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Real part  Imaginary part

Recall complex number z represented by an expression of the form z=a+ib or of

the form (a, &) where @ and b are real numbers and i =-f—_1
. Recognize a as real part of zand b as imaginary part of z
Know the condition for eguality of complex numbers
Carry out basic operations on complex numbers

Define T =a-ib as the complex conjugate of z=a+ib

Define |z| =a® + b as the absolute value or modulus of a complex number z=a-+ib
Describe algebraic properties of complex numbers (e.g. commutative, associative and .
distributive) with respect to *+' and *x'

Know additive identity and multiplicative identity for the set of complex numbers

Find additive inverse and multiplicative inverse of a complex number 2

Demonstrate the following properties

o le=|-2=[e=

- - k]
'Zr * Z=z,z2%i=|d", z+5,=7+ 1z,

el z
212222122: e e -E_,zz ${].
Linear Programming

2 2
Find real and imaginary parts of the following type of complex numbers

; x, +Hiy, "
s (x+iy), 0(‘—‘—‘?'—) . Xy+iy, #0, wheren= +1, and+2
: Xyt
Solve the simultancous linear equations with complex coefficients. For example,

{Sz—{3+i}w=?—f,

(2-i)z+2iw=-1+i
Write the polynomial p(z) as a product of linear factors. For example,
2 a' = (z4ia) (z—id, 2 =32 4 24 5= (2+D) (2=2-D (z=2 + )
Solve quadratic equation of the form pz* + 92 + r = 0 by completing squares, where p,
q. r are real numbers and z a complex number. For example:
Solve z-2z+5=0 = (z-1 = 2) (z-1+20)=0=>2z=1+2i,1-2i

Gaph of Trigonometric and Inverse
Trigonometric Functions and Solutions of
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1.1 Introduction

In our previous class we |

des the real numbers, there are

i t role
 umbers called complex numbers: Such numbers play a Vcrylxmpo:::;m 5

?m,:al:hematics and other branches of -science. Tll-m use o.f comp e::sn e

;:dispensable in Physics, Aeronautical and Electrical Engineering pe

‘the analysis of Electric circuits.

earnt that besi

-1,1.1 Complex Numbers |
athematician gave the concept of

In 1832, Gauss (1777-1855), a German mal i
complex numbers as numbers of the form a+bi, where a and b are r.eal numbers.
The number a is called the real part of a+bi and the number b is called the

imaginary part of a+bi. : .
For example, the complex number —3+2i has the real part @ = -3 and the

imaginary partb = 2.
i 1na+b£,ifb=0.rhena+bf

real number @ can be written as a comp
andb#0, then a+bi=0+bi= bi is call
~i are pure imaginary numberé, Usually,

— a + 0i = a is a real number. Thus every
Jex number by choosing b=0Ia=0
ed a pure imaginary number.

Far example, %f and the
complex number a + bi is denoted by z=a + bi
Accordingly, z,=a,+b i, &= & + byi,...

The set of-all complex numbers is denoted by C , that
Complex numbers may also be defined as ordered pairs of real
umber z is an ordered pai'r (a, b) of real numbers

is C={a+biza beR]:

numbers. Thus a complex n
(a, b). The first component « is called the real partof z

enoted by

aand b, written as Z =

and the second component b is called the imaginary part of z d

Re(z) and Im(z) respectively i.e. Re (z) = a and Im (z)= b.

The ordered pair (0,1) is called the imaginary unit and is denoted by i = (0,1).
The se_t of all ordered pairs of real numbers is the set of complex numbers

denoted by C, thatis C = {(a, b) : a, b are real numbeﬁ]

= IR x IR where IR is the set of real numbers.

Mathematics

Numhers: :

Since 1 = J-1,a simple consequence of the definition of i is that all :
powers of i may be expressed in terms of = 1 and +1,
Forexample, i! =i, #=-1, P=fi=-, ©=(?
: ; ==, I*=()? =] andif we conti
i s e ontinue
in this way to obtain higher powers of i, we obtain the values /, i -/ or u,'
¥ n By s o Y

Similarly, for negative powers, we have
; ('Note E

i"l=1_=_l—z:_{-=‘_!l h
R TR e In Example 1(c) we see that 0 '
sl o = can be ex ressed asa-sum of a

I == == real and an imaginary number and

hence is a complex number.
Such a complex number whose

i 5 ik 5 = g = real and imaginary parts are
zero, is called zero complex .
;“-’:L:L.—.rhl——'l number.
= Similarly in Example 1(d), I

i (r-:)z (——1]2

can be expressed as a complex '

Examplie I:  Write the following complex rlumber with real part, 1 ;and.}
imaginary part 0. The complex :

numbers in ordered pair form. -
red pai P number . 1 is called -the - umit ;
(a) (h) (c) 3 g '
_— 6 (b)5i ()0 ()1 (e) 3-y=9  complex number. =
r{‘ 6 = 6+(;li = (6,0) (b)5i = 0+5i =(0,5)
e)  0=0+0i = (0,0 d1l=1+0 = (1,0
e 3-V=9 =3-if5 =3-3i= (3,-3)
Example 2:  Find the value of
P72 450 4558 4 586 584
| +£sso+fsm+é5?s T
Solution:  Given expression

00,582 | 580,

B | i i e pe
582 | .8 . =]l=f" =
{382 | ;80 | ST8 L iST6 | o574 I=i" -1

=(*)' =1 = (C1)*~1=-1-1=-2
1.1.2 Equality of Complex Numbers
real‘.[;:i:;;ﬂﬁl;}; numbers are said to be equal if and only if their corresponding
t ginary parts are equal. i.e. a+ib=c+id <> a=candb=d
i.e. 7=z, Re(z) =Re(z,) and Im(z,) = Im(z,)

(582
is




L Numbers

Complex

L nit 1
tion: Ifx+iy=3-4i, then x
umber .
lex number z =X +

=3andy= -4

Illustra

1.1.3 Conjugate of a complex n
The conjugate of a comp

is defined as z = x=1¥

z=5-3ithen T =5+13i :

iy is denoted by 7, and

‘Miustration: (i) Let _
(ii) Let 2= 2= 2+0i, then 7=2-0i=2

(iii) Let z = 3i = 0 +3i, then T =0-3i=-3i

1.1.4 Basic algebraic operation on complex numbers
(i) Addition

For two complex numbers, ( Remember L I )

=a +ib, and z, =a,+ ib,, their sum is
ot e BRGRYY For any two real numbers a and b,

Sefinadize; } - Jab=ab is true only when at
VzEgtn=(gtay) +i(h +h) least one of a and b s either zero or
positive,

Ilustration: If z =4 + 5/ and z, =2-3i, If both a.and b are positive real
then 2+ z, =(442)+(5-3)i=6+2i numbers, then the calculation

Add the complex numbers v=aJ-b l=u’ ~a)(~b) =ab

Y=3+4iand%=2-7i " iswrong The correct calculation is

Solution: 2;+2;= (3 +4i) +(2-7i) J—Tﬁ:{ﬁﬁ)(ﬁﬁ]

=(3+2)+(4-7)i=5-3i
(ii)  Subtraction =(is.'§)(i JEJ
For two complex numbers z, = a, + ib
. e =P (aV)=(-1)(Vab )=~ ab
and z, = @, +ib, , the subtraction of z, : :
Thus, the calculation

from z,is defined as: V2V3=[2) (-3) =6

2z =L =0 -a;)+] by ~
I (a1 a,) i(b1- &) is wrong. The correct result s

Example 3;

