s
By the end of this unit, the stndents will be able to:

bR soumerical solatusn of non-iingar cepuations i
]

g

] Deseribe importance of numerical methods. o ¢
»  Explain the basic principles of solving a non-linear equation in one variable. !
i cahnhumlmuuram-linmammiminmnﬁshlcw e el i

= Biscction method. . Rt.’g.lh-!’alsimﬂhod-« . Mewton-Raphsan met H
. Use MAPLE command fselve to find numerical solution of an wlmnmmfﬁ‘-ﬂ!wﬂwghmwlu i
| e ) e rical quadrature :
[ Define numerical quadrature. Use i
«  Trapezoidal rule, . Simpson'srule, i
tomupneu-cnppmximle.wmofdefuﬁle integrals wilhout error terms. s b
Use MAPLE command trapezoid for trapezoidal ule and simpson for Simpson's rule and demonstrate i
through examples. i
Ngwi T -«-‘.— “-‘h:—'-—v- iy L i
Introduchons

Scientists, economists, engineers, and other researchers study rela'tia_nships between quanllitigs,

For example, an engincer may need to know how the illumination from a light source on an object is

related to the distance between the object and the source; 2 biologist may wish to investigate hn?.- the

population of a bacterial colony varies with time in the presence of a toxin; an economist may wish to

determine the relat ;

e o e T e s e L

jonship between demand for a ceriain commodity and its market price. The
mathematical study of such relationships involves the concept of non-linear equations. For a;xample, the
value of the assets of a certain company at lime [ years is modeled by a mon-linear equation
f{:)=1w.ono-15.uu0z-‘“ where ¢ is measured in years. The standing rule for solving non-linear
equations algebraic is quadratic formula. In this case, it is not valid to obtain the actual number of 1 ()‘rea:s]
at which the asset function £(f) is going to be zer0. MNow we are in position 1o obtain the approximate
number of year's ¢ that can be found by using some numerical In this unit, we will learn the
numerical procedurcs recommended are the bracketing methods and iterative methods,

rical Solution of Nun-llnear_Equq_ﬁons .

Nurperical analysis is the theory of constructive methods in mathematical analysis. Constructive
methods in their turn mean a procedure thal permits us Lo obtain the solution of a mathematical problera
with an arbitrary precision in a finite number of steps that can be prepared rationally.

Tmportance of numerical methods
Numerical analysis is both a Science and an Art. As a Science, it is concerned with the process
by which a mathematical problem can be solved arithmetically. As an Art, mumerical apalvsis 15
concemed with choosing that procedure which is best suited to the solution of a particular problem.
Students learning numerical solution of non-linear cquations should have the following
objectives in view, First, he should obtain an intuitive and working understanding of some numeric
methods for the basic problems of numerical analysis. Second, he should gain some appreciation
cancept of error and of the need to analyze and predict it. Third, he should develop some gxperiense 1
the implementation of numerical methad by using computer software.

Basic principles of solving non-linear equations in one variable

. ' i i ; o
“If f (x) s any continuous function of a single varialle x. then any aumber rfor which /7

is called a root of f(x} = . Alser we say that v is a zero of the junction f (x)."
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If i i actua
J(x) is any algebraic function (non-linear equation), the the
ion), then 1}

found by direct rules, such as 2
? quadratic fo
F rmula,
or ::xamplc, the quadratic cquation ;: f;"ﬂmn factors procedure and
. r, =—3obtained by common factors :"?‘:0 s two actual (or
F(5)=7 455460 Pty it

=x'+2x+3x+6=0

Toots of f{x)can be
synthetic division,
exact) roots r=-2 and

z{1+2}|:1+3 =0==x+2=
} x 2—-0.1+3=0=&1=—2=r‘_

On the other hand, the act
i . ual roots of non- ; i
gmf:ﬁ:rim:r? s )y {;""r;;::{cﬁrw R
cedures. The numerical reakmste roots
procedures are the bracket
eting

-7 =
Real roots of non-linear equation in one variable

For approximate roots of a non-li
e :
and regula-falsi method are the mm&’ mmw'f pumeTical procedures Bisection method

must be in the shape of a closed interval [a, b].

Jt=-3=r=

='°mrl)tpnssi‘bk
ﬂntmberumﬂbymz
methods and fterative methods.

depend on two initial approximations that
The non-linear i
must be opposite in signcusr:'rc fsht:.]mm-hu-the function values f(a) and () in the interva that
Jarge, the iteration will s 15 GOEIINY: Onoe the. tokerval bus beses “'m'd» lm[m .
s w beprecedoduutilauappmxirmemutisuwm bow
| principle in

computer science is the iteration. As
1 - . As the pgests, it means rocess
falsi method is repeated until an answer is:E:t;‘eud. i ot il

(a) Bisection Method

If y = f(x)is continuous function i
, m

interval [a, b], then, it will eross the x-axis :”
point (r,0) whose x-coordinate x = r will keep .
;ﬂuallro_ut that lies somewhere in the interval .
]. This T.;:hown in the Figure 12.1 %

bisection  method ; emati

mlves the endpoints of the intm:ly?:: ] cﬁs’g
closer together till it reaches an mlm" 1 of i

Yo fy)

small width that brackets the }
sepgebip he root r. The'decision  a, (i N %
P for this process of interval halving is to a.rr(nﬂ :
)

choose the midpoi (a+b
¢ midpoint fn-—z-l and then analyze

e i e e

P m:;;mtﬁl [a.}ﬂﬂdmﬁ];‘ x=aand x = ¢ have opposite signs, then the approximate
3, ?@ﬁi{;ter:arﬁ‘ﬁ?n:?ﬂ:x- ¢ and x = b have opposite signs, then the approximate
contai IF either of C:::ulc::-;:o:;u{.@ ‘h':: tien 2 ot Apprexisnats reet b sctual rest r.
P the root, and we are -qming“:uwvzﬁlw}grfﬁ l‘“.‘i_: armuﬁumﬁwrl& :::: |

MW smaller interval
; and t i i
procedy s repe:r the sequence of nested intervals and their midpoints.

NOP ForcaLE
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+ erval at which the function ' (x) must be opposite in

The given interval[a,,b,] is the initial (a,+by)
ol

actual root T whose midpoint is 6=
ol root r in the interval [ag,by)-
brackets the actual oot rand ¢ is its

signs. At this stage, the initial interval brackets the
Tt develops the first iterate ¢, (through properties I o 2) lﬂfﬂ“
The next interval[a,,b)is the first interval which
midpoint ¢, uii'%l, It develops the second iterale ci[mugh

interval[a,. b].
Similarly, the interval [a,.b.)is

properties | or 2) to actual root 1 in the

he nth interval which brackels the actual root rand ¢, is its

1o actual root r in the n-th interval [a..8,]-

o {a,+b,) lops the (n=1)-th iterate €
midpointc, === It develops the midpoint ¢, , is taken as the

This completes the n times jteration of the bisection method and
desired approximation to the actual root r=¢,,0fy = f(x).
PPITI. 1) Perform two iterations of the bisection meth_ud to ¥ ‘

ppmxi the actual root r of the non-linear equation F)=sinx=€" | ;1 cquation f(x)=0inthe
a]
(x is in radians) in the interval [0.5, 0.7)-

Reset the given interva
interval [y, b;]=[0.5.0.7] and compute the
atx=a,=05and x=b,= 0.7 to oblain:

f(a)=r(03) =sin0.5-¢** ==0.127 d}} T
£(8,)=(07)=sin07=¢" 1014850
The function values f(a,) and f(b,) are opposite in sngrlcs,su- the a

interval [0.5, 0.7):

To find approximate raot of

1 1o obtain the initial

function f(x)=sinx—e¢ ™" values | continuous and Jf(a) and
5 f(b) bave opposite in

signs. :

ctual root of f(x) lics in the

7 . _G,+b, _05+0.7 g6 and the funclion
i The midpoint of the initial interval [anbolis 6.==7 ~ 2

values atx =g, =0.5, x= b,=0.7, ¢;= 0.6are the following:

“fla)=s(03) =sin0.5-¢* =-0.127<0

£(b,)=r(0.7)=5in07 - =40.148>0

fle,)=1(06) =5in0.6—¢* =+0.016>0
The function values f(a,)and f(c,)are opposite in signs, so the approximation to t‘r.re- ac
f(x) lies in the interval (0.5, 0.6] and discard b, =0.7. The initialinterval is reset to oblain the

[0, 55]=105,06)

i The midpoint of the first interval is ¢
atx=a,=05x=b= 0.6, and x = ¢ =0.55are the following:

tual root r of
first interval

‘ﬂgﬁ‘gs_;%=o.ss,m the function “¢allc?

o
.

naTEoReAS
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r‘r['“:] qf[°-5]= sin0.5-e® = 0127 ¢ 0

S(a)=£(0.55)=5in0.55 ¢ =-0.054 <0

S(8)=7(06)=sin0.6-¢? 001650

The tion ValIlBSf(h) and f("[) are ite in sj

func opposite in signs, so the approximation 1o actual

) H I

lies in the interval [0.55,0.6] and discard @ =0.5. The first interval is reset to obtain the mzmh::n{(X)
[a:, &]=[055, 06].

