
[ =-2(3)=—6=m, ata poinr P(+3,0)
[ (=3 =-2(-3)=6=m, atapeint P(-3,0)
The tangent lines (i) on the given curve at the particular points are:
(y=0)=-6(x-3), m==6, P(3,0)
6x+y-18=0 B
w0y =6(x+3), m=6, P(-3,0)
6x-y+18=0
" The normal lines (ii) on the giveén curve at the particular points are:
 -0)=Tp(x-3), m=-6,P(,0)
6y=x=3
x=6y-3=0

-0)=(x+3), m=6, P(-3,0)
6y=—x-3=sx+6y+3=0

Angle of intersection of the two curves

If my is the slope of the first curve and sz is the slope of the second
. [ m 2 curve, then the angle of
intersection in between these two curves at a point of intersection is the angle in berween their mngesmsm

that point, This angle takes the notation: tn0 ="M m

L+ mym,
ETATIE: 20]  Find the angle of intersection in between the :
n ki curves y=y =21 =2
point of intersection (2, 5). y=x'=2x+land y=x"+1 at the

@RI The required angle of intersection in between the given two curves is: tan® = "5""5 ¢y

- = - l* m 1
For point of intersection, solve the system of nonlinear equations for the unknowns x an.d. y'x

NOF FOREALE | .

i

. The tangent equation at a point
Pl xa.y,Jis (3=¥)= mix =x ).
Ii. The normal equation at a point

Plxpy,)is(y=x)= -—‘{.\' —x,k
m

TN
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- J’=x’-2x+1, y:J‘J‘H 3 : (ii)
Using first equation of the nonlinear system (ii) in second equation to obtain:
: B =2x41= 41
x'=x=2x=0
x(x* —x-2)=0 = x=0,-1,2 :
The set of x values is used in first equation of the nonlinear system (ii) to oblain a set of y vajy,,
- Putx =0 to obtain y = x'-2x+1=1 .
Putx =1 to obtain y = x* - 2x+1=-1+2+1=2
Putx =2 toobtainy= '~ 2x+1=§-4+1=3
*This process developed a set of points of intersection: (0,1), (=1,2), (2,5),

" “The slope of the first curve at a point (2, 5) is: %;333-2 n[‘-}ty—l ='3(1)=—z=10=m|..my
i 2.9)
Tﬁeslopeof:thcsemdcunealapainltz,S}is: £=2-t :[ﬂl -=2(2)-4=m,..say
dx dx fo g
The slopes m, and s, are used in (i) to obtain the angle of intersection in between the given two curves:
tpfa Py 2 104 LG ; '
Temm, 1+(10)4) 41

[
= - =
o un a 0.1453

Point on a curve where the tangent is parallel to the given line _
.mﬂﬂmfnllﬂwingﬂﬂmpkﬂicmhﬁndth{ int on a curve where ta t 15 parallel to
“ the given line is illustrated in this example. = -

i le

y=Bx—4

Find all the points on the curve y=2x"+4x" where tangent line is parallel to the line.

Since the gi\rerl}ine is y=8x-4

Slape of the given line = §
Given curve = y=2x" + 457 )
%-ﬁx"q.gx ¥=2C4+4x" when x=-2
Tfmy= =2 -2 [ =
SN 22( )’::{ ) ==16+16=0
It +dx-4=0 yaz[ij'ﬂi[i] . when x=.§
3t +6x-2x-4=0 8 2 -
Ix(x+2)=2x+2)=0 =.2[E]+4[§]
(x+1)(3\x-2]=0 16
16 _16+48 64
2=0, =-2= ot o
.r.*:-lx-t- , 3x 22 0 7'y Y] 2
x==2 and x=+— J’EO.E -
i 3 o

" HIGHER ORDER DERIVATIVES AND APPLICATyg

Excreise

l. In each case, find the equation of the tangent line to the curve at the indicated value of x:

A p=or+l, x=3 h o y=sin(2x+m), x=0.
7 =5 x
¢ y= , x=| i = —_— x=]
xe ¥ P
7 ) In each case, find the equation of normal to the curve at the indicated value of x:
a. y=xg, x=I b, p=(2x+D)%, x=0
¢ y= cos(x—m), x=% al. _].r1=r1||'|_1_ x=]

3 a. Find an equation of the tangent line to the curve x>+ »* =13at (-2, 3).

b. Find an equation of the tangent line to the curve sin(x— ¥)=xy at (0,x).

c. Find an equation of the normal line to the curve x*+ 2xy = 3 at (1,-1).