Dlustration: If z = 1 - i and =542 . J_EJ_?:{:\E)(\;E]
. 1
en =1*(V2 \3)=-6

A= 4= (1-) =(5+20) = (1-i)+(-5-2i)
=(1-5) +i(-1-2) =- 4-3;

Mathemalics-XT £
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Example 4: Let 2, =2 +4f and 2, = 1-3], Compute z, =32,
Solution: Putting values of z, and z, in the given expression,
4=-35=(2+4)=-3(1-3))
_ =2+4i-349 =~1 + 13
(iii)  Multiplication
Multiplipation of two complex numbers
G=a+iband z, =c +idis defined as
Zi%:=(a+ib) (c+id) = (ac—=bd) + i(ad + be)
Mustration: If & =4 +3iand 2, = 3— 2/, then
2&= (4 +31) (3= 2i)
=[4X3=3 X(-2)] +i [4x(-2) +3x3]= 18 4]
Example 5: Find the product of 2—3i and 7+35;. '
Solution:  (2-3i)(7+5i)=2(7 +5i) =3i(7+5i)
=14+10¢ -21;-15/*
=l4-11i-15(=1) (i =y
=14-11i+15 =29 114

h
be carried i
s ciuti}:ccuuse the denominator consists of two independent terms. This
by ;;1 . Overcome by multiplying the numerator and denominator t;y the
FMER € complex number in the denominator, Thj i
rationalization. ‘ ‘ SERREEREE

Wehave =1 = 4+bi _ a+bi_c-gj ,
2 c+di c-i-d:'x—__c—di (By rationalization)

= (a+bi)(c-ai) _ Gc—adi +bei - bdj?

(c+di)(c - ai) ¢ +d?
_ (ac+bd) ~(ad - pe)i
¢t d (vwif=-1)

a+bi  agc+bd be—ad

= act+bd be-ad
c+di P 4g? ,;-2+a'1;

& e ki =
c+d?  iygr " Thus - =

Mathematics- X1 !
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are real.

1 nitl “)-4+f| wherexal‘ld‘f

: : Snlue(xwy){z =3
IHustration: A
Wehave, - (x+iy) (2-30) = ”

Solutlon: +2 54_14! 5 14
d+: A4+1 2"'3’ B3}l ) +I3I

2 x+=7 5 rear T T ORI - ()

5 14
= — and Ye=—
" x 13
. 342, +Bi.
Example 6:  Write i_—i_im the forma
Solution:

3+21 3+2f 4+3I [Byra_ﬁa.'mfl'zﬂffﬂﬂ)

FETRYRCTI I : , |
C(3+2i)(4+3) _ 12+9i+8i +6i° =12+1?z+6(-1] (eiecd)
T (4-3i)(4+3) 16+12i-12i-0i 16-9(-1)

6417 _ 6 17,

25 25 25
1.1.5 Absolute value or modulus of a complex number

Let z = (a,b) = a+bi be a complex number. Then absolute value

(or modulus) of z, denoted by Iz, is defined by |z|=+va" + b,

'In the adjoining figure P represents a + bi. PM is a perpendicular drawn on OX

'fherefomﬁﬂ—? =gand PM =b. Inthe L

right angled-triangle OMP, we have
by Pythagoras theorem Pfa, b)

R ~[oi] 7 =+ 7

‘E‘_P[ =+a*+b* =|z|. Thus, the T e —X -

modulus of a complex number is the distance Figure 1.1

from the origin to the point representing the number.

Mathematics-X1 /0
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Example 7: . "Compute the absolute value of the given complex numbers:
. {a) i (h) 3 (c) 2-5i
Solution: (n) Letz=iorz=0+ i

Then by definition

= (0] +(1)* =17 =1
(b) Letz =3 orz =3+ 0i. Then Izl = ,}(3}2+(g}= 40

(c) Letz = 2 - 5i. Then Izl = 4/(2)° +(=5)" =4+ 25 = /29
(For Your Informati i -
or Your "rj"urmu on 1 | ) ¥ /,P(x.yj

The complex number z = x + iy and its i

conjugate Z=x-{y are respectively // .'

represented by the points P(x, y) and X4 — ' »X

Q(x, ~ ¥). Geometrically, the point :

Q(x, - y) is the mirror image of the point el

P(x, y) on the x-axis and vice versa, v Qo)
: Y

- 2undst 1)
19 . ; 2
() P+i (i) (=B i) (<17 (iv) (—1]15
2. Prove that i'07 4 112 4 j122 ;153 _
3. Addthe following complex numbers
() 3(142i), -2(1-3)) ¢ l_2; 1_1,
2 (ii) 53y 3! (iii) (JZ_.IJ (]\E)
- Subtract the second complex numbcr t'r-:)m first

O6@0)@-b) i) 31 ad) i) 3WE-5, VBeovTi

Multiply the following complcx numbcn

(0)8i+ 11, —7+5; (i)36,20-) (i) V2 +3 i CnE-Gi

6. . Gl Nk
Perform the indicated division and write the answer in the form a+bi

o i
(i) - 1 1 . 6
3450 (ii) 2 F, (iii) '_"__31_ (iv) _:f_’

I Slmpllf}-’th{, fullowmg

S
Mathematics-XI /
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PR filiad tandard form @ +i
 Express the fa“_nmng in the s +\,C§ 1+i]2
2 ) “Zeai

$ 5 1=2i 4-i =
P FTRETET @ Zg_J-16

; bE
I : 3,2)(2+3) |0, Evaluate {f” +[I-i) \
o, Find the conjugate Oof "52:)(2 1) ]

=i 2kl find

o L e g 2o b G |
0 Re[—..-—‘;] 0 [?‘E‘}

1.2 Properties of complex numbers _
124 Pr’;perttu of complex numbers with respect to addition and multiplication

Like real numbers, properties of addition and multiplication also hold in complex

numbers.
()  Properties of Addition
A-1  Addition is commutative i.c. 5+%,=2
Ifz,=a+biandz,=c +di then
7+, =(athi) + (c+di)
= (a+c) + (b+d)i
= (c+a) + (d+b) i (by commutative property for addition in IR)
= (c+di) + (a+bi) =2, + 4 -
Thus z +=5L+%%

4"2‘i

Example 8: Ifz, =1+ 3iandz, =3 -5i, then zf+zz=zz+z‘,'
7 +2, = (1 +3i)+(3-51)
=(1+3)+(3-5)i=4-2i
and z,+z =(3-5i)+(1+3i)
=(3+1)+(-5+3)i=4-2i
Henee g, +2, =4, 1

: Solution:

h-lsﬂhtluuli.cs-}:l/f,:- O )