After second iteration of the bisection method, the midpoint ¢ =0.55 is declared approximat
(<

root to actual root r = c,. The approximation value of a function Slx)=sinx—¢"

r=0.5515 (0.055)=-0.054, al approximate root

"(b) Regula-Falsi method

The next bracketing method is the method of regula-falsi
bisection method converges at a fairly slow speed. M@Mﬁrfelflw mli T;?Embﬁl?l;hv:
opposite si_gns. The biscction method always used the midpoint of the interval as the next iterate, but in
Fggula-fa_lsl method, the next iterate is anywhere in the interval [a, b] represented by the pomt of
intersection (¢, 0) of the straight line formed by the points (a, f(a)), and (b, f(5)) 2nd the x-axis

y=1(a)_f(b)-7(a)
x—a b-a

0-f(a)_s(t)-7(a)

c=a b-a

» at (x, y)=(e, 0) )

and then analyze the three
possibilities that might arise :

L If the function wvalues
Sfla) and fc) atx=a
and x = ¢ have opposite
signs, then the root lies in
the interval [a, ¢] and
discard b.

W If the function values f (¢)
and f(b)atx=candx=b
have opposite signs, then
the root lies in the interval

e bland discard a. Figure 122
A ":'-he function value at x = ¢ is f(c)= 0, then ¢ is our approximate root. This is shown in the
Figure 12,2,

T
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- 'Iﬁlﬂd 1o
'I'.\.-.L:nph:"g Perform two iterations of the mwh;i?:;r aqua'i"“

f the no%
[0_5,0-71-
plain  the

approximate  the actual root T ©
flx)=sinx—¢" (x is in radians) in the interva!
Reset the given
irtml[a,,.bn].—-[ﬂ.s,ﬂ.?] and compute
values atx = g, =0.5 and x=b, =07 oblain:
1(a,)= £(05)=sin05 ¢ }
£(b.)=1(07)=s5in07 e =40.148>0
The function values f(a,) and S() o
interval [0.5,0.7). Equation (i) is used to Emm
C (a-b)f(@) os-
S OO
That provides the function value 8t &
=05, x=0by

-0.127 —0.148
=0.592364

i, The function values alx=4a,
fla,)= sin0.5— =-0.127<0
f(b,)=sin0.7-¢"" = +0.148>0
f(c,}:sinﬂ.i'}ﬁﬁd--ew =+0.081> 0!
The function values f(a,)and (e, ) are opposite in signs,
f(x) lies in the interval [0.5, 0.552364] and discard B, =0
the first interval [a,5] =[0.5,0.592364].
Equation (i) is used to obtain

03 - 0.127<0) pgsite insighs

opwsﬂt in slgl'ls,

|
i T el & A
CT'DH TO NUMERYC AL L]m[uns

s

only if J(x) is contimious ang
fla)and (b have opposie iy
Signs.

so the actual root rof /(x) lies in the

0.5-07)(-0.127) _ g 592364

f(c_}=sin(ﬂ,592364 _e‘“m =+0.081
~07.6= 0.592364 are the following:

so the appmximationm actual oot rof
7. The initial interval is reset to obtain

(a,-0)f(a) _ &5_{0.5—0.5923&4]{-0.121] _0.755

G =6 'm —0.127+0.081

that provides the function value at ¢, =0.755: £(0.755) =sin(0.755) -
e,= 0.755are the following:

i The function values atx=4a, =0.5, x=h=0.592364,
f(a)=sin0.5-¢™ =-0.127 <0
7(b)=5in0.592364—¢ *7 =+0.081>0
,r(c,)=siun.1ss-e*“” =40215>0

2190215

r
imation 10 sl

The function values f(q}aud,f[c.)amopposiichs‘ngus.'saﬂ\cappmx . s
of f(x) lics in the interva (05, 0.755) and discard b, =0.592364. The frst interval =

obtain the second interval [a,, b,]=[0.5, 0.755].
After second iteration of the regula-falsi, the point ¢, =0.7

; ximation
55 is declared as appro ;.I).TSSB

toot r=¢,. The approximate value of a function f(x)=sinx—e™ at approximate root =

J(0.755)=0215.

s
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(c)  Newton-Raphson-methoq VETIONTONUMERICAL MeTHODS

Another numerical proged I the

methods. The Newton-Rap Newton-

jterative method which n method is mmmﬂaphmn method under the umprel |

approximation in contrast :}q“"“ one  previous ¥ umbrella of terative 1/ o
g

which require two in - mg methods
approximation. computing the successive
The MNewton-Raphson
method
of the tangent lines o the graph of a r‘:’:’ﬂ:‘:ﬂ slopes
approximate roots of the equation fix) =0 el
If £(x) and f(x) are continuous 1
cont
roots, then this extra information mﬁ;f;;: actual ”

of fi(x) can be used to develop =
; a sequence of itera
{x,}.that will converge faster to actual root than eiﬂ:s g y'ﬂ ik o
the bisection and regula-falsi methods.
Figure 12.3

If r is any actual root of an =¢
equation of the fo -
the actual r, then the t i rm f(x) =0, and x, is an init; -
The point (x, O]i;;u.:ns-::lm_‘ecnafm S(x) atapoint (x,, 1) % u:lmﬂt.a'lsppmxmmmnm
point ofm:c;;mm' pno _°£ ntersection of the tangent line and the x-axi m;“ﬂ a point(x,.0).
it the (%,,0) is our first approximation to the actual Jw: x, of the
/m in the Figure 12.3. root r of an equation f(x)= 0.This is

The slope of the & i
angent line on a curve y = f (x) at a point (x5, /) i used 10 obiain the first

_{(x)
tanf=—=2
approximation (iterate) x, : FHTT Il
. = - =ae) = Jr #
_ Flay=LE) T R TG O
Similarly, the slope of the Bt
o Inngeutllncc;l[z;lmy-f(r]uapoim (x;, ;) is used to obtam the second
iterate . - mﬁ,=—:'- -
y s 3 II’:'%‘*':=M=>L=J:—I{:')
m)a ) TGRS )
H=X

This procedure of i i
f{;:;. s?opcﬁnﬂngmthod:smmndtﬂlﬂmmmcth 1)-th fterate:
f,{x'],r-lll.z,... (1)

‘rhl =Xh-=

which is called the Newton-Raphson method.

To find
Approxime i -
te root of an equation of the form f(x) 0 with initial iterate x,, the iteration method

I )
“——'f(x‘},r=ﬂ,l.2,3,..,, =123,
a

sequence of successive i a
"Ogula-falsi methods, ve iterates {, } that will converge faster 1o actual root  han either the biscction and
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INT

Exam

iz e actual root r = 0.438447 of the
I3 ] Use Newton-Raphson iteratiye method to appmxm"‘"w " be accurate to six decimal
non-linear cquation  (x) = —Sx+2 with initial start %, =04 {
o - — (x)=2x+5 are used in
@I The given non-linear equation f(x)=x"—5x+2 and its derivative /'

i ive iterates

the Newton-Raphson iterative method to obtain the successive iterd
fix)

Xia=%—"5 1* i=0,1,2

fix)
£ix) _xi-2 _(04) =2 _q 438095, i=0

BRI e A=

tl
g fln) _xio2 (QA805) 22 gpaar, i1
- iy

f‘{-ﬁ] 3 21{_5 1 Z[Ddssws}—s

actual = 0,438447. =3 3
mwﬂ;:cgc tlmnvu:l ite:artto:—gHWT agrees to SiX decimal accuracy of actual root 2 0.43844
seCO =0,

he six decimal accuracy.
We achieved in just two iterates of the Newton-Raphson method the six "
WITIAPLE command “fsolve” to find numerical solution © >
les
emonstrate through examp . . e
e MAPLE command “fsolve” to find the approximate solution of given function 15
The use of ¢
illustrated in the following example. i
Use maple command “fsolve™ to solve. e
fa). Linear equation & —5x+6="0 with initial s‘ta{r;:“-— 1. .0 :
: i ion x* —5x+6=0 with initia xn=0.5.
. Nonlinear equation x S5x+ ' 5 ik
o The command below will show you full detail of the approximate root of
linear equations on line by typing without initial start:

.

> ol 3

> frohel? —5x+6) MWWL The numerical solution through
b . is also a second degree po

The quadratic function f (x) is &

polynomial is:

> Polynomial m= £ —5x+6 Polynomial =3 — 546

> foolvel Polynomial) 2 000D0NR, 3 DOV

b.