. Find an equation of the normal line to the curve #']\Jr;i = y’-h’—l at(l,2).
. Show that the first four terms in the Taylor series expansion of /fx) = tanx

T 3
K. m n B n
about x= ane. H—E[:—;}![x—zj +3[1 4]

b. Show that the first four terms in the Taylor series expansion of f(x)= J;
1 1 g -1 3
about x=4 are: 2+—(x—4)——(x-4) +——[(x—4
%, 4 e=tl) 64 = 512 (x )
€. Show that the first four terms in the Taylor series expansion of

)= x+ e"about x = 1 are: (1+e}x+e[("‘;lnz+(x"lll+ {I-])‘+...]

3 41
5, Find the Maclaurin series expansion for the following functions:
1 e}
a f(x) P b, flx)=sin’x

¢, fix)=coshx d flx)=In(l-4x)

[ 2. Use the Maclaurin series for ¢* to show that the sum of the infinite series l+l+l+-l—+... i

14731 3]
b. Use part (a) to find out the value of e that must be accurate to 4 decimal places.
kA Find the angle of intersection between the following curves:

o ¥-y'=al Feyi=a2 b yi=ar, X+p'=3axy

8. Find the points on the curve y = 5x” — 4x” where tangent line is parallel to the line y=5v—3.

HIGHER ORDER DERIVATIVES AND AVPFLICATIONS

B.Taylotmaﬁ_ﬁﬁshm&wmﬁuim who is known by his invention of Taylor's theorem and
h:_Ta?-lor‘s series. In 1708 he obtained the solution of the problem of the “centre of
mlhlm“ and published on 1714, Caleulus of finite differences add 1o the branch of higher
mathematics in 1715 with the name “Mettiodus Incrementonum Dirccta et Inversa™, This word
contain the well known ralized its importance i i i

e ; layrange zed its importance and temed it as the main foundation
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maxima and Minima '

Always the maximum and mininum values of a function iﬂglmﬁzfﬁl’;miﬁm view,
For 1 quadratie function (whose graphis parabola), the MEEMREE T 0P P oh are not known, o
without grarshing by finding the vertes algcbraically. For funetions Wt b
techniques are necded, Tn this unit, we shall sec how o use derivative® (0 casing or decreasing,
minimum values of a function as well as the intervals where the function is incr £ or decreasing,

Increasing and decreasing functions

Suppose an ceologist has dctcnni{md the snz.elul" a
population of a certain species as a function S ctf time t
{manths). 1 it turns out that the population is increasing unt_l!
the end of the first year and decreasing thereafter. It is

f

reasonable 10 expeet the population to be muim?md at time Population curyg
¢ =12 and for the population curve to have a high point at 1 12. 20 ~*
1= 12 as shown in the Figure 4.3. Figure 4.3

If the graph of a function £ (1), such as this population R ks }
curve, is rising throughout the interval 0 < t < 12, then we say llﬂlf(f] is strictly increasing on that
interval. Similarly, the graph of the function in Figure 4.3 is strictly decreasing on the interval 12 <1 <20,
These terms are defined more formally in the Figure 4.4.

Figure 4.4
e The function f{x} is strictly increasing on an interval (g, b), if
Slx) < fixg), whenever v, < x, for x,and x,on (g, b).
« The function f {x) is strictli decreasing on an interval (g, b), if
Six) = fixy), whenever v, < x, for x,and x,0n (a, b).
it 22| Find the intervals at which the function f(x)= x*js increasing or decreasing.