Unit 1 | Complex Numbers

A-2 Addition is associative i.e. 7, +(2,+3;) = (3, +3,) + 2,
Ify=a+biz=c+diandz; = e+ fi, then
z) + (5+g) = (a+bi) + [(c+di) + (e4fi)]
= (a+bi) + [(c+e) + (d+f)i]
= a+(e+e) + [b+ (d + f)]i
= (a+c) + ¢ + [(b+d) +f]i iati ition i
) .ifi)f] i._, 3}; (by associative property for addition in I®)
= [fa+bi) + (e+di)] +etfi
=(z;45) + 5
Thus 3 +(p+y) =(3+5) + 35
Example 9: If 7y = 1+ 2i, 5 ==-2 + 3iand g, = =3 -5i,
then z, + (2, +2;) = (3, +:,~,J+z.,.
Solution: 7, + (5 +2) =(1+2i)+ [(=2+3i) + (-3-5i)]
= (142i) + [(=2-3) + (3-5)i] =(1+2i) + (=5=2i)
=(1-3)+(2=-2)i ==4 + 0i
(2, +3,) + 2, =[(1+2i) + (=2 + 3i)] + (-3-5i)
= [(1-2) + (243)i] + (=3-5i) = (=1+5i) + (=3=5i)
i i = (=1-3) + (5-5)i =—4+0i .
’ P G+ )= (3 +2,) + 3
(i) Properties of Multiplication
i\:} Multilp]icminn is commutative i.e. 2,2,=2, 2
R A Al
&b s alesdils _y inition of multiplication of complex numbers)
3 !:; i :,,J d— icab-—)dbj(; (chb + da)i
T a c )i c i i
multiplication and addition of rcalnumbers);. ’.}‘I:;T:T“mve il

ig-.‘ h : ,2:?=- Z,
S\I"ll'l'lp](_‘ 10: If zlr:z-_j; andzz=_1+ 2i [henz:_w_: _"Zq
= i : ’ LH=52
Dutmnl. : L8 =(2=-3)(-1+2i) =2(-1+ 2i) -3;'(—;I+2ij
=2+4i+3-6==2+7i+6 (v P=-]

Gl _ ';44-?:'
an 5,5 =(=1+20)(2 =3i) = =1(2 = 3i) + 2i(2 =3i)
=2+3i+4i-61° =-2+7i+6 (v iP=
= g4 7i b ok
Henee 32,=13,3,

Mathematics-X1 /



CCampley spmibery

Lonit | - =(z z,zjz_,
aciative 1.. Z;'ffa Z.Tj 1
M2 MuIthﬂ!“'“:’;:“z2 _i4dimdz =€t '!;Be;:,ce
3(z :_:,1— " + b’l} [(c+di) (€ ;ﬁ;":f::'c; 4 de) + bfce ~dfli fi
Al cf + . ] (¢ + ]
. = [a (ce -._-:f ji ifb{{e )= llac ~bd) + ad * ;c;:;;(
and (550 =10" b,:;if _(ad + be)f] + [(ac DY (01 bdf)]i
b R a;;-{bde + bef)] + [(acf + ade) + (bee = b))
. E;Z ") b{ef + de) +lafef + de)biee =D

Thas, 454) = (G003 - C g =3 -3i, then 2(5%) = (5%)%
" Example 11: Ifz= 1=, ?45-1*2‘ and &
Solution: We have
7(5%)= (1= =1+2i) {‘2.
o a1y (=2 + 3+ 4 _
=(1-i)(4+7)=1(4 +7) -;:‘4 J;l?:) 5
i —gj =T =4+ 3i+7= 11+ |
i 7;1’:; —:7,1:’ ~1+2i)] (2-30) = [1(~1+2i) -t'(—l+.2l'ﬂ (2-3i)
={r-1+21'+!'—2l'2j (2-3i) =(-1+3i+ 2) (2 =3i)
=(1+3)(2-3i) =12 = 3i)+3i (2 -3i)
=2-3i+6i-9% =2+3i+9=11+3i .
Hence 3,(53) = (45)5
(iif).  Multiplication-Addition Property (The Distributive Property)
" This property is more explicitly stated as.follows: .
M-A., Multiplication is distributive over addition i.e. 7 (54%) =455
Ifz=a+biandz=c+diandz =e +fi, then
4(z+2) = (a + bi) [(c + di) + (e + fi)]
= (a + bi) [(c + e) + (d + f)i]
: = [a(c +e) ~b(d + f)] + [a(d + f) + b(c + e)] i
and 3242z = (a + bi)(c + di) + (a + bi)(e + fi) .
\ = [(ac —bd) + (ad + be)i] + [(ae - bf) + (af + be)i]
= [(ac + ae) + (~bd~bf)] + [(ad + af)i +(bc + be)il
=[afc+e)b(d+f)] +[a(d+f) +b(c+e)i
Thus, 7 (z,+2) =42, + 3,

~3i))=(1-1) [-1(2 ".3”' +2i(2 -3i)]
-68)=(1-i)(2+7i+0)

and'(z)3,)z

Not For Sale
Mathemntics-x1
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g =-1+2i,z=3+4i and z = -2+ 5, then
5 +5)=55 +3y

Example 12: If

Solution: We have b o
4(2,+2;) = (—=1+2i) [(3 + 4i) + (=2 + 5i)] :
=(=1+2i)[3+4i-2+5i] 'Adcurdingtothe- !
= (=14 2i) (1+ %)= —1-9i + 2i +18 2 SOmmutative

_ ST . property for -
==1-7i-18=~19=7i (v = -]) multiplication -

cand z% +22, =(=1+2i) (3 +4i) + (~1+ 2i) (-2 + 5i) iy=yi: Herice we

= =f ~4i+6i+ 8% + 2 -5i—4i + Jop SHRWHIBLHGH
==1-71-8-10=-19-7i LAk et

of z=x+yi
Hence z, (z+g) =215, + 315 R
1.2.2 Additive identity and multiplicative identity of complex numbers
A complex number ¢ + di is called the additive identity of the complex number
a+ biif (a + bi) + (c + di) = (c + di) + (a + bi) = a + bi ;
Let a + bi be any complex number and ¢ + di = 0 + 0i be the zero
complex number. Then - : '
(@ +bi)+(0+0i)=(a+0)+ (b + 0)i (by definition of addition)
' =a+bi

“Similarly (0 + 0i) + (a + bi) = a + bi

Thus the additive identity in C is the zero complex number i.e. 0 + 0i
A complex number ¢ + di is called the muitiplicative identity of the complex
number a + bi if (a + bi) (c + di) = (¢ + di) (a + bi)=a + bi
Let @ + bi be'any complex riumber and ¢ + di = 1 + 0i be the unit-
complex number. Then .
(a + bi) (1 + 0i) = (a-1- b-0) +(a-0+b-1)i  (by definition of multiplication of
=a+ bi complex numbers)
(1 +0i)(a +bi)=a + bi
Thus the multiplicative identity in C is the unit complex number / + 0.
1.2.3 Additive Inversle and multiplicative inverse of complex numbers
’ A complex numbeér ¢ + di is called the additive inverse of the complex
number a + bi if (a + bi) + (¢ + di) = 0 + Oi i.e. the additive identity.
Wehave (a + bi) + (c + di) = 0 + 0i S(a+c)+(b+di=0+0i
= a+c=0and b+d=0 = c¢=-a and d=-b
sothat ¢ + di = —a —bi, Thus the additive inverse of a + bi is —a — bi.