> foolvelsin(x) = exp{ %)) 0.SRESIITA
Context Menu:

> sinfx) —expl %)

> foolve sin{x) -exp( =) }

DSESTEIIAN i L nsbhlﬁ <
- i result is obtained through right-click on the Tast end of the expression by selecting
ek et g 105
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. : ¥

L. Find an interval asx<h ar whicy fla |2
) and ; g

functions: an¢. 16) have opposie Signs for the following Lf

. fl:.r]=e'—2-.x 2

b f(x)=cosx+1-x, x isinac e

¢ f(x)=ln(x)=5+x e Rl ¥

; d f(x)=2-10x+23
2, Compute four iterates of

the bisection method for the lowin ; e
T fol g functions with indicated :

a flx)=e'-2-x, [1,19] b f(x)=cosx+1-x, [08, 1.6] x s in radians
¢ f(x)=ln(x)-5+x [32, 4] d f(x)=r-10c423 [32, 4)
3. Compute four iterates of the regula-falsi method for
interval[a,,b,]:
2. fx)=e"x, [-24, ~L.¢]
€ f(x)=x"-10x+23, [-24, -1.6)

the following functions with indicated

b f(x)=cosx+1-x, [08, 1.6], xis in radians

4. What will happen if the bisection method is used with the function /()= —\— for the :3
- x=2 |
following inter+.us: A |
a [3,7 b [1,7) ':
5. Find iterate x, of Newton-Raphson iterative method for the following functions with initial start x_:
a flx)=x-3, x =1 b. f(x)=sin(x),x, =1
€ Sx)=x"+2x-1, x,=0 d. f(x)=sinx, x,=-2
6.

Use !*‘lewtun-Raphsun iterative method to approximate the actual r of the following non-linear
equations with indicated interval:

L f(x)=x"+3x-1=0 on(0,1)

b, flx)=x"+2x*=x+1=0 on(-3,-2)
¢ Yx=3=x+lon[-3,-2]

; Continue the process until two consecutive iterates will agree to three decimal places.
+ Use MAPLE command ‘fsolve’ to solve 3x* +4x—3 =0 with initial start at xo=0.5

Qun

\ Ton Luga was a Syrian mathematician, astronomer and philosopher. He contribute
many ﬁeu? of scicace, medicine, astronomy. His translation on the difference
mbd“&“iml:}im?mla_milhcmlmnneoflbeﬁewnuismmﬁumdwmm
5 dwhledmahsl?rbuokstobcrmdumdmﬂemllnﬁﬂpﬂmww
B ¢ false position in 10* century. He justified the technique by a formal,
&&mhmmf.wmmmammmm

was known as Hisab-al-Khata'ayn. It was used for centuries to solve
Problems such as commercial and recreational problems.
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Numerical Quadrature
Numerical integration is a primary tool used by ¢
solutions for definite integrals that cannot be solved analytically Fo

f=]'c“'dr

r example, the
[}

is no any integral formula 1

has no actual solution. This means that there z
find out the approximate 5O

obtain the actual solution. The only way is to

UCTION TO NUMERICAL METHODS

- eers and scientists to obtain approximate

integral

hat could be used directly to
fution the: can be found by

using some numerical procedures, such, as numerical imcgr?t_m; pproximate the definite integral of f(x)

chuwwachﬂwsubjednfuumkalmgmthnmw B

] =
1= f(xyax (i)
over the interval [a, b] by cvaluati;g fix) ata finite number of equally spaced grid poiis:
xa=X, X = Xy X, =h
f(x): } A L

m Numerical quadrature

“if a set of points in ihe interval {a. b

Q[.ﬂx}] - Z“'_. fix)= w, (%) + wif () Fee w, f(x,)
e

fr a=X, <X <Xy S € Xy <X,

af the farm

with the property

. - e
is called a numerical integrafion oF guadratire formula.

The term E [ ()] B called the truncation error for integratio
quadrature nodes and {w,’; are called the weights.
=0

s
Depend on the given numerical procedure, the grid points {x,}are cho
irapczoidal rule and Simpson's rule, the
ofptﬁzwoidal rule and Simpson’s rule
approximale area by rectangles. ¥

i Approximate by rectangles 4
cha If f(x)=01isa function over the interval [a, b], then the

definite integral (ﬁjupmmtswﬁac‘mlm under the graph of
Six)onthe interval [, b]. This is shown in the Figure 12.4.
For approximate area, the function f(x) must be known at
f equally spaced grid points in the interval[a, b], each of width
Ax=(b=a)in:

n The values {x,}

=h, then an expnession

are called the
J=l

sen in various ways. For

id points are chosan to be equnﬂr_splptd. Before discussion
yi:dmust be familiar about approximation by rectangles and

-fix)

i i 3
x:a=x, X XpeerXei x,=b 5 Z ey T T =b

: O Jnmssten k=02 Figure 124

' lnlishiofabweammllrspmﬂgﬁdpnims.lheamﬂmﬁnm:mcwf{x)owth‘

: interval[a.h]ismmngedumﬁu‘.

J€ H i ']. .

- 1=} pearde= | et g0t | st =

£ - e B E

oT FoReALE
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Approsimate Area by Rectangles -

rectangle in the initial subinterval js fo
therefore

% 5 ' T(x)Ax,
-{ﬂxmm the actual arca in the init

R Tr e
i 5

@l subinterval, then
the approximate
course the area of the rectangle lies in the intial L2 ea f(x,)Axis of

rectangles is giving approximat ; d
| ap ¢ area undet the curve. f(x)to mlmh?;nﬁnhmﬂlﬂ.
J= = o i :
If{x]d.xn& S(x%)Ax+ £ (x)Ac+ £ (x)Ar+ +£(x.)4x Pk i
htemlﬁtma:ip?ﬁlwm as the number of rectangles i ;
es of ace 3 mcreases, and estimate

values of m are usually required 1o ad':::gmukﬂﬁth n Wt can . the
used in practice. 2
i The Trapezoidal rule

The accuracy of the approximation

: p can be improved i
unpmﬁsart used instead of rectangles. Figure IZSShnwsl_hf ¥
area approximated by n trapezoids instead of n rectangles.

i :
£ i J(x)dxis the actual area in the inidal subinterval,

T

iterval [x,.x,

i

then the approximate area {M‘_-J Axi
2 is of course the

:: of the trapezoid lies in the initial subinterval [x. 1) Thus,
mm of the areas of all # wrapezoids is giving wnml ’
under the curve f{x}) madunlmmw:smadhydcﬁh:'
. i integral {iv):
[reax=1.
-

X

T -
Figure 12.5

1
?[f[nl“ff{x.]]"“'*';[f{*n)+f(-'=}]"“”"'*%[f (e )
In mel%lti}:ﬂ :‘-21;.+ ...... o &
/() is continuous on [a, b], then the trapezoidal ruke is
1= [ 1T =42 w2 b2 4 1],
The subinterval is x,
Value of p,

=x,+nAx = b=a+nAx that gives R O il larger the

the better the approximation. i

RoF Remoans
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UNIT-12

2
2
l.\;‘l'll.l[l'lé'm Appmx:.-ml.te the definite Meyﬂl I= !:IS dr

for n = 4 subintervals and then compare
integral that must be accurate to 3 decimal places.

T The given interval is [a, b} = [-1.2] and the width for

i

g e Sl -

“-q-ruouucﬂﬂﬂ 7O NUMERICAL METHODS

] ctual value of the definite
. answer with thz a

1 = 4 subintervals is

- ﬁﬂ;%.ms

o = 4 1o obtain:
The trapezoidal rule (¥i) is used for Ax=0.75andn

{de = T, =5 1S +2f * 2y 20+ /JOT) i

k] id points Xy: %y X2 X%
function values fos fisS3» fo» fi3¢ 8714 PO

The tion val 2 ’_f‘,:f(—l)#('ﬂ:'l

2
1 (1) = Loos2s
H-q+l&r=—l+%='§- 5 ( 4} 16

are

x ol

4
1
Al g l) =1o02s
_t::n'-l-wa-—l-l"z;’ix Jr: [2 4
b2 : 25
3.5 _(5) =2 -0=15625
x':.a+3,ﬁx=—1+3:=zn I [4) 16

|

; -
x =a+dbx=-1+47=2 fi=@r=4
I . i 1 + [, |ax
used in (i) to obtain: [;‘muns—i[j;+2,ﬂ+2ﬁ+2f, ) »
-l =
- L[1+2(0.0625)+2(025) +2(1.562 5)+4](0.75) =3281
2z
2 E I A
i is: [= = |— E=—f====
mm«mo&muﬁniumgﬂs.f-;fm M_i 7573
developed an ermor, which we denote by E,:

—3-328125=-0.28125
idal formula overestimated

1,=328125and E,[9)=

The tr.:~»zoidal spproximation T,
E, = Actual - Approximation =1-T.
The negative sign indicates that the 1rep
e & of numerical quadrature notaion, @ (+)]=
o VRV A (e 1
withnodes x, =L G =7 =30 r i A
The Simpson's rule idal srips, e PO
ii. e imat improved if instead of trapezoi
f the approximation can be improved if o on to the proct®™
i u?mdmmzemmmtmmmﬂ?wﬁs!ﬂpnmmmmgmn S

the true value of B¢

028125

strips datiat : hs‘mmli;mislheﬂnmn‘smk, po
i e R
plxy=Ax +Bx+C. mw
;319

UNIT-12
Sﬁ:ﬂPWH's'ruI_e g INTRODUCTION Ty NUMERICAL METHODS
imates the actual : :
replaced by second degree ?'D‘.'ﬁ'“ﬂmia]p{;:, area in an interval (a, b] by parabolic e ke
[ » ‘
[/ = [ plade = (AL + B+ Coe = [bw][p(amp[ﬁb}*— p(bl]
i i 6 N
that requires three  consecutive grid points i
interval [a, b]. The definite integral °fI:0h‘cm:g;:ndmd ::::
polynomial in equation (i) is simplificd by a rule called
prismoidal rule. This rule is valid for a polynomial SOxY af
degree less than or equal to 3.