Tie function f(x)=x" is a parabola passing through the origin. Take any two points X and
in the interval (a, b) for which: f(x,)~ f(x)=x] - x'=(x, - ), +x)
1

If x,, %y € (0,00) with condition %, > x,, then the function f (x) is increasing in the interval (0,):
Six)=fx)=0

ﬂx,):-f(x.J- bath (x:-xljmpd' ':-‘;*x;)are-i-m when & 2%
" 2 ]

. 0
then the function 1 (x) is decreasing in the interval (%

- Ifx.xE (—o0,0) with condition X=X,
Sx)=flx) <0
SO fn) Go=x)is +ve whife {x,

*0) is—ve, when x, > x,

NET

-, slape of the parabola:  M{(x)=2x+2

" I / Ly
e \;3‘“‘_” D e

TIDCGRNEIE O LEDE 1 DAY A TIVES ST APPLIC VTINS

Prove that if £(x) is a differentiable function on the open interval (a, b) then )
s f(x)is increasing on (a, b) if /"(x)> 0, ¥Vxe (a.h)
& f(x)is decreasing on (w, b) if [ (x)<0, ¥xe (ah) :
Proof: Let x,x,€ (a,b) such that x, >x then there exist a point € berween x, and x, such that

rie= {8l

1~ %
g -\',)f'l:f) =flx)-/(x) If & function £ is comlines on fd, b
For f'(c) >0 and so, x, -5, el * Teventiable on (o, by then iere
Therefore, Flx)=flx) =0if 5y > x5, -—-- lw.::r;# t-;b:.suchl'-.m
Or Fl)> fix) if x> x 220 S = ey
Thus, fis an increasing function.
Similarly, the prool of part (iiV can be done which is left as an exercise for the reader.
fl 23] Determine the values of x at which the function f(x)= x +2x-3is increasing or
decreasing. Also find the point at which the given function is neither increasing nor decreasing.
For graphical view, the given function through completing square
F)=x42r-3mx 4+ 2+ 1-1=3=(x+1) =4

is compared with the general equation of parabola f(x) =alv-h) +k
to obtain 2 parabola with veriex (~1,~4) that opens upward (a =lis
positive). The graph of a parabola through the points (-4.5) and
(2,5) is shown in the Figure 4.5. -

The derivative of a given function with respeet 1o x is the

b=

If the slope of parabola is 7(x) > 0 (positive), then it gives
Six=0
2x+2>0 = 2x>=2 = x>-l

This shows that the given function f(x) is increasing in the interval
(=Le=).

[fthe slope of parabola is f*(x) < 0 (negative), then it gives Figure 4.5
<o
x+220 = Ix<-2 = x<~-1

This shows that the given function f{x) is decreasing in the interval (—=.~1).
If the slope of parabola is f'(x) = 0(zero), then it gives
F)=0= 2=l = WIx==2 = x=-1
This shows that the given function ((x) is neither increasing nor decreasing at a vertex (—1.—4).
Examination of a given function for extreme values
~ Typically the extrema of a continuous function occur either at endpoints of the interval or at
points wh!::r.- the graph has a "peak” or a "valley” (points where the graph is higher or lower than all
nearby poinis). For example, the function f(x) in Figure 4.6 has “peaks” at B and D and "valleys™ at C
and E. Peaks and valleys are what we call the velative extrema,

The exact loeation of a relative maximum or minimun ather than a hic's approximati
: relat gray tion
normally be found by using derivatives. The concept developed is as under: % P G

Let f(x) bea fanction as a roller coaster track with a roller coaster car moving from left to right
along the graph in the Figure 4.6. As the car moves up wwards a peak, its flapr tilts upward. At the

NET FOREALE)
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i " - i B P it begins to tilt dwnmmasme
mstant the car reaches the k. its floor is level, but then it e €ar py,
down toward a valley, At f“? |;:oI=m along the graph, the floor of the car (a straight-ling segmay, g

figure) represents the tangent line to the graph at that point. Using '“'f&"?'ﬁﬂﬁ?mﬁg g
through the peaks and valleys at A, B, C, thetangent line s horizcuial S50 RS VE : FPeak D ang vy
E, however, a real roller coaster car would have trouble. It would ﬂy g E I:ecapca fihe hmh
make the 90° change of direction at valley E. There is no tangent line at Dor = mmec l||| harp g
Thus, the points where a peak or a valley occurs have o prcrlm{n nt rl:%cenl 1-12 it
and has slope 0 there or no tangent line is defined there. The slope of the fangent ine to the grap, o th
function £(x) atapoint P(x, f(x)) is the value of the derivative f"(x).