Similar]y

Mathenmatics- X1



~ Unit Ii _tj:'fmu':ru_:»'. Numbirs

TH R amples Numhers : - ; _
L nit _ B ik 3 1.2.4 Some properlleslof the conjugate and modulus of complex numbers
Example 13¢ Find additive : 11.1 the following theorem we prove some properties pertaining to
Solution: conjugation and modulus of complex numbers. '
" Letz= 53 : : : Theorem: Eur ill z, 4, z; in'C :
g 5.3))=—3 +3i ’ (@) lzl=kzl=1Z1=1-7 | T = ; o _
( i is =35+ 3i. BIE me © 27 =1z

itive i [560f5'3 T ;
additive inve ¢ multiplicative W ERE E T () T = 7 AR
- 5 - vmemm 0 Bk

; 142 ) Z Ez 122?‘-'0

Thus the ol
mlﬂpumﬂ.\'e Inversé A complex r;uﬂ}b?f i ;I}d{lcli ;‘T}lezdjtiﬁl i.e. the
f the complex number @ + 41 # Proof (a) = i i PR
muliplicatve denity. _ | - s f‘ R G e e e S
We have (a + bi) (¢ +di) =1 + 0i = (ac—bd)+ (ad + be)i=1+ 0i rerefore by definition 121  =+Ja®+b? 0
= ac-bd=1 @ 2 =71 =+(=aP+(=b)? =+/aq* +p? i
and ad+bec=0 Gi) From (i), we have : V.’[: Y+ ()" =\a’+b (i)
, s . |z = L=h)? = 2
ad=—-bc or d=——7 (iii) Putting the value of d in (i), we get z : J(“} +Eh)' =va*+b (iii)
b(2)=1 | dexbe Did You know __ {?) -7 = @®) =Va+5? (iv)
ac + —_—= _-_ﬂ__- o Equati . . ; )
3. 3 s i, 2o 30 av) | The complex numbers quation (i), (i), (iii) and (iv) yield that
= (d+b)e=a = ¢ = T possess all the properties L Izl=1-z1=1Zl=1-7ZI
Putting the value of ¢ in (iii), we get , that real numbers possess et :: =a+ bi,then 7 =a-bi, and so
bea b  except for the order N
ze—— = d=-—=5 (V) relation, that is, we can Thus =
ala”+b7) a+ § | : Z=2
i not say that one complex () Bike i ) %
From (iv) and (v), we have- number is greater than z=a+bi.Then T =a-bi
Nl L the other complex number. Therefore 22 = (a + bi) (a =bi)
a+b  at+b’ - .
= a® —abi + bai - b7
Thus the multiplicative inverse of a + bi is =q? 2 A
=a® —(-1)b (o Bmsl)
= 512 + .b;’

a _ b
FLFET 'a1+b=t e
— ZI I/.-. [:I= Fﬂ2+b2)

Example 14; Find multiplicative inverse of —2 — 3 . Thus z7=1z1
Solution:  Letz=-2-3i Herea=2,b=-3 ) Letz, =a+bi anfi =c+di
: /] Z, = ]
: “E_( : : ] ( = . ] (—2 3 =2 3 Then I, =a-bi 7
oS ) 2y 2 = g = === === =i - L B o
2a +0, @+ \(2 (3] () +(3)/ B3 ’13] 1313 2+ = (a+bi) + (c +di)
e e . ' 59 :
Thus - T + Tg: is the multiplicative inverse of =2 — 3i. Therefi : _{2 e
. u+z, =(a+c)=(b+d)i

Not For Sale
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1.2,5. Real and imaginary parts of the complex number of the form

it 1 | Comples Pt z. pyegied | ; . o [ Bty iz
=2 a-bi}+fc—'dﬂ"zl + 51,... ot ol iy (i) X, +iy, 2 X, + iy, #0 wheren = =] and +2
—_— 21.”: = z| + z: R Jo it _ i i. Real and imaginary paris of (x + iv)" wheren = % ] ;m'd +2
' P pi and 4 = =zc+di s .3 when i = 1, (x + iy)' reduces to x + iy
€ Then- 75 = (a+bf){f +di) + Therefore, real part = x and imaginary part = y
1 -______———_- 3 T i g
 ={ac-bd)*(@ +(ad +be)i B When n =~1, (x + iy)" reduces to (x + iy)™!
; Shpe | 1 x—iy
= fac ~bd) .-{ad+ be) _di) We have, (x+iy)y'= —~ = - ,J (by rationalization).
1 g =(ar kg = (o bR | (x+iy)  (x+iy)  x-iy
an : )
= (ac -bfﬂ + (—ad - ~be) i - : (ii) = LS = = —i Y
= (ac —bd) —(ad + bc) | ' , CHy ey P4y
Th'ds from Bqua‘mns (ﬂ and (ﬂk‘f’f sl 3 J : Therefore real part = 3 i = and jn}aginar}; pa_n = =¥ 3
.zLZz =4 L X +y A’Z-!-y
() Letzy=a+biandz=c+di Whenn = 2, (x + iy)" reduces to (x + iy)?,
Then L =2+% a+3{ x C_j: (by rationalization) bl (e = “j + 2ixy + 7y e
2 chd | ctd, , ¢ =x° + 2ixy —y? (= i#=<1)
{ac+bd:l +(be- ad)f _ac+bd bc—adl. = (¥ -)’) + 2ixy
-c-zﬂif2 : c+d? + d : Therefore real part = x* — 2 and imaginary part = 2xy
+bd bc—ad. . ' : he ; . '
( ) ac+d2 et +d? Tl _ When 1 = —2,(x + iy)' reduces to (x +iy)~
c
i ac+bd _bt’."‘ﬁ'di L (l) ; We hc"l\"ﬁ, (x + f)l}—z = 1 -
c+d®  F+d’ (x+iy)*
= e -. 3 ) l Lu s 2 2 : .
+ = — - A=1y X2 p2 ]
nd Lwd bf pmlis ><de (by rationalization) - " o) xi——}— =——2 2“}2
Zz C+d£ C_di C_df (.‘+d! i ,J.} {-‘- g !J‘} (I‘!‘ i_\'] ('r_ f}']
=(ac+bd1—(b:~ad)f _ac+bd _bc-adi (i) : e x' =y =2y -
¢ +d ct4d? - et+d’? 162 % (x*+ v’)z : (x*+y*)?
Thus from equations (i) and (if), we have
? Th 3 Jrz—J.-i ) - :
erefore real part = ——~=— apq imaginary part = 2xy
y)* 2 B

Mathematics-XI
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ing complex NUMDELS.

o Numbers .
1 nit ] |¢ anple : : i ofﬂle follow &7’
jo 15: Find the 2 w ]mjgmw.f a+if W (1 +2i)
:f:a mpz " (i} sl
imaginary pa =
S » 3i Therefore real part.of 2= f and imagin
i Letz=+~ i e
::1]] Letz = (5 =3 Hcrex-.‘iandyls i <o
X — —— = — = 4
Therefore, real part of 2 = “377.2 (5)2 P I - 3
3
r = —{._.3) — __g.._. T e—
S iy SRS
and imaginary partof z = F‘_;;E = (5]1 + (-3 2549 34
_(34if. Heox=3andy=1
(iii) Letz=(3+i) e
Thcmfnre.ncaipanofz=xz*)'z=(5)zr!’{.? =9-1

imaginary part of z = 2xy = 2(3)(1) =6

(iv) Letz= (1 +2i)° Herex=1 andy =2 -
e R i, O s I
Therefore, real part of z = Z+7)) = -—-—"'—{{]]3 T T 5)

L . T
GF 25

T
(o]
LN

. .
imaginary partof z = @+yF 1)+ @

ii. Real and imaginary parts of [M] where n = 2l and =2
- Xa+ i"}'_';

Whenn =1, 440 | reducesto L -ij' . We have,
X i, X, +iy, .