For Simpson's rule, the function f(x)is known at equally
even spaced grid points in the interval [a, 4];

flx): £ fifies Jran S
X3, =X, +2nAx, n=0,1,2,....

XA=X, X XyuXa s X, X, =b
- , with

b=a+2nhx, x,, =b,x,=a = A=zt “(i'.i) ;
2n
In light of even spaced grid points, the definite integral (V) is rearranged as under:
b e Ey Ha
1= [ f(x)dv=[ £ (x)ae+ [ F ()t ot | £(x)e (i)
& £ = L

If | f(x)dis the actual area in the initial even subintcrval[x,,x,], then the parabolic arc in the
Xy

subinterval [x,,x,] represents the approximate area:

1 76 = pirsde, amx, b1,
!

5

=[i;-ﬁ)[p(m +4p(5'%]+ pw] ™

If the width of one subinterval is m:—“’;") ,then the width of two consecutive subintervals is

_ %=X =2Ax. The subintervals are of equal widih that gives % = x,. Using these in equation (iv) to

obtain

[ reode = prara =£[pm)+4ﬂ["’_‘x +x']*”"‘*‘]="—‘[m1+w-}+ml )
,. 3 6 2 3

Since the polynomial passes through the three consecutive grid points on the curve, the best
approximations would be the function itself: that is p(x,) = £(x,), and p(x) = f(x)), and p(x;) = f(xy).
These are substituted in equation (V) to obtain: ?

Tf(x)atr =Tp(m=%[p(:.mptx.l+p[x,)]=%E[It:.)nﬂx.nfcxa] i)
~ T

L .

L) e
K

L - -

0} E \

g 3
o
W
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UNIT-12 INTRODUCTION TO NUMERICAL METHODS = 3
IT-12
:.4' Thus, the sum S, of the areas of all m parabolic sirips is giving the approximate area under the curve s _ INTROBUCTION
=4 S(x) 10 actual area represented by definite integral (ii): ¥ ‘EE[' +40.0625+1.5625) BRI MTons
- =P+ 2(0.25)4 4]
Ax Ax z
= 4f(x)+2 £ af (x)+ S{x) =0.2:(144,
i :x[f(-}‘ yeas (s (] T ) 47 o) ) The exact valu ofthe ity g, - =
+---+T[f (%) + 4 (x0 )+ S (22)] ) 3
f Ax £ (vii) hf"""F—r LU
i = B5 it St o) # 2 fb ot Fua) o Theerortem i therefore: | > 3
In general: If f(x)is continuous on [a, b], then the Simpson's rule is |
. Ak : This develops the idea that § E;=1-§,=3-3-9
I=If(x}ﬂsh =?[ﬂ+4u+f)+....+f:r4}+2(L+.ﬂ+""+fh-3]+f='] MAP nwsthMhmmm“uﬂnw I ruile. &
a i m LE comm “ .
: (b=a) ; ands mxw .

: The even o™ subinterval is x,, = x,+2nAv = b=a-+2nAx that gives Ax=——"""=. Simpson’s rule and dEmumu-a':e &wmw.sm rule and “Simpson” for ¢
;; Moreover, the larger the value for n, the better the appraximation. The use of MAPLE commang “trapezoid” and g - g
,; ; example, impson™ is ill i K E
4 (RTINS 6 | Approximate the definite integral f=i idx fi - n= 2 subintervals and then compare tllustrated in the following E:
B e =l i Use of MAPLE 4

P your approximate answer with the actual value of the definite integral that must be accurate to 5 ) mmndmﬁlﬂlhﬁnppmm“ IE""'*WM' [0, 11y 1

; decimal places. (@. Trapezoidal rule, B vl i
o T The given interval s [a, b] = (-1, 2] and the width for n =2 subintervals is P Solution ) impson rule ::

J| i b=a 2—-{-]] 3 : & The [
&=l Ar=me—— = = =[.75. > e command below will show b. The command below !
o i . detail about Trapezoidal mlemlﬁny::g?# . detail about Simpson rule oo tn g 20, o
a The Simpson's rule (vii) is used for Av=0.75and n =2 to obtain: 2 : ing: o by typing: ]
2 L Mrapezoid | Trimpson i
¥ [ =5, -0'—3-[L+‘{ﬁ+£]+3(ﬁ)+ﬁ] @ Wik Studend Caleulust)) : I :’W-S“fﬂ'm{&mm : £

‘ 4 PProximatelnt{exp( -x), x=0.1, ‘Pproximatelnt{exp(-x),x=0..1, ',L
& The function values £, i, /. /5, fiat grid points X, %, %, %, %, arc ’“;""""""W output=plof); method = simpson, output =plot); i
i B - - 1 ]
: s =a=-l fom S (=)= (1) =1 os N T o e e e |

= 3 1 1 2_ 1 (11| N i Sy =i —i] 0.6 B S O

e A e S aa TN
2 11 0 e e N —_1 n
1
9 :!=u+2ﬁl'=-l+2%=%r f:‘[%] =:"=0-25 ol —[—{——=] i D-: =1 1=1—t=1=}= o
: 0702 04 05 03 0 02 04 05 08 | _
| +ihem—430w3, £, [5] 2 _0=15625 A C o i F
i =a =— ——— i=l=| =—=0= 2 ¢
x et 3 "6 A0 approximation of S(x) dr using An approximation of‘[‘ S(x) deusing
3 i 0
= - - — - 2 - s
_ X =a+dar=-1+43=2, fi=(2) =4 m'wﬁm::;ﬁw:eﬁ;} =% and the Simpson's rule, where f{x) =¢™ od the
[} These fanction values are used in equation (i) to obtain: L m"“fﬂminm| T:;:pmu\;m,e partition is uniform, The spproximate value ;
\ 2 N o 180.6326472382. of the integral is 0.6321205808. Number of .
! Rden 5, =221 f 440+ [+ 26+ £)] “mber of subintervals used: 10, L S :
‘T_E A 4 subintervals used: 10, §
e :
5 HOT EOREALE N o 3
'.'f' mﬁ |
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INTRODUCTION TO NUMERICAL METHODS

UNIT-12

{ FExercise
LXereise
b =

1. Use the trapezoidal rule to approximate the value of each definite integral Round the answer to the -

nearest hundredth and compare your results with the exact value of the definite integral:
1 5
x

I=|| =+1|dx, n=4

3 j[z J
2

d. f=j-1d'!.+fdr. n=6
)

% Use Simpson’s rule to approximate the value of each definite integral. Round the answer to the
nearest hundredth and compare your results with the exact value of the definite integral:

b. f=i(-'t31—i}it, n=4
:

1
q f=je"m:, n=4
a

3
a. f=_lr=dz, n=4
1

i
4 tdx
& f=_[? n=6

]
a. f=]-'11lir. n=3 -
2

tdx
C. =!‘T.H=3 .

1. A quarter circle of radius 1 has the equation yp=il-@ for 0<x21, which means that:

i
“-"]Il-:!i =E, n=4
L]

Approximate the definite integral on the left by trapezoidal rule that equals the right side when
n=3.1.
4. A quarter circleof radius 1 has the equation y=+/1-x* for 0=x < 1, which means that

i-.lll—x’c{x=§. n=4

Approximate the definite integral on the left by Simpson’s rule that equals the right side when
=231

5, Use MAPLE commands to find the approximate area in the interval [0, 2] by
2. Trapezoidal rule b, Simpson's rule )

Thomas Simpson was a British mathematician and ereator of Simpson's rule for
approximate definite integrals, This rule was known and used earlier by Bonoventura
Cavalieri in 1639 and later by James Gregory. The long popularity of Simpson's
textbook invites this association with his name therefore many readers would have learmnt
it from them. A challenge propesed by ‘Pierre de Fermat® to find a point ‘D" such that
the sum of the distances to three given poinis A, B and C is least. This challenge was
popularized in Italy Sampson treats this challenge in this first part of Doctrine and
application of Fluxions (1750) by the description of circular arc al which the edges of the =
]
triangle ABC subtend and angle of 5. In second part of the book he extends this goometrical method