Sx) DNO tang
B Mo tangent
A * E'No tangent
No tangent o =
N, E /s b
o] 7] [+] . 3 ]
c
Figure 4.6
Ao Relative Masiowm amd Relanve Minimum: The function f(x) is said to have a relative

maximum at a number ¢ if f(c) = f(x)for all x in an open interval containing c. Also, f(x) i
said to have a relative minimum at a number d if f{d)< f(x) for all x in an open intervdl
containing d. In general, the relative maxima and relative minima are called relative extrema,

B, Critieal Y alues and Critical Point: Suppose f(x) is defined at a number ¢ and either f"(¢)=0
or f'(c) does not exist. Then the number ¢ is called a critical value of S(x) and the poit

Fle, f(e)) onthe graph of f(x) is called a eritical point.

Note that if f(c) is not defined, then ¢ cannot be a critical value. If there is a relative maximam
at e, then the functional value f(c) at that point is the maximum value. Similarly, if there is a relative
minimum at ¢, then the functional value f(c) at that point is the minimum value.

Find the critical values for the following functions;

L =k
fa).  f(x)=4x" 52 ~8x+20 (h), f{;)=_xji fe f{x].—-lix“i‘“
A §

4 1
(). [(x)=32 120 @ f()=6 ax
a. The first derivative of the given function is: S(xX)=12* =105 -8
f1(x)=12x" ~10x~8is defined for all values of x. Set f*(x) =0 to obtain the critical values:
f'() =126 -10:-8=0 = 23x-d)2r+1)=0 = ,_4 -1

b. The first derivative of the giver fiunction js: Sixn= =4

(x-2) 3

function f(x) is not defined

to obtain the other critical values:

Thcdcrivativ:isnmdeﬁnedmx=2.ahaﬂteoﬁgﬁm

mx:lSox-:hﬂﬂﬂﬂith‘\'ﬂ“&.hf(}]:ﬂ
x(x—4)

f(ﬂ'ﬁ:a = .\'(I'-"-}'!n = x=04

NP FORSAE
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also the critical value of f(x) . Thus, the critical values of f{x) are 0 and 1.

(.3

x=0is a critical value of f(x). Ifx 0, then f"(x)is going to be 0 only when the numeratord - 4.5 =0 is
zero forx= 1. So.x= 1 is the critical value of f(x) . Thus, the critical values of f{x) areDand 1.

Theoreen 4.0z If a continuous function f(x) has a relative extremum at ¢, then ¢ must be a critical

HIGITER ORDER DERIVATIVES AND APPLICATIONS

-1 i
The first derivative of the given function is: S(x)=6x2 —3x2

The derivative is not defined at x = 0, but the original function f(x) at x = 0 is
S(0)=12(0)3-2(0)3=0 defined. So x = 0 is a critieal value. For other eritical values, set
=1 ] = |
Sx)=0 to obtain: f'(x)= 6x? =3x? = 0= 3x? (2-x)=0= 2—x=0 = x=2
Thus, the critical values are x= 0, 2. 5 .
The derivative of a given function is: f(x)=3x% —12x
Lo L 4 =2 i =
f(x)= 3(%]“ r'IZ[_;-}Y:. st i B 24

N
x? x°

The derivative fails to exist when x = 0, but the original function f(x) is defined when x = 0. So

x=0is a eritical value of f(x).