43 i s
& fy‘ = l,y’ x 2 f:fz (By rationalization)
nty, x+Hy, x-, ;

- 5 X =Gy, +iy —ih %Y, A% +i ()X —X%Y,)+ 3, ¥, (- #=-1)

X ~i'yy 5+,
_xnt+yy)ti (hn-xy)  x %ty Ll )
. . F] i 2 3

5 +y; X+ o +¥;

: X+ 2
Therefore, real part = % and imaginary part = by x; xlz Ya
: B 6+,

. a =1
X +i x 41
[—' _y' ] reduces to (——-' ;.y,]
X, + 1, X, +,!y2

. =1 . 5 p 7
X+ ] = X iy, _ % 'Hyl » A~y
X, +iy, X, +y, X, =iy,

We have [ (by rationalization)

.-"':"‘i?z
LT Ny _H-J";, HT NN

2 2 2 2
XY X+

(by routine calculation)

X x+ vy =
247 Bh g imaginary part = 221" %

Therefore, real part = e
, %+ X+
Y 2 '
X +1 X 0
{ ‘—i) reduces to —:}l We have,
X, +iy, X, +iy, )

_(.rz +iy,)? " (x, +iy, )’ x5, ~ 1y, (By rationalization)

4 +fy| -_ {'.x, +T:J’])2 i (x| +!-_')J[}3 (xz _fy:)a
X +b’2
= [('riz - J'fJ"" 2ix,y,] [(122 = J';J_ 2ix,y,]

(x, +f."z]3 (x, —iy, Jz

B e R N T Y : ]
= [(x W) (x; _yz)+4x|'rzy|yz ]+ 21-[—’&)’. (-‘—z_ —-¥;) —XV, (-"'12 _'J’EH
=)

2 2 2 2
Therefore, real part = M(_Y—L__}_"_—"fm

(5 +32)
: imuginary part = 2-":)":!{1’5 "}’23)*-‘53)'2 l’xf —J"f)
2
{13 +y_;]
: . : ] n -
Whenn = 2, [———_x' Hy') reduces to | X+ 2
= x? +U’2- -"-_'! +::V:
We h: v Y . P
e have (x] +;y,J _ (x4, ) (X, +iy,)  (x,—iy, )
P A s
R G+ T (xiy ) (x iy
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x Numbers

2
._-J.lli =W (I': —)z }]

> omple 3
Unit 1 | '- mf : ,_y=]+4_rlx;j’|.": J+2i [txzyz(:n
:HI’ —y)(q —Hh (xf+}’1:]
. Therefore, real PA= " (x2+7) .
imaginary part= 2" 1)

6.

% Ifz,-_-2+fand21=1"i_*

AERSELL

ommutative property W.r.t. addition

then verify ¢

and multiplication.
=-1+i 2= 3'—2f. an
addition and multiplication.
L= 3+J§f+ s 3= \E”\E
multiplication over addition. 2
Find the additive and multiplicative inverses 0
(i) 5+2 @ 0.-9

@) etz =2+4iandz,=1-3i. Verify that

dz =2 _+-31_- verify associative property WL

g - 1]

i and z-j=;7;' —-I:.‘i, verify distributive property of

f the following complex numbers.

LG =5+
(i) Letz=2+3iandz,=2-3i. Verfythat 22z, =%

|

s : b z
(iii) If z; = —a —3bi, 7, = 2a — 3bi,. then verify that [z—'] 2

Show that for all complex numbers z, and z,

_ z z
. (i) lzyzl =1zllzgl : (ii) z_; =% , where z, # 0.
Separate into real and imaginary parts
2 2 2 x o
{)y 1 R R
5-21 ]_—3; (-‘._'_‘.}2

: 3441\
(iv) (2a —biy? ;v) (;;_?:J

Not For Sale

(i) z-Z=2iIm(z)

(i) z+Z=2Re(z2)

(iii) 22 =[Re ()] +[Im(2)]?
(v) =~z ifand only ifz is pure imaginary
9. Ifz=23+2i then verify that (i) —]z[ < Re(z) S|z|

(iv) 2=7 = z isreal

(i) ~|e|< Im(z) <] -

1.3 Solution of equations
In this section we shall find solution of different equations in complex
variables either with real or complex coefficients. .
1.3.1 Solution of simultaneous linear equations with complex coefficients
Consider the following equation
pz+rgw=r (f
where p,g and r are complex numbers. The equation (|
equation in two complex variables (or unknown) z and w.,
Pz+qw=r
P2+ qw= rz}

is called a linear

These two equations together form a system of linear equations in two variables z
and w.The linear equations in two variables are also called simultancous

linear equations.
For example 52 -@+i)w=7-i
(2-1)z+2iw= —1+i}

15 a system of linear equations with complex coefficients.

“Inconsistent” “Consistent”

1} i 'I 1
2 Independent”
4 ""
g

"Dependent"

i

P

One Solution

Pl

No Solution

O Solutions
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an ordered pair (z.’w)
Lo i tisfied. For cxamplel consider
'sa dw=2iisa solution .Df
gr the equations are satisfied.
h':“mtﬂ:::tl’1 equations is called solving

{ampley yumbers

Unit |

tions

- okt it where Z

s The ordered pair zw) R

e by 1+i and w by <& 5
| solutions of the sYy§

The process of finding al

; em of
" 5}’5';";:‘: we shall find solution c-fT ifll :y:itmple oy
efficient in two variables & a.nd‘ i and substitution™.
:ons is the “method of ehmm.auon ; iy
equations 15 multiply each equation by a
i u;n:?::ﬁ:ble in each equation is the same.
}:‘; or subtract the resulting f:lquauons to e
—getting aﬂﬂquaﬁon.in one \rma:I' :-meincd i
A SOIV% 5 ﬁqﬂﬂﬁ;: I:.? H:J:: aof one variable in either of the original
e Sum}mwinlh;ep-lnand solve for the other variable. : :
Step=5 equ‘:iuon:a ether the corresponding values of the variables in the form o
g ::cll-ler:g paiﬁs gives solution of the system. : ‘ Sty
H i linear equations with complex coefficients.
Example 16: Solve the simultaneous

two equations With complex co-
for solving such system of

t so that the co-efficient

liminate one variable, thus

Step-

Sz-(3+iw=7-i
(2-i)z+2iw=-1+i .
Solution:  Giventhat Sz—(3+ijw=7-i
: (2=i)z+2iw=—I+i
Multiplying equation (1) by (2 — iy we have
52-ifz-(3+D2-iw=(7-i)2~i)
= 52-if—-(6-3i+2i-P)w=14-Ti-2i+
= S2-ifz-(6-i+Nw=14-9i-] (v =-1)
=  N2-iz-(7-iw=13-9;
- Multiplying equation (2) by 5, we have
: H2-i)z + 10iw =5 + 5i (4)
Subtracting equation (3) from equation (4), we have :
5(2 - etl0iw  =-545;