323 _ NoT FoRSALE
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UNIT-12

L Choose the correct option,
i When ;“ (x)=10, the roots of the ®quation f(x)
2 =
2z 2 2
o3l ® {5"5}
ii.  When f(x)=0, then the valye of in the
(a). x=-37187... (b). x=0.37187

). {4--’-,_?.
23

equation S(x) =5 1655 is:

‘jii. The Newton Raphson ; (c). x=-037187.
(@). tangent method method is aso known as: : (d). x=d7847,
{c). diameter method (b second methgg
iv.  The iterative formula for newton Raphson m:ﬁ;l‘;dchord method
Sx) H
X =22 Six
W ATey O oA L) )
V. If the function value y {I}) {d). Rt
ety S/(a) andf(c) at x = a and x = ¢ haye U5 oo i ()
¥ the roots lies
o (. [a8] b).
vi.  The Newton Raphson g‘gd] J:,F:gjg i (c). (a,b) ). (a,¢)
: (a). stationary point Lt b ]
U ot pojng oy T
s positive roots = 5 :
Blies s for 3¢ COS‘!‘Ih}'mfbckﬂg‘thﬂlﬂmﬂmmwm@wjd“ 1
(a). 0.507 b). 0.67
viil. The MAPLE cq m; ::' 670 ©. 0570 (d). 0.607

i solve equation x* - :
(@). solve (x* -5x43)=0 EE=Srid el b

(c). Simplon (x* —5x43 =0)

(b). feolve (¥ ~5x43=0)
(d). Psolve (' ~5x+3=0)

{c). 1.49 (d). 1.897
(b). Binary Chopping method
(d). none ofthese

%;
i
;;

¥
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UNIT-12 INTRODUCTION TO NUMERICAL METHODS

“ If f(x) is continuous and f(a) and f(b} have opposite in signs, then the biscction method will

be used to nppnmtﬂhem.nl root rof the non-linear equation
F(x) =0 in the interval [g, 5. In bisection method, the approximate root of r will always be the

midpoint of the interval [a, b).
€ If f(x) is continuous and f(a) and f(b)have opposite in signs, then the regula-falsi method wil]

be used to approximate the sctual root v of the non-linear equation f{x) = 0in the interval [a, ),
In Regula-Falsi method, the approximate root of r will not be the midpoint of the interval [a, 5]
that should be anywhere in the interval [a. b].

< If f{x) and its derivatives are continuous functions and x, is the initial iterate, then the Newton-
Rplot nitbed: 3, 55, -% =L i= 1,2, 3
produces a sequence of succossive iterates{x, } that will converge faster to r than cither the
bisection and regula-falsi methods.

< If f(x) is continuous on [«, b], then the triangle rule

R, = f{x)Ac+ £ (x ).+ f(x, )

is used to approximate the definite integmlif{.r}eﬁ:.
< Iff(x) continuous on [a, b], then the trapezoidal rule is

'I'.'%I[ﬁ-l-z_ﬁ-l-zj;q- ...... 2L+ )], ax=i2t “’"“]’

is used to approximate the definite inte E‘“'iﬂxm
% Iff(x) is continuous on [a, b], then thﬂs‘im;mn’x s
5:--:-3';—*[16&4(}; +f,+....+j;,_,}+2[‘,Q+L+....+ﬁ__:)+fh]
{b a).
n

~——=is used to approximate the definite mmlif{x]n'!

Carl Runge was a German mathematician and physicist. He was co-developer of the ninge =
kutta method in the ficld of numerical analysis. He received his PhD degres in mathematics at
Balin in 1380. In 1886 he became the professor in Hanover, Germany. He also sturdied
spectral lines of various elements and was very interested in the application of this work to
astronomical spectrosphy. Runge reached to his retirement in 1923 but he continued to run his
mmﬂmmmummmm

L 2 Dnmu.m ':'m}nlll' Wy

Range: (

e mmm‘ {‘ﬁ-ﬂ)u (h-z m]
Range: (~e0,0) U (0, w)

¢ Domain: (o, =)
Range: [0, «)
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ANSWERS
Lo Mle=aR+lgf@l=2c%2 b flgC))=sin-x) gl =1 -sin’ x =cos’x | &
o Slg@)=x,glf(x)]=x 4 flg(x)= Sin(2x +3), gl (x)] =28inx +3
N A b W=, G0=5 =
K (x) =g f (x) =x-1 k~'{x]=g-’u(x)}=i"T"‘-
: . 1
c. H'(x)=fgx)=x+3 d. K@= {g(x)]=x self-inverse :
e b. f
k' (x)=g '/ (@N= %—3 k'(x)=g '[f(x)]=x self-inverse ;
e — i T B o 3 X
' | Exercise T
N 5
1. 4. Trigonometric b, Algebraic ¢. lnverse trigonometric
d. Lngnnthmu: c. Implicit f. Hyperbolic £ Expli{:‘il
2 a 1ingram 100 b, 0.7089 in gram 70.9g :
¢ 0.5025 in gram 50.3g d. 0.11648 in gram 11.6g
c. Thsummﬂofmdinminthﬂbuumwilhmcpamgeoﬂime.
kA a. b. - -
] Fila=2z] 5 AR e =3 ans
Ll - -1 T‘1 \ 3 T ._ﬂ..____’l - . r
| L ] !
T f = 1
.-‘_-‘E = f 1 o -1 ] e =11 ~{—-t= i
Eat AR | R EREAMEEA Wi 18N o =43
1 -5 s T 1 =T I i .
w ] .- ; :(D.—Il ] Wil b3 1 1!* l ]“) = -4'-"_"'-""""- ]
10— 5 E n 5 10 10 r £ 5 ;e I ! {10,10.8) i
= T T 5 i | | rd 1“2*8'3” I|
L - 1 1 T a I 1 o JAREEENF 4NN }.
ST — T |
: . ' [@0) : ¢
f < P d " :_'IE‘ ~Hr-5- e 15 mA ‘ ll
T N=¢ S T T (I :
Soflabds LT - FEEFHHEE EENENNERT RO AR 8 k
; T 5 a
i 00 ; | 5 H- ; 3
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ANSWERS

1 o b 9 c. 1 d. -1 e |
R -3 2

1 e 0 h. 0

; 1 i e
S keredw - g 25
3. a 5 b =7 e 0
4. a2 5900 b. 5514.29 c. s;:on
1 B, Ear= e = d. does not exist

6. a. Z_J; = 7

G & lor s roe# g ¢!

e
© Exercise

1. a. Continuous on the whole set R qf real numbers
b. Continuous at every real value of x, except x=35 .
¢. Coiltinuous at every real value of x , except the values x =3 and x=-2
f(x) is continuous at x=0 -
a. g(x)is continwous on the open interval (=1,2)
b. g(x)is continuous from the right at x=-1
c. g(x)is contimious from the left at x=2
d. g(x)is continuous on the closed intervai[-1. 21
4. a. f(x)is continuous on the open interval(0, 3)
b. f(x)is continuous from the right at x=0
c. f(x)is continuous from the left atx=3
d. f(x)is continuous on the closed interval[0, 3]
5. a. f(x)is discontinuous at x=1 b. f(x)is discontinuous at x=0
6. o The graphis as under: b. lim E(9)= $1,000 E(10000)= $1,000

¢. lim E(s) does not exist; E(20,000)=52,000. d. Yes at =10,000, no at s=20,000
A=+ 10,000
1. true = =
i) (i). d (iii). a (iv). d v ¢ (vi). b
¥ E::ii]. : (viii). ¢ (ix). a {x). ¢ {xi).d (xil) e
(xiii).a (xiv). a (xv).¢

T

dy
ik E;“g"i"'l"'_‘hlh’-p%__? b @

as bl
3 €21 d.025

a.2 b. Ax=0,1

¢ 4ln al
5

0.01;15 84 unite/second

. . s

Increasing at the rate of Rs.1170 per acre, when the number of 5
cres.

a. Ar=0.1; 14.4 units/second b. Ar
Ar=2; 25; lhemagenhufhﬂninnisﬂs.zsper
Af=30; 1170; the profit is
changes from 20 to 50,
2% - b. 3

PN © 2 dox  e3pg T
a3 b. y=3z-19

<. sl =5
a I, y=x+9 e

b. l, y=x-16 € =6, p=—fr-10

e ——————.