Ifx =0, then f(x) is going to be 0 only, when the numerator 4x -4 =0 is zero forx= 1. Sox= 1 is

i
The derivative of a given function is:  f(x) = 6x' —4x

}':fx)=ﬁ[§]x%"_4: . 1 W Y

[
2
The derivative fails to exist when x = 0, but the original function f(x) is defined when x = 0. So

value of f(x).

the function f(x) is strictly increasing or decreasing.

select 2 typical number from each of these intervals, For example, we select -2, 0 and 4, evaluate the
derivative at these values and mark each interval as

derivative is positive or negative respectively. This is shown in Figure 4.7,

interval —1< y <3,

NoT FeRcALE)

The function f(x) is defined by f(x)=x"—3x*—0x+1. Determine the intervals at which

First, we need to find out the derivative of the given function, which is: " (x)=3x" —6x -9
For eritical values, set f(x) =0 10 obtain: 31 = 6x—9= 0=3(x+1)x-3)=0=x=-13
These critical values divide the x— avis into three parts, as shown in the Figure 4.7, Next, we

increasing or decreasing, according to whether the

¥

| ’ | F 0| rrsp ::
R b _ L8l o
s e s ‘ .'n75’:’\ '. 2 :i —ax 2
N R [ 4 l""\/’ |
T R L | xw=3 - .
pat il . 3,-26) E
Figure 4.7 = %
E

S

Thus, the function f{x) increases in the intervals for x < =1 and x > 3, but decreases in the
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]:'.wjnpl:?ﬂi Draw the function f[_;-]:x‘-l\'z—'a"l'“ and its

derivative f"(x} = 3x? —6x—9, Use these graphs 1o tell about the

following questions: :

fa). When f*(x)is posilive, what does that mean in [ems of the
graph of f(x)? ) .

{h). When the graph of /(x) is deereasing, what does that mean in
terms of the graph of f*(x)?

m The graphs of flx)=x'-3x"=9x+] and
S(¥)=3x" —6x—9 are shown in Figure 4.5.
These graphs develop the idea that the critical values of
J(x) are always intercepis for the graph of Sx)=3" —6x-9:
« If f7(x) is positive, then f(x) is increasing. i
e [Iff"(x) is negative, then f(x) is decreasing. : _'Figim?ﬁ o

State the second derivatives rule to find the extreme values of a function at a poif)

The first derivative of a function can be used to determine whether the function is increasing o
decreasing on a given interval. We shall use this information to develop a procedure called the firg
derivative test for classifying a given point as a relative maximum, a relative minimum, or neither,

The steps involved in first-derivative test for relative extrema are the following:

i. Find all critical values of f{x). That is, find all numbers ¢ such that f(c) is defined and cithe
Sley=00or (¢} does not exist. :

2 The point (¢, f () is a relative maximum if /"(x) >0 (rising) for all x in an open interval (4, )k
the left of ¢ and (¥} < 0 (falling) for all x in an open interval (¢, &) to the right of ¢

3. The point (c, f{c)) is a relative minimum if f"(x)<0 (falling) for all x in an en  interval (2. G

- theleft of e.and f"(x) >0 (rising) for all x in an open interval (c. &) to the right of c.
4. The point (¢, f(c)) is not an extremum if the derivative /"(x) has the sane sign in open ik
(a. ¢yand fe, b) on both sides of ¢. ' ;
In light of first-derivative test, the function f{x)= 1" =3x =9y 4| (cxampic 24) has the il
values =1 and 3. The function f{x) is increasing when x < -1 and x > 3 and decreasing when ~lar

& ad
R et =

UNIT-4 TGHER ORDER DRIV ATIVES AN AFPLIC A TN

The value of the derivative is positive (rising) to the left of -2 and negative (falling) to the right of -2.
Thus, x = -2 leads a relative maximum point
J=2)=2(-2P + 3(=2) - 12(-2) - 5= =16+ 12+ 24-5= 15,
The test values 0 and 2 are used for the eritical value x= 1 10 obtain:
S(0)=6(0+2)(0-1)=~12 (negative)
SU2)=6(24+ 2)2=1)= 24 (positive)

The value of the derivative is negative (falling) w the left of 1 and positive (rising) to the right of
6. Thus, x = | leads a relative minimum point. f£(1)=2(1)+3(1)-12(1)-5=-12
Thus, the arrow pattem in the figure suggests that the graph of f(x) 1
has a relative maximum at (=2, 15) and a relative minimum at (1,-12).
The Sevomil Decivative Role: It i5 often possible 1o classify a critical
point P, /() on the graph of f(x) by examining the sign of 7(¢).
Specifically, if (c)=0 and f"(c)>0, then there is a horizonal
tangent line at P and the graph of f(x) is concave up in the
neighborhood of P. This means that the graph of Jf(x) is cupped |
upward from the horizontal tangent at P and to expect P to be a relative —
minimum, as shown in Figure 4.11. | 12