+3(2 =iz~ (7= ilw=+13-9;
- - poos

10iw + (7 -i)w =-18 + 14;

R =18+ 14i
7+9i

(By Rationalization) -

= . (7+9)w==I8+ I4i
=18 +14i  7- 9
=—x

= P i
7+ 9 7=9i
260i

= ' W=——= 2
130

Subsiituting the value of win (! ), we have
2-CB+if2)=7-i=> Sz—(6i+28)=7_}
= S—(6i-2)=7—| = Sz=7-i+6i-2
=  5z=54+5i = z= ———5;5' = I+i
Thus (z,w) where z = 7 + i and w = 2i is the solution of the simultaneous linear
equations. -
1.3.2 Expression of the polynomial P(z) as a produet of linear factors
Recall that an expression of the form
P(x) = a.x"+a, ,x™'s ......... + ax+ay,a, 20
where n is a positive integer or zero and the coefficients a,'.,a,,__.,.....rr; and a, are
constants that are either to be real or complex numbers, is a polynomial of degree n.
. Forexample, 2x + 3, 3% + 2x 4 1 and 5 — 6x° + 5y — ] are polynomials
of degree 1, 2 and 3 respectively, y
Here we are concerned with finding the linear factors of the following two
types of polynomials.
‘ff:' P)=2+ &, whereaisa real number.
i)  pz)= az'+bz+cz+d where a, b, c and d are real numbers.

In factorizing polynomials of ¢ i i f
ype (1) we simply use the f; =
that to find linear factors o ! o

For ex: = ‘ 2 2 22
i ol f.xamer Plz) = 7 +“a- =Sr~-ie' =z + ia)(z — ia). However, in
E rizing pj::lynomlals of type (ii), we use the factor theorem which has already
CeN proved in the Previous class and stated below.,

lhl— de'.{}J.‘ Lien cing L P y ]F y]]ll!llhl] ]IIE][ X—ais a iaCEDI 01 *‘- X 11
e . et r.l) bﬁ an DI .
i j E]ll} ]I 1 (ﬂj G fl)

o he method for factorizing the polynomials of type (11) into linear factors
5 explained through the following example.

'I\.-hrhcmalius-?{f




Gaitd Compler Namirers . : 'J+ sf 4 192 - 25 into linear
L

Factorize the po]ynumisl P(z) =

- | fﬁ:r{gk_ﬁ In factorizing the given pol)'nomial P{z) into Iincalr factors, we use
L; i sunﬁu:mcmm To do so, we note {hat z = 1 is arool of PL&L sSInce

H the factor . e

::I . Py =017 j 5{; r'i):: ::fli i ;f;;;x:jt:ﬁff o rijarrﬂﬂgc the terms in such
] fi::ﬁ:ﬂfﬁl;;; 2 common factor z — I as follows:

1 po)=7+ 52+ 192-25
g ol Y s o - b =(a-b)a +ab + b)

(-2 1)+ (57~ 55+ M2 -24)
- (o= 1) (F4 2 +IH(5T = 52) + (242=24)
(2= D (@ +z+ D Sefz- 124 (z=1)
= (- 1) [(Z+z+]) + 52+ 24)] = (2~ 1)('+ 62+ 23)
c(z-1)(@+6z+9+16)=(2-1)[(Z+62+9)+ 16]
=(z- 1) [(Z+ 62+ 9)(-16]]
=(z-I)l(z+ 3] - (4i)] Gt ==1)
= (= Dz + 3) +4ill(z+ 3)4i]  ( @-b'=(a+b)fa ~b))
=(z=1)(z+ 3 +4ifz+3-4i)
1.3.3 Quadratic equation of the form ps +qztr=~0
Consider the quadratic equation of the form
plrqz+r=0 '
where p,q,r are real numbers p # 0 and z is a complex variable.
Weseethat 2 —z + 3= 0,37 —4c+2=0,52+62=0,7-3=0,27
and z* = 0 are all examples of quadratic equation in the variable z. Equation (|

called the standard form of the quadratic equation.

=33-JT

) is

Solution of guadratic eguations
Recall that all those values of z for which the given equation is true arc

called solutions or roots of the equation, and the set of all solutions is called
solution set.

el Complis Nunibers

For example, 2 + 4 =0or z* —(2i) = 0is true only for z = 2i or z = -2i, hence
7 = 2i and z = =2i are the solutions or roots of the given quadratic equation and
{2i, -2i} is the solution set.

To find the solutions of equations of the form (1), we use a method known
« completing the square” which is described as follows:

as
Step-1 Write the quadratic equation in its standard form.

Siep-2 Divide both sides of the equation by the coefficient of 2 if it is other than 1.
Step-3 Shift the constant term to the right hand side of the equation.

Step-4 Add a number which is the square of half of the coefficient of z to both
sides of the equation, 2

Step-5 Write the left hand side of the equation as a perfect square and simplify
the right hand side.

Step-6 Take square root of both sides of the equation and solve the resulting

equation to find the solutions of the equation.
The method is explained in the following example.

Example 18: Solve the quadratic equation Z° + 6z + 25 = 0

Solution: We have

Z+b6z+25=0 (Step-1) Dnnw 2
= Z+6z=-25 (Step-2 and Step-3) The coefficient
= Z4+6z49=-25+9 (Step-4) of " must not
= (z+3F=-16 (Step-5) btehzer-:)_ it
e 5 S otherwise 1
—_ I+ " = = =
&3 (z+3) ("_“" becomes linear
= I+3=x2i (Step-0)

=-3+2iorz=-3-2i
solutions of given equation are -3 + 2i, -3 — 2i and solution set is
(=3 +2i, -3-2q)

Thus the

Example 19: Solve the equation 7 +z + 1 =0

Solution: " : Al
ution: According to the quadratic formula. the answer is

—1+JF -4 NE

= =i =

2

Not For Sale %
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. b nhers
[ Compley NuT

Unit 11

EXERCIS e

ations with complex €0¢

- ~ous linear equ s w=ll=i

. Solve lmml,ltancﬁ"s I(ii) zaw =3i (i) 3‘+.(2:I}‘:.-— “1+i
(i“—;w=?'1 5i 2z 4 3w=12 (2-0 2—- W=

' 2z4+3w=127 ; -+ linear factors.
e 4 Is P(z) into line

R Al ize the polynomiais 7 #2
i' = 2 H Zj=2 = I F £ X 5

; . (iii) p(z)=z‘+4 . [jv:lP(_:'_l_!-saﬁsﬁes [hccqual1mlz'+’lz+2=0

A ] d Za=
w that each z,= -1 + 1 an€ &=~ P
7 S[)hﬂocnuinc whether 1 + 2i is a solution of #-2z+5=0
4. equations

. in 2
Find ll slutons to the o278 (i) 2-2z+i=0 (i) +4 =0

o i) F+z+3=0 ﬁﬂ:ll_] ¢ ations ;
' Jutions to the following equ 2 ity
; :;;mittcji 1=0 (i)' =-8 (i) - 1=-1 (Vz =1

I. Choose the correct option.

{a) i (b) 2§ ; (ci1-¢ (d)1-2¢
(ii) Divide 5+2i
I vl __4_3: 26 23
14 23, ) :
! Welidly ) 24y (cy —+—i (O =+
! 35 25 i3 25 25 7
Gii) 4L when simplified has the value
e
(@0 (b) 2i (c)-2i (d)2
W) 1+324i'+ %+ ....... +i™is :
{a) Positive (b) negative (c)0 (d) cannot be determined
R
(v) Ifz=x +iyand —5: =1 then z lies on
4+ 5i :
(a) X-axis (b) Y-axis (c)liney=5  (d) None of these

(vi) The multiplicative inverse of z=3 — 2i, is

| ; 1 : :
(a) 5(3+2!) {hjl—3{3+21} ECJ%B—&]

{d) %(3— 2i)

I

(vii) If (x+ i) (2—3i) =4 + i, then
x=—14/13, y=5/13
x=14/13,y=5/13

vx=5/13,y=14N3
x= 5/13, y=-14/13

Show that i" + i™' + "+ "™ =0, ¥neN

Express the following complex numbers in the form x + iy.