d =
E[f[x}+£(x)]=12x+5. “E[ﬂ’]‘ﬂxﬂ--lhﬂ

d 1o S
¥ ek~ ZU@-s@) =1

d -

E;[f(x]+8(x)]=12a-’-ax. Ed[f(])_g[;)]'_ﬁ:,‘_&

) 3

&l @re@l=2e 11, Lire g]ene £

- -2 6x8

4 3
¢ = iWr-—- 13
e : x 2 d %-?;—12
a &.._7(1__‘.'}-: 3 QEH':‘—"SI’-ZH-S
dr {4:3"_1)2
d _24p*+32p+29
Zx’ ‘rt‘p} ﬁF"‘z)I

b Bx—dy+1=0 © x+25-7=0 d y=-2c+9

?»
P
I"’-la-w ]

e
._'vg"
=
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£ i mﬂ_ﬁ,[ﬂ] Gl
- . . W2 ¥
" VU3) =0 qubic units Isec  YY3) =
LA 20(°-4x+2)'(x’-4) b, %th-f)"ﬂ-l") | WM??;“?_{GMW@
3‘-!'31 d e L "\ --,,.____ii_‘i @
LR - ey L oo 2 b el
! —2x- 4 d &
' 1. a f(H=(2x-5'@0x-67) b f{x)u(xl uz:‘fm . 3 4 @) o 2564408
' A fx#1) & e iy
| 1 o Axt+11 5 : x+2
HI =12(2x=5) - _ 5 " ¥ ;
% & LU=t e 2. o =208 () ﬁa;ﬁﬁ.ﬁ Bk
‘ 3 yai2p M=) g e 2= A" H2) | me” e e g™ -~
| i Ly =42 b =t LI -2 d. & = { B HAET ("¢ —ap™
3, - gt o =3 , G‘"’"*‘i’)’ Palr e A+é & re" "_{?%ﬁ—l
| 4222.8 dollars/hour 3 a fmt»«,s‘m) i +dln : ®
| : RO IR0 I 4 2 o = -
| ol T2y eyl g o 2SR Heos2)] : e
b 4 *+d 1 - ) o
e & <-gifad VI cEw tEr 4 o ReRGD . b SeGH <
i ;2 Mlteos x
t 1. a ;‘!-dlu;‘b"u b. %-—bzﬂn'ﬂll' i d. "‘F’ e. —Z2cosec(hlx) £ ﬂlﬁ"(.!}
i - 5 227 mmofmercurylyr;0.81 mm.of; 041
8. lhpﬁl!g'fT 9. ﬁmhsperlmll‘ = ﬂ!ﬂgﬂﬂmmﬂ A‘{(a_? MW 4 mfm@-
b Exercise @ : A(5)=17,097,827 bactecialbe
_5 o e 5 . ; '.9"
 « 1. a 2Cos(2x) b. —3cosec’ (3x) c. 3[sec (3x)-sin(3x)] Review Exercise | 3
{ 1 " 3 ; _
‘ d. —2cot(x). cosec’ (x) e I'Em‘q'? £ 3sin’(x).cos(x) O & G 4 | (i) & (e Wb (idd (ib a2 pine WE 0
'= f 1 2. =3x'cosec’(3x) +2xcol(3x) b. mh+w3ﬂﬂmn—3ﬁﬂ33ﬂ - T e P——?
| c. —Bcosec2root2x d. Hx+3)sec’(x+3)° _ gy ad
Jx cosfx sec? x+an xsindx 2sec? 2x + Icot3x(l +1an2x) 3 k m__*
C.
; ﬂm:ms‘q_.l'x cosec3x L . =18 b If”m;-% & ﬁ(ﬁ;‘-‘?ﬁuﬂ;}! " _%_”{
l & o o dals e s A b ; _ &
‘ " e d pi+x "‘“’z ) b jr;_;%‘ b. )""d";i e =0 ¥ d. %éﬂ
. é’-_i I ﬂ: -l f. Q u.ﬂ'.(x-'-:] -E- " :
3 T C A gedlre6iss A :(r‘H} s : @ ﬂ'v— K f‘«g? ol e
; . P'(8)= 50 dollars/ week, PY26)=0 dollars | week | : A E
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& D 240 +4) 18640 +4x—5)Bx + 4).x-+1296(P +4x—5)'x’ +288( +4x=5) (3x° +4)
. z Lrdtas
b, 16(L+1an’ x)-tan x+ 24 tan’ x{1+tan® x) e %Ee dnjelf O 24xda(x7)+52x
5. 4 |Jsec(2x)tmn(2x)" +7,/5ecZx) tan(2xN2 +2tan(2x) ¥
b. ‘Wﬂﬁf'ﬂ.ﬂ}ms[x)’+3sin(sin(x)}cos(x)sin(x]—ms(sm(x)}ma(ﬂ
6 2 1663200x3F(x+2) b -2"(181440)2x-4)"
c. (34-cosBx+8+37) o (5)*-Te" 2
‘ " Exercise ( 9
T - - - - 1
x =1
1. a, :‘--(_‘r_:ﬂ b. y=-2x e }’"; d ¥ 3
= - - Lot d. p=—x+l
2. a. y-_l_-gq.[b_'hz] b y-ﬁx-ﬂ c. ;.H-2 y=xt
; = du -1
3 & yt%x-‘-l} b. P=€:+ﬂ)r:ﬂ €. x=i *
5. 2 l—x+x =t b. f-;x"-‘-—x"-m-
F L E PRI AT L
c. l*ﬁ* 4._*' 6!+""" 3 . s
L RT3 ;ﬂ'ﬂ o i L
6. b. 27183 7. A ry b tan 8 x - -
e
1. & i critical point (0-2) y ii. Increasing on (—o,~2)JU(0,+x) decreasing on (-2, 0)
iii. (D,l)ismhﬁwnﬁni:mm;{-&.i)isnhﬁwmﬁm 2 _ ?55)
b. i critical point %—25] ji increasing on (—2,-25) (5""] duwumgon[— "3
4 5
i, relative minimum (-25,0) mhﬁvcumnn[;.-&l&l]
= . x=0,1 d x=0,1
2. 4 x=-3,4 b, x=-3,5 {l')-: LI =
Relative minimum 1 relative minimum at x
= :- nﬂh‘umnmn::;mmm d. Relative minimum at x=4 . T
4. a &mlpit{-l&—l}knh&wmiﬁmm;hanﬁgu(—l&m}: decreasing on

concave up on (—=,+®).

b. Critical poimts: (-3, 20) &
(o0, —3)U 3, +0); decreasing on
down on (—=,0).

" . e . s increasing 00
Mm&lﬂﬂmmmﬁm};mw

(-3,3); inflection point: (0, 2); concave up on
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a Rehtiumiﬁuunufl at x= (), relative mini
b. Relative maximum of 2 at xy= il
a. Relative maximum at x =2,

. ~3 at y=3

=3, relative minimum of -2 at y= —|
relative minimum at x = 4, neither at x = 1, -5
b. Relative maximum at x= —S;Nlalisfemirﬁmunaun% s neither at y=|
. ﬂwexpcndhreonadvmishgﬂmkadswmimmpmﬁ'

b. The maximum profit at x=6 is 512 hundred dollars. e

The number of hundred thousands of tires is x= 1,000,000 tires; the number bundred thousands
tires x that developed the maximum mflis?[lﬂ]"@?mgg;.m. e o

a. The drug concentration is increasing in the interval (0, 3 i ing &

i e , (0, 3) and is decreasing in the
b. The maximum drug concentration time is x = 3,
¢, The maximum drug concentration at a time x= 3 is K (3) = 0.22% = 0,0022. :
d. The concentration is maximum at x =3as k(x}chmm&uminamhgﬂmﬁmmdumg‘
function. Maximum concentration k{x)=0.22%

Hint: C(x) =[G(x)][32]2.25] = 1!ﬁ[g-|-1-.-)1{312}('.!.1.'.'»)=1,5(£+1u,-]
X

cm=1.s['i,w +2]=o = x=+150

Minimum cost at x = 150 =12.2is C (12, 2) = $73.48.

=

E,P:":‘_""‘" ";':-..'f:'.:“f"“.""—.—.—'_"""."'.
Nt st e e
(i b
(vi) b

(i) e
(vii) ¢

(i) b
(vii) d

(iv) a
(ix) ¢

¥} a
(x) b

A r=0, >0
e l#(!n—l]%, n=0,4142,..

a. (1!'-3].?—!0}1{2‘1 f“3JE

b. 2, t20.
d tznr, n=02L42,..

b (2 +a)i-15]+(F + i

¢ (=r)siny A —£ei+r singj+(2e'+ Ssins)
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j+ 2 a+3k b F'(.:) {L+4s]t+{1s—i)_l+1sk_
a. F(n=i+i+ ;

i j-3sin0k ) & s
c. —m&'-l-m;.!‘ . gl p x}.’ %
a. 28+18)-1 ,
d. :[m‘n-gn'ﬁfﬁws‘a—sin’_ﬂl.f i

b.

a -2e-97 45 +1
;{1}=i+z}+zi.l,vuu=3
-f+-J+-k FO=25 =2/,

2, 2

:—Tl'i' j+1t

a. v{:‘jsfq-hfd-lk‘
mmmnf

b .m--unriwuu-ﬂk [']

H ]:Jl_'mbedmﬁioﬂﬂf —TH-—J-ﬂT
Yl
4

2(1) =—costi-sint J,

- j+2¢pi'- Vulﬂl-ﬂ——;+8£

¢ wW=et
S =elite ;**'i- a{hz}-m—J +w£
. iv) d (v) a
i) b (iiiy © [!'\') ¥
([Ei} : :t?i] a (vii) a (ix) d (x)
Linit-6
2,c
4