Similarly, we expect P to be a relative maximum, if f(c)=0
and f*(c) <0, because the graph is cupped down beneath the critical
point P, as shown in Figure 4,12

[ e
A -

Figure .10

fa=0

: P
L=\ @0 /0 SE>Y preyen \S W0

.

i c []

Sley=0 and fe)>0

implies fle)is a relative minimum
Figure 4.11

nr € I
F1e=0 and [Mick=0
impligsfle)is a relative maxmmum

In other words, Figure 4.12

The first derivative test tells us that there is a relative maximum of 6 at x = —] and 2 relative ipion o ¢ The point P(c, f(c)} is said to be a relative maximum. if the slope /°1¢)of the tangent line from

ot . left to righ} "F"E i curve through P, is decreasing from positive to zero to negative and the
(BT 27) Examine the function (x)=2x"+ 3x~12x=5 for the relative extrema using first-derivs™ Fslsyhe o gt
- ¢ The point Pic, f{c)) is 5aid to be relative minimum. if the slope j7() of the mngent line from left to

right along & curve through P, is increasing from negative to zers to positive and the second:

The first derivative of f(x)= 2 +3x = 12¢—$ is-. it al
2x-35 is: derivative /”(c) is positive. These abservations lead to the second-derivative test for relative extreme.

S =657 +6x =12 = 6{x+ 2)(x—1)
Set f7(x)=10 to obiain the critical values:
g (x)=6x" +6x-12=0= 6lx+2)x~1)=0 = x==2]

The Second Derivative Rule for Relativ a: ; uncti
iz 5 3 =1 ; e Extrema: Let f(x) bea function such ) :
To test the critical valies -2, 1, we can use the tost e i derivative exists on an open interval (a, &) contrining . o such that f™(e) = Oand the second
values -3, 0 and 2. Many other choices of the test values are R in ¥ I IE/(€)> 0. then there s a relative minimum at x = ¢ ad the graph of i i
also possible, but we try 1o select numbers that will make the computations easy. This is shown! neighborhood of P(c. f{c)). gruph of f(x) is concave up in the

Figure 4.9. .
The test values -3 and 0 are used for the critical

va =_ Fo

S(=3) = 6(=3+2)(-3- “ =24>0 imiti\ﬂ!] Iucx il 3. 'r.lr":c)— 0, then the second derivative test fails and gives no information,

£(0)=6042X0-1)=~1220 (negaive
— L WoTFORS 124

2. 10 f(e)<0, then there is & relati im = ¢
migbtodol e fl). o e gt of S(3) i concave down in the
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Use the second-derivative test to detenmine whether cach critical value of the functigy
S(x)=3x" _ 541, 5 comesponds 1o a relative maximum, a relaive minimum, or neither.
The first and second derivatives of f(x) are the following: .

T () =15x" - 15 = 152 (= I)(x+1), [ (=602 =30x=30x(2x" - 1)

Put 7(x) = 15x* 155 =152 (x - 1)(x+1) =0 to obtain the critical values 0, 1 and -,

The second derivative *(x) at a critical pointx = 0is: f7(0) = 30(0}0—1) =0

The critical value x = 0 declares the failure of second derivative test,

The second derivative /”(x) at a critical pointx=1is: /"(1)=30>0

The critical value x = 1 leads to a relative minimum of f{1) = 3{1)- 5()+2=0.