() (1430 + (5+70) (1430 - (5+T0)  Gil) (1+30)(5+70) (iv) ;4-?
' +7i

. : I s z+z.+ |
Kz =2-i,zz=1+i find |2——1,
2—2z.+]
B E I
Find the modulus of ———.
=¥
Find the conjugate of -\
+4i
sy ST S g 3i+2
Find the multiplicative inverse of z = s
3—2

Solve the quadratic equation  z.4

Ccrﬁprex Numbers
a+bi

Real Numbers

a+ Qi
Irrational
Numbers

Rational Mumbers
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_ Solve a system of three homogeneous linear equations in three unknowns.

LR —

I
I
i
A

Recall the conceptof
~ amatrix and its notation,
» orderofa malrix,

~ uality of two matrices. y :
DeﬁEng rowymarn'm column matrix, square matrix, rectangular matrix, zerofmull

matrix, identity matrix, scalar matrix, diagonal matrix, upper and lower triangular
: ; tric matrix and skew-symmetric matrix.

matrix, transpose of a A i i ultiplication

Carryout scalar multiplication, addition/subtraction of matrices, multip

of matrices with real and complex entries.

Show that commutative property

» holds undér addition.

= does not hold under multiplication, in general.

Verify that (AB)'=B"'A'

Describe determinant of a square matrix, minor and cofactor of an element

of a matrix.

Evaluate determinant of a square matrix using cofactors.

Define singular and non-singular matrices.

Know the adjoint of a square matrix.

Use adjoint method to calculate inverse of a square matrix.

Verify the result (AB)"' =B ™A™,

State and prove the properties of determinants.

Evaluate the determinant without expansion(i.e. using properties of determinants).

Know the row and column operations on matrices.

Define echelon and reduced echelon form of a matrix,

Reduce a matrix to its echelon and reduced echelon form.

Recognize the rank of a matrix. .

U.j:e_mw_cpeminns to find the inverse and the rank of a matrix.

Distinguish between homogeneous and non-homogeneous linear equations

in 2 and 3 unknowns,

" Unit 2 | Matr

e e

. Mathematics-XI

e

g b

ces and Determinants

Define a consistent and inconsistent system of linear equations and
demonstrate through examples.

Solve a system of 3 by 3 non-homogeneous linear equations using:
s malrix inversion method,

= Gauss elimination method (echelon form),

= Gauss-Jordan method (reduced echelon form), 2
s * Cramer's rule. : .

2]

(-]

2.1  Introduction

The concept of matrices is a highly useful tool which is not only used in
mathematics but also in all branches of science, engineering and the business
world. Now-a-days matrices and matrix methods have widespread applications in
the operation of high speed computers.
2.1.1 (a) Concept of & matrix and its notation
In previous class we have taken a simple example for the concept of a matrix.
Here we take a bit more tricky example.
Suppose three colleges A,B,C take part in an inter-colleges debate competition,
where any participant can speak in either of the four languages English, Urdu,
Pashto or Hindko. College A consists of 3 participants in English, 2 in Urdu, 3 in
Pashto and 1 in Hindko, College B consists of 2 participants in English, 3 in
Urdu, 1 in Pashto and 2 in Hindko, College C consists of 4 participants in
English, 2 in Urdu, 2 in Pashto and 1 in Hindko.
The information given in the above example, can be put in a compact way in a
tabular form as follows:

0 0
] chn | SRR TR e S dit
R e e :
3 2 3
B .
= 2 3 1 2
4 2 2 1

NOW we : { z
s Wf‘][ﬂ'. the data given in the above arrangement in a capital or small
Wwithout any top or left heading as shown.

3 : . ' 3 2 3 1
; 3 1 2 OF ) 3 I 5
e S g F . g




on needed which we call a matrix.

: : - formati : brackets
o] of numbers gives a];nt:; ::;t:umbel's 3"C1033d mn largf;:::;a;il] be real.
i mﬂ;n;l:ia:e specified, all nuibers i SR
Unless 0
5 or parenthesis )
i For example, 5. 9 B 1
o ) : 1 = 3 1 2
3 2 3 rows 2
- : 3 i 2 or — 4 2 1 Mg 1
q! m.ﬁf 1 -
i - |4 A ™ T 9 T
it A columns
1 columns

i square brackets to denote

!: ill use
‘ represents, matrix. However, throughout we will

matrices.

In the above m
the vertical lines of numbers are call '
called an element or an entry of the matrix.

The above matrix has three rows and four cnlumn?. .

We are now ready to give the general definition of a matrix as follc?ws.
A matrix is a rectangular array of mn elements ) i= 1.,23,. :.,lrn
© j=1,2,.z.,n aranged in m rows and n columns. In writing down matrices, 1t 18

usual to denote the matrix by a capital single letter A (say) such that

atﬁxl the horizontal lines of numbers are called rovs and
ed columns. Each number in the array is

ay Q..
4<% a‘n,,.ah .
Ay oo,

'ﬂJJ Order of a matrix
The order of a matrix is given by the number of rows followed by the number of

columns, if the matrix A has m rows and n columns, and so is said to be of order
m X n (read as m by n matrix). d
For simplicity and to convey the

otherwise specified,
In the matrix A, the ith row and the jth column are represented as follows:

idea, the matrix A is an m X n matrix, unless

Jth column

[a, @y -(a)) ...q,
a,, Ay o] @y f ... @y,
A= ||
ith row =
@it iy o] Ayl aD
_ami alr.'?" amj "'amrr J

The elements of the ith row of A are ay, aj,....,y,.....,a1, and the elements
of the jth column of A are ay; ,ay;....ay,...,a,;. We see that the element a;j occurs in
the ith row and jth column of 4. The elements in the ith row and jth column will

usually be referred to as the (i,j)th element because of (2id You Know @

the two subscripts i and j.
We may also write the matrix A as A matrix is merely a
table of numbers, Apart

A‘z[a‘j]mnr or ")'kzlaijh i=1,2,._ T _]=] ,2,. eyl from bf:mg o ¥
convenient’

where a;; is the (i,j)th elements of A_ way of recordi rtain
(e) Equality of {vwo mairices i .I
T\,:. 4 .J Iwo matrices types of numerical values,

0 matnlc-:s A=[a;] and B = [by] of the it has no particular value

same order are said to be cgual when their in itself. |

corresponding elements are e
and jwhere i=1,2,.
For example, if

P g
A= P
[r SJ and B =l:"' ﬂ then A = B.