. All values oftexcept t#0,t2-]
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g,—s—-l-c h.51an™ x 22
L=p
1 9 ' - 4) .
a.—(x+4)+C b2 =9)
~ —2——+C a 47z
I 'LT“‘C
d-z (2 =T +C z(far‘_-?] T
’ ’ r.a[.-?n]'
25.6 .2
gixt +=(x)i+C P
F3f 5 2(:’+2x+zi+c
agh+ C b,%c“""“ ¢ L gtrtnnn - smﬂ+c
(2o} 3 Ing
p=x'+2x"-3 5 J’:_-—l}“—
. 12
“'.-{m b. 0,005 T A w= 0.00054 b.171.5 ponds 8.19,400
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sin® i
a. “sx-l-c b. Efsinx)]'*c c. _M {
5 B
d -cose'+C . e 2infinya]+c £ ~Injsinx+cosaf+C

1, afx
. z.’an I(EJ+C b. _m-:(mx)_'_c

1 fe
= £
g [z]"c

A Infe +4x+ 8]+ tan"(x+2) 4 € e. !in"[—‘—r-x”)-(i-[':-l-l)’)%-l-c
e!l x x :

a x’—zh_xT.qu.c b —xsinx+cosx+C c;-’lr"'mx-#%l"linx-l-c
i B | N/

3¢ sinx +5e cosx+C exsin™ x+yl-x*+C [—%mtf"}*'c
a. l]" x-3 L

3 T-l-('.' b. 3x-lnx+C c. 3Inx+ln(x+l}+;+:+c

: )
d 1 | 4

3in(x u--gmwn“;_:,.m [ J-( 1]]+c
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ANSWERS i § e i : i
? i 4 —gin(2tan X v . perpendicular 3 :
2 4D j cn #HgE E ion Srapad b. - neither perpendicular n _
e 6 1 gl ( _+_.-- +C 2 6. b. 5.1'—}-—5,:0 * r paralle] & e
b b 4. 109.86 feet o dr-p-2e0 b xidpiseq . SO0 T g oy
ol s Toa 2opi2=0 b Groyadag o o lt4m0 a4 :
% 189! foweth R ’"W—Hﬁﬂ“g. ; F;.:\ 13 CoX=2p-8=0 y-di=g
Eﬁ e -----‘\‘._.."rl 8. a y:lx.'.!_'g_ .t—-—?— J""E
fcin 525 B0 g2+ n sl c0s35° sin3s® © Normal form B 4"
5 b, 34816 c. -2 d.14 ;9 8 a4 8 Gl ~ »PoL, xcosd 4 ysing o
1. a. 17. ; : 7 i C. - B i —,
AT T o W , Nl (5
! L. A=40) squeeunis D e B ol me'ing’m“'eﬂppositesidﬁaflhe?u
i 182 § gquare wnits b. Above the line, on the same side of the | ine
3 o A =183 square units ' 2. a. onthe opposite sides line
barrels b, Ladey= 191.6 barrels 4 chacidl ol .3 P b. on the same sides
8 & Lo day= 4440 he amount of oil feaked on 1* and 2" day, the number o of ail RS b. d=% c. d=1
3. c. Asis nw’-“ﬂﬁ"" : g with the passage Bfti-me‘- 4 & : 1;!-
s> freoslx) _2¢800) ¢ il " “ﬂ"(—],lso-un*‘[l 5
s L4 Eox4C s SR 7 7 = 90° b un-'[‘_’]-
R S e % ay b. tan™'(13) 7 '[3] 6
e =f = 4 fanT | — o
! MWEIEI‘ciSe ‘_ 6 B a 119x+I02)'—l25-lD b, 23x+23 . O
N e Y i i (@) =0 ' : y—11=0 . Ir+dp—Sg=
9 S G R @ w@ we e = 2 P ¢ tdy-Se=d 4 2-Y=0
3 ey z ' Ei,fcf.m_ G.1) b. (-16, 12)
1. II."‘"-‘- _'E T i 7 1 iy Ly b. concurrent; l:—l.Z}
xercise . 2 4 . ¢. not concurrent
— BT R b. 15 S
: o 5 a0 i ]
1. a (-1,6) b 0,0 * E’-E 6. £ B : : c. yes
s dits 5 A ziz 5v=0 and x+y=0 b, eyl il fe s
f 117 - — - +Txp+3pi=
3 aon [?.'?) b (-24,-2) 3 ( 9'9} e b= b. #-2tabx-y’=0 ¢ af-Zhy+hei=0
3 i % b 141 _ e
: 71 10 10 4 { Review Exercise { 7
4 = b |= e | =) 1. : s
i 5, a. 303 3l3 3 i ﬂ.‘u) i
{ ' B — o i. (c) i, (a) iv. (8) v [
4 7 Exercise _ vil. (@) . viii. (a) ix. (®) « @
— e ——
: 1, a. x=y+5=0 b. Ix+y=-6=0 o, xsdy+12=0 :
3 ) 1 T
; 2 g b -3 R d. =g \ {:' O
;E | 3. a. x-intercept, a=-3 and y—intercept, b=6 | 1. e ) - —
4 ,335 b. x-!mempl,auiandy—inmup{,bug R y:.=],5 y R AR o Sy Eray+ou0
i . c. x-intercept, a = -2 and y-intercept, b= 2 E’g - 4y 4 2av4 2By —2ab =0 :
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3 =36
1, a. f+?’ni§ ) b‘ ’:;.f 4
d. f+g’+tﬁx+iiy+rj_11=3ﬁ

o Pey-1ixeidy=0 A 3
o o ¢ puidyi 216 b. Vertex (~1,0), focus|—
. (x+57 +(=H [4 ,o], of latus -7 43
5¥ Sy ma&j ]_B{-',- -

b |
_ 1 2 )7 q 7 s of }
T g e (e e
i a. cenler = E(4;3),r =4 b. eomlet <€\ "5 b. S 4'2]-11319{%’_3

=] 1

e i ==
d. mufﬂ[a-‘)-’ 4 ¢ x4y =2x=4y+25=0

: Sas o dp+by-T2=0 . ; B4
4; i ?-+jtéi;t-z;=.t;§=:ﬁ B Ay b x’+y”"— 'i'-=3)'+;5=[} ‘ﬁﬁ
TR % e b Py =3t x .
e Hfg?:fm-ﬁxs:dny:u b 2yt =Ex=4=0 ; —ei :
i a. 164 ﬂ”uim-. 3 g, o Pey'=ls b. x4y7=10 2 e | e
o ,-;14.1;’481;“51‘*@:” e 3, & =12 ey b ¥ =24x Feg
e a =12y b. i T
F‘! gl o {xusf =£{y_- l) g y; l6x C. y}=!2.\: d g2 g_“s}' :
il ofmgeﬂt'n;;.ﬂ equton of sl 25 = 4 3xeye5=0 : R !
) g i of i 1 =3 TR ~ = 5 y45= |
" :., mwunfuﬁﬂﬁ:a‘niﬁla:oequimc_:_f@@ﬁ! 2::3_}" 0 5. (;-+z;,z=6[ _::_) i L
c. egudtio of tahgefit 24 y-520 equation of sottrl: Y =7 . b. x=1£+/3i which is imaginary so the line does not }
C oL eponortingedt 185418437213 quation of ormal: 183418520+ % Ao i it hczaect 6 plesbit. t
: . " of : i e 2 R ST
¥ o tasgent i+ 9= 23 =0, o of ot 3 =0 8. a. equation of tangént i & i ‘l‘
b. eqition of : s s . dﬁwq;ﬁy.—:ﬁ 5 : gent is x—y+3=0, equation of : !
1 c. ﬁﬂllﬂﬁﬁmﬂmifhﬂ’;kb’ W o + equation of tangent is 4x+3y—1=0 .bqﬂml'mnfml: kb E
I L ognthfl o AR % A dxedysl=o b y=yixs L B e
a 4‘- a. p=tdd i-l-i;; b. ’-"ﬂ’ﬁ . c. cﬁ*gd& y o 10 2 =-12(y+3) 'i-
: arep=3ifem =i 43 fm=nitc=¢ > =0 Sl e b
5, o gl + 0 -2EHE Bfem=h + ; 183441 9.2 .
6 * Ha, 43 b p=d53,=1352  c Doss ot touch the drele C=— 33 1
: g " a'!"ii;”"ﬁ b.}f-l-liy-;f; il b Aif0,5)
= * = r eﬁxt._a— l
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3 4% ¥ o3 3 3] 'I

_-'ln'\fud-mm-“my )
Py ¢ eview Bxereise .
’ e s ~r it

() e

B\(-4.0) C(0,0)| B:(4.0)