The second derivative /*(x) at a critical pointa= —1is: f*(=1)=-30<0

The critical value x = —| gives a relative maximum of f(=1)=-3-5(-1)+2=4

The second derivative test works only for those critical values ¢ that make Sey=0, This teg
does not work for those critical values c for which S(€) does not exist or that make f(c) = p, In both of
these cases, use the first derivative test fo proceed the process of relative extrema,

Solve real-life problems related to extreme values _
2
A truck bums fuel at the rate of G:x)=—2t',5[i'““7+‘-]. x>0 gallans per mile when

traveling x miles per hour on a straight level road, If fuel costs $2 per gallon, find the speed that will
produce the minimum total cost for a 1000 mile trip. Find the maximum total cost,
&P The total cost of the trip in dollars is the product of the (number of gallons per mile) (the number

2 2
of miles) (the cost per gallon) that develops the rule: €(x)= -E%[W; = )(mom(z); ﬂ“:_mi

The independent variable x represents speed, only positive values of x make sense here, Thus, the
domain of C{x) is the open interval (0,00) and there are ng endpoints to check.

The first and second derivatives of C(x) are the following: C'(x)= M_T—:;_mﬂﬂ , ()= ‘ﬂ:f“
Put C'(x)=0 to obtain the eritical values: 'W;mﬂ =10:*-8000=0 = % =8000 = x=3283mph

The only critical number in the domain is x = 28,3, The second derivative test at a critical value x = 283

is: - 16000
i C(28.3)= (283) 0.72»0

The second derivative test shows that the erifical value x = 283 leads to a minimum value. The minimm
* total costis found by inserting x = 28.3 n the cost functon; €(283)= 3000+1028.3)° _ 55 coioitars
' 283

Example Y] m supporting cable of a pipeline suspension system forms a pan-]bolic arc between
supports, which is described by the equation y=003]125, ~1.25%. The distances are measured in mﬂﬁ
mmﬁnorﬂwuismmisummﬂmwmm | Where
point is on the and how far is it below the attachment poiq;ﬁbrc Fiaches to the ke support tower.
meclowpoimofﬁwcahle.wenmdmﬁ d
second derivatives of the given function: 1 the flst ang
»=0.03125x"~1.25x, ) =0.0625x~1.25, V=0, G Rt
obtain the crifical value: 0.0625x~125= 0y g0 3¢ ¥/ =0t
Since the second derivative js posilive fp,
critical value x = 20 will produce the minimum

rall values of x,
value on he Curve,

1% NoTFoREME

= —r =~ il

R4 LR T T OATIVES AND APPLICATION

Ti!c_luw point on the cable oceurs 20,0 m to the right ol the Jeft 1
original function to oluain the distance from the low paing af 1!
point: ¥ =003125(20)° ~1,25(20) = —12.5

Therefore, the low paint of the cable is 20,0 5 1o the et
to the support,

WE command maximize (minimize) 1o compute meximum (minimum)

value of a function
The procedure to the use of MAPLE command maximizs (1 H)
value of a function is illustrated in the fallowing example
TAA0 f‘_T_[] Use MAPLE commands to compute
. (@) ffe)= cosx. fB). fix)= ~

writical value for x i1 1
Mich is below the attachient

* e el ow s point of antachment

w complste maximum (minimum)

i the intenal [-1.2).

a. C;'-mmand:
> maxiniize{cos(x) );

= mrinfmize(cos(x) );
=1
Contexi Menu:
> “cos{x) . 3
- Optiniization] Maximize]( cos(x) ]
v [1. [e=5.58237824804110 10717]] _
This result is obtained through right click on the last end ol the cxpression by selecting "Optimization <
maximize local”en the context menu.
- coslx)
> Optimization] Mimitize]{ cosfx) )
[=1. Lx = 3.14159263358977))
b. Command:
* movinize(d — 2,2 4 3, pmny .2);
- " [}
> wiinimize( s =32 4 3, g e .2);
2
|W—l:;a;i-“r -!/_\

B ._,__u_zg;}_-:__\_"-.; _“i__—s/)

Find the eritical values of the given functions in the follow ing problems and show where the
function is incrensing and where it is decreasing.

i ]
& f()=r+3v7+1 b. fiv=x"+ 35x°-125x-9.375 %
. Find the eritical values of the following functions: :
L f(0=22 -3 T2re 15 b.

Sxy= %.'."' -3 =15x+6

€ f(x)=6x" ~dy

(307 FORSALT

+ 1
d. flx)=3x0 =123
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Efetmnine whether the given function has a relative maximum, a relative minimmn,urneiu.,, ™
given critical values for the following problems: : : ;
NS = (P <3y = 0at x=Lx=—1 b f()=(¢'-4x+2)’at x=)
SOy P ax=tx=2 g fx)=Y" -48at x=4 . :

Find all critical points of the functions in the following problems, al:edctumme where hmﬂ‘
the function is rising, falling, concave up, or concave down. Sketch graph. : .

1
o (%) =2(x+20)" = B(x+20)+7 b ,r(x)=§x’—9x+g

Find all relative extrema of the following functions:

0 fx)=x"-3x+1 b Slx)=x"+6x +9x+2 45

# Suppose f(x) is a differential function with derivative f'(x)= (x—l)‘(x~2)(x_4)(,+5}- :
Find all critical values of f(x) and determine whether each corresponds to a relative Maximum 5
relative minimum, or neither, '

" Suppose f(x) is a differential function with derivative f(x) = {Zx(;l-ﬁ;:a)

Find all critical values of /(%) and determine whether each corresponds to a relative maaionm,

a relative minimum, or neither.

FP(x)=80+108x—x", 0<x<10

I, Findth:expendjmonadvctﬁmhgmlmlsmmimumpmﬁz.

b Find the maximum profit.

The total profit P(x) (in thousands of dollars) from the sale of x hundred thousands of automobilt
tires is approximated by P{x)z—;’+9x‘+120x—4m. I=x<1§

Find the numbwnfhmd:odthuuundscfﬁrmmumhemldmmﬂmwﬁl Find the
maximum profit. % v

The percent of concentration of a dxuginﬂ::ﬁluodshuﬁ:i:houmaﬂﬁtﬁédmgis;ﬂmiwd' f
e 4x 5 . Loy ' :

- K(n= : g : g
el ) I +27 e et
" Onwhatﬁmei:nemlsisthzmnmhdmenheﬂugmmugo‘ ing?-
1 On what intervals is it decreasing?

- Findthelimeatwehthemwnmonisamimm. E
.. Find the maximum concentration, -

UNIT-4 HIGHER ORDER DERIVATIVES AND APPLICATIONS
E( Review Exercise

L. Choose the correct option, _

i. I f{t)=3 +4r-5 then L) is
(a). 3 =dr+5 by 6t+4 €. 12 fdy 6t=5

i Iff(r}:s:'w:-s.-m,f‘mia
(). 3 =dr+5 by 6r—4 fe). 6 fdy 6Ge+5

dy_

i If y=e™then e
(@) me™ log(e") (6). me™ fe).  me™ fdl me"e™

iv.  The 5* derivative of f(x)=¢"is
(& o (b & o). se dj &

v. The 4™ derivative of sin ¥ is
F’l',l.. ﬂ:—‘:'!sinx - (B). %-ﬂ;s: f‘;l.. %{I-—:—sinx iy, %ﬂ*mx

vi. If f(x) and its derivatives at x=xare (%), /(%) /" 5) then the n® order polynomial
S(x) will be equal to: g -
@ S0+ fon-0r @+t B oy @y e (ron e )

(e ftz+h)+(z+mrm+...+‘—";%’;w (dy. _-"(-t—hh[«r-fr)f'(ﬂli--"fh—;f—]fﬂ)'

vii.  To calculate the first five terms of taylor's series for f(x)=e*, the MAPLE command is used as
(2). taylor (x,e"* =0) By, taylor (™)
(e taylor(e™,x=0,5) (dy. taylor(e™, x=35)

viii.  The equation of normal at point (xa,yg) is:
fay. x-&=ib~y.) (B, (y-y,)-—'tx.--ﬂ

m m

(eh (r-y)=mix—x,) @ O-s)=-Lir-x)

“ix.

The angle of intersection of the two curves can be calculated by using the formulas,

@) @=sinFHm ) 8=tan lomm:
l=rm, l-I-nR,m:
el G=an Zhzm (d). @ =gin~ MFmy
B L myn, ]+m.m_,
If f(x)is differentiable on the open interval (a, b) the f(x)is strictly increasing if:
i fix)y>0 By S0 & foso e f(x)z0

HOT FORSALE