. g R e e e vigy viiy Vi) . Bos . ]
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c. B(0.5) Centre: The center is C(h, k) =C(-1,2) !
foci: (17, ~12), F(H=T.-1.2)
Vs End points of major axis A(5.2)4/(-3.2)
Vi3 WW End Points of minor axis B(L,5)B(1,-1)
3 { ‘ 2 ]' kS
Bm.-!-:' 6}2 (}'4‘1)1 1 5 ('xl_?_] +y_=l
2 [-‘:"' far— = 9 %
5—+£— =1 R 16
] B 36 9 [xd- E]I
: 16) (=3 _
3y -2 g Sl il +{—-‘yﬂz) =1 ¢ 1y + 3y =1
e @
4
2
d. £_+ l:_y_:-s—)-:u 1 ¥ Ji
AR &5 o eB
4. a. e=% b. Fﬁ+ﬁ I
5. a c='b¢r§ b c=14 -
ion of tangent is X2 equ.alipﬁufnmmal 3x-9y+10=
: o P B jon of normal 7x—-2y-9=0
b, equation of tangent is 6x+21y-14=0 equatio e
-:- equation of tangent is x+ay-4=0 equation ofn_.uma'l x=y
X e |
1 1. a Bx-9y +30=0 Gx+21y—144
1 /-‘-‘l:-m“n—ﬂ-‘\-ﬂl I': "J-'H‘W:J_'P "
{ Exercise 93 )
a e e
1
'
]
: Centre C(0,0) s K m
Y Vertices ¥,(=2,0). V4(2,0) Centre CO0) 5
et Foci £(13,0), £(3.0) Varios K090 -5
| - Equation of asymptotes y = £3x Foci F(0,429), F A(0,- . 5 :
s i y 2 Equation of asymptotes Y=~ 2 .
LN 343 .

Centre C(ZIS'J
Vertices F(-1, 3), #(5,3)

Foci F(-3, 3), F(7,3)
Equation of asymptotes y -3=13 ()

2
2 a lx_ﬁ_£=] b. lz__.-'rf.-]
16 4 25 16 =
2
3 a. L_f_=]
4 5 2
d 168 -9y’ =144 e
+ a, _;:‘__f_=
16 - 9 b
5

Vertices ¥i(=2,27), #(0,2)
:::! F;('ﬂﬁ-—lﬁ). F;I:E'Lz}
: “quation of asymptotes y —2 =x1(x+1)

.,
i P&, py(~1,~4) b, p,(0,1),

2 e=42f3
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=4 _4(y-2
g
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9 16
©o9f-yi_g
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The equation of asymptotes y+1=(x-3)
pt[-g.g-]

A b. c=i-ﬁ

il 1
Equation of tangent is {3y + 2y+4=0,

Equation of normal is 4x-213y+13vI3=0
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e =l
b.
i : ystsi.u';-"“"’]' Y=
= gmix_i_‘_c]
. y=s.in{§'m'1x+‘] T [ £y
b —.-sin"':exc'l]-x
3. o y=ta(xve)-x -” :
T
X d. y=.t[",.r+c=]
bl e T
; x

b. R
L4 !n(-’f)""’

3 8. m'(ix}% (l-l-%]shlx}-fc

= _x ]ﬂ‘]" =
c. y=-.txJ-1+“ i ' +
x*'lnlx)
g gl )
1
x-13 ) : L h“H-g“l

worFoR®

10.
1L

"

de_x 3
__=E-31, x(e)=6r+12+cel, x(r)=ﬁp+1z._zg,&"] i

General consumption of oil is x(r)=30¢"™ +.¢. At time = 0
x=0, that gives ¢=-30. mmm[mmm“mmmlhuﬁ
110.825 items x{‘) e

a. F+3y=k
1 +3y b. ¥-xl=k c. {—=-x+!n.ﬁ(x+l) d yx=k
ReviewE:ercIse!' 10
i a i. b iii. iv, d s b
Exereise' 11.
a 0 b. 0 . 0
a. 0 b. 1-¢ -':: e+ Gt z ;::;- e
e Al ; +3r% 4 2x
a _ﬁ:hm:“aﬂsy.ﬁ:—sinx’siny' b. f—J . By
: 307+ N Fpt
c. L-y’m'r,fuy’{—yrﬂmn"y} d f,=3r+2g4 f—f:'::+;*
sty = +
g e i W L
=07y S, =03577)97
Lzﬂ.{’mﬂi E'u,f; zﬂ;&“yﬂ
-ﬂ=1ﬂ'+y:.ﬂ=.;"+zgy

L - S .



ANSWERS

o«

T (121)

U et N

Hence the function takes values with opposite sign in the i_r.tewai .21

b, Hence the function takes yalues with opposite sign in the interval [1,2].

€. chccthcﬁmcﬁonukﬁvaluswhhappuﬁ‘lcstgnfn . Al

& Hence the function takes values with opposite sign I the interval [siqj_ _

=]_!.,c,='—l.15 b. q,—.-l..l.r.‘l=l.4,c=-‘ ,,Clsl__'zs

e, g=36.6= 3.8,c,=3.7.6 =3.65 d. gg=36,6= 14,0, =3.5.5 =355

a ¢, =-1.8300782 4 = —1,8409252, ;= _1.8413854, ¢, =—1.8414048

b. .z:_,=l,2";',r:,—-‘1.283.c,=1133-4i2,.c,=l.283402

c. Asboﬂlf{a,}aﬂdf(ﬁ.)mpnsiriw.ﬂxfcis rootmﬂtcgwm.!mi.;c:w:l,- -

a mwmhmmmuWMWmempsmmmgm_
b i opposite signs in the interval {1,7].
d. x,= —1.89706

- ™

i,

a. gp=146 =1.2,¢
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5.
6.
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b, Ts=117
b S=111

d. Ts= 2.92116(approx)
4 S=3.19

g, Te=itl

c. Ss=110

e m—— S AR R - S

1.

e ——————
i yi.
. €
x. b

jii. a

viii. b ix. ©

prof. Mumtaz Khan

Enjoys a rich and diversified experience of 36 years ,
of Puré Mathematics, Applied Mathematics, Statist; of curriculum developmen ;
Preparing and delivering lectures at undergradua ics, Quantitative R, in the
Computer Science, Business Administration a:m;c‘l S—:Idl.lnte and
Mfff 06200 pogt ey laysl. Hele"
i vel. He remained associated i thor o
Peshawar since 1976. with the Uni

specialized
m.m;"d Operationa)

Technology,
f

areas

Research,

many bo superviains -
; oks being taught at
versity of Englmrmg £ ':l Eﬁ-d::‘lg

Ology

(IGCSE) & MEI- £ dge Assessment .
Grades, 17, 2~ ;_,M:fh::ms Minor Y-431/p1 (OCRE;ESMDM Biucstion fie A-Lovel Mg, o
(Cleulus and Anlyis and 10* Science Group AJK T;E). He has authored 50+ T e
©f Natonal and [y Geometry) for KPK Textbook xtbook Board, Muzaffarabad & FSe znd"dma
diﬂ'ﬂeuuwek. tmationai curricula. He has also,z:]-.d‘:jﬁhwj e vt ik ke E
. . "goed training & development

programs for




Khyber Pakhtunkhw?2
Phase - Vo Hayatabad

Phone: 091-9217714-15

Textbook Board
Peshawar

mw:ﬁtﬂﬁi Website: Mm

s¢ Staternent Remarks
1 mumemsmmmﬁaﬁwﬂy. sl ) e———— ]
< Wlanguagemcmmtofﬂaebﬂo*ﬁasﬂm B !
appmpriammmegmwﬂsﬁeeolgmmaﬁﬁiand
punctuation emors.
Wawmwﬁmmmwmm —
4. mﬁ!mmmﬂterlﬁcaﬂupﬂated— = ——m—
Fimﬂsraﬁagmigmpmrﬂlmﬁonsmmmmg e
relevant and dear if not, then identdy them. '_
6. Mﬁﬁﬁﬁd&ﬂmdadd?ﬁcﬂaiwmtisﬂggestedw
reinforcement of concepts. :
7. | Assessment achievements are thought proyoking and _
comprise cognitive, psychomotor and effective sidlls. | ,
& mm"*kmtﬂbﬂmﬁwﬂfmmﬁmwm' P
[ Page No. Observation/comments ww—-—“"‘—rﬂ# sipng sith cationdle
e
R
General Remarks:
___________u——"’
____________.-;-"
hame 8 Address: )//
Contact ho. & Email: i —//, s
349

W Ul e

=

e

W subies i
ST 5"@? Ui eIz

| :..JJJ;F Sbrsl Sl

(Ie JQ'ZJTFJ:’)

u’-‘-'u:/jgu}.'.luﬂ)bumd._l

(et Ts 215, ) F

s oo
e



) ﬂ"-.. — pe
Ty -

o __."'-"'f“w“ '!ﬁﬁ el
[ W AL —
Feaaiaanals l'*taanf_._.r

:':':;---u--lq'ﬁm rt‘!nmﬂr —

b PRy
| Y Skl

rtfgaf ot

sb akglroarl

Jugw‘tgw

Leading Books Publishers
Jamrud Road, Peshawar -

Pritner Quantity Code No. :

Top Mountain Printers 18921 PSp/TMP-12-47-2 223(07