212 Types of Matrices

qual i.e. aj; = bj; for all i
- j=1,2.... n

(a) Row Matrix or Row Vector
A matrix wj i
o H-::':: with only one row ie. a 1xn matrix of the form [a,, ... 8,,] is
s hx Orarow.vector. Forexample, [-] -2 -3]
s S aving three columns. 5
-0IUmn matrix or Cohman veetor a

R .
Matrx with only one column ie an

m x | matrix of the form is

Not For Sale




n matrix having four rows.

umns in a matrix arc equal i.e. if m=n, then

are matrix of order n or .

(c)  Square matrix
If the number of
of order mxn is called a squ

rows and col

the matrix

For example, A =

b 2 3 1

a

is a square matrix of order n and [a], [ ] and | 4 1 5| are
o i & 2

matrices of order 1,2 and 3 resp:emively.

ining the elements a,,, @5 ,...; is

square
The diagonal of: the square matrix A conta
called the pﬁncipa] diagonal of A. It is also termed as the leading diagonal or

main diagonal of the matrix A.

(d) Rectangular matrix
If the number of rows and columns in a matrix A are nol equal, i.e. if

m# n, the matrix is called a rectangular matrix of order m X n.
1 2 -3 0

are rectangular matrices of order 2x3 and 3x4 respectively.

(e)  Diagonal Matrix

A square matrix is called a diagonal matrix if all its non-diagonal elements are 7e10-

Thus, the square matrix [ajj] is a diagonal matrix if a i = 0 fori#Jj.

- 2
For example, [2], [U

are diagonal matrices.

{i] Scalar matrix - ;
A square matrix is called a scalar matrix, if its non-diagonal elements .

zerd and diagonal elements are equal. e
Thus, the square matrix la;; ] is a scalar matrix if

k fori=j
a =
0 forizj
k 0 0 .. 0

0 k 0 ..0
For example . |0 0 R s

0 { is a general scalar matrix of order n.

. 0 2 0 0
l:ﬂ a] and 0 2 0| are scalar matrices of order 2 and 3
respectively. " : 2'
(@  Unit matrix or Identity matrix

A square matrix i
atrix is called a uni e T
: 1t matrix if it i
2ero an 1ts nhon-diago m
d diagonal elements are all equal to one (unity) S fenty s

T :
hus, the square matrix [a;] is a unit matrix if

' " {1 Jori=j

Such a matrix is denoted by "o Joriz j
1 i 0
=" l..o0
0 17 1




: . such as
. ces of different order SU
Wehaveﬂm‘m‘mcesﬁf 1000
100 0100 and so on
2o 1 001 0001
- or Null matrix trix or null matrix.
Zero matrix or NU is called  zero ma g
o) 3 are 2610 13 by O if there is no

. ose element i
AR mns, we denote it by O OF simply

f rows and number of columns.
of zero or null matrices:

If it has m rows and n colu
ambiguity about its number O
Following are some examples

: 0 00 e’ [-9 0 0}
o) . [o00] . [0 -[MJ ™ looo
0
; f 2 matrix :
% ;Ti?[(:;ie;“mm matrix. The transpose of A denoted by A', is an
=L

@ matrix obtained by intérchanging rows and columns of A. Thus A'=[b;]

where b; = a for i=1,2,...,n;j=1,2,....,m.

g a4,
For example, if A is a 3x2 matrix givenby A= | a;, @y |»
y ayp

then its transpose A’ is a 2X3 matrix
Al= [@l ay a_u]

4y Ay dy

(i)  Upper triangular matrix
A square matrix A=[ay] . is said to be upper triangular matrix, if all the

elements below the principal diagonal are zero that is a;; =0 for all i > /.

2 3 1 I T |
0 -1 2 0 ; ices.
Forexample, [0 4 —-2|and are upper triangular matric
0 6. 3
D0 1
0 o 0 1

(k)  Lower triangular matrix
A square matrix A=[ag] s said to be lower triangular matrix, if all the
elements above the principal diagonal are zero, that s ;=0 for all i < j.

8 BN L A
Forexample, |[-4 5 0 |and Lo 0 ; .
or example, e & 4 -2 3 ol lower triangular matrices.
S R T

(I} . Triangular matrix

A square matrix A is called a
triangular matrix, if it is either upper
triangular or lower triangular,
For example,

@It is obvious that diagonal matrices
are both upper triangular and lower
triangular.

°If A is triangular, then A = product

1 0 0 o
2 -3 4 T S of diagonal elements.
0 4 -3]and | are triangular matrices,
4 -2 3 0
0 0 1 ;
1 0 3 2

The first matrix is upper triangular while the second is lower triangular
(m) Symmetric mairix .
A square matrix A=[a;] of is sai
, =1a;;] of order n is said to be symmetric if 4 — i
T ) i tric if 4'=A, that is,

: 23 6 | 23 %
or example, the matrix A =| 3 1 =5 is symmetric, since A"=|3 ] —5|=4
6 -5 4 6 -5 4

(n)  Skew symmetric matrix
A squ i = i -
S)'mme[ric}qi lft:i mat:x ::—[ai,-] of order n is said to be skew Symmetric (or anti
) ==A thatis, if ay =—a. for i /=
F o f » W ay ==gydorl /=1,2... 5
af'f elements on the principal diagonal, wJ; have
T‘;}"“aii:>Zaii=0::aa;;=0forr'= i B
. “Slh ; : : sy sy Il
€ elements op Principal diagonal of skew Symmetric matrix are zerg

]:Grc r 0 - 3
; *ample, the matrix A= (=2 0 -4 is skew symmetric
=3 4




Secalar multiplication
If A=[a;] is a matrix of order mxn and k s any scalar, then the scalar

3
o 2
-2 -3 _4l==4A
S -2 Y =3
: 3 4
3 -4 0 \
g ; liiplication etc
23  Algebra of mafmices s operations of addition, subtraction, T .
In this section variot
; d. i
on matrices are :;g?;onafmatﬂm . Did You Know : ?D
2.2.1.(a) ] are two matrices O o If the sum of two matrices is

=[b;
If A=[a;] and B=[bj j ;
ord l; mxn, then their sum A+B is defined, we say that the two
e SR c‘ [c ]'of the same Order @ | pyyices are conformable for
matrix =[G _ o
ieﬁ;dl!asa:d whose elements are ublmncddey 'ﬁftg; R
adding the corresponding elements L different order is not defined
together. ' that is,they are not conformable
ogether. .

Symbolically, we write C=A+B whose elements  for addition.
cjj = aijHbyj for i=1,2,:..,m;j=12,..41. ) 5
; : : 5=[3 ], then
For example, if A=’:ﬂ - 2:’ anfa' ] 5 3
1 2 3] [3 4°5] [1+43 2+4 3+5]=[4 6 3}
CzMB:[U = E}L[l 2 3}{%1 -1+2 2+3| [1.1 5

b) - Subtraction of matrices :
5 If A = [a;] and B = [by] are matrices of the same order m x n, then

subtraction of matrices A and B is obtained by subtracting the currespo.ndlngf
elements of A and B respectively. The difference of A and B (or the subtraction 0.
" B from A) is a matrix D= A-B whose elements are dj= a;j— by; i=1.2,......
P B :

R 345
= B= lh,
Lo 2 Bl [=8; =i -5
+
0=1 2= -2 =3

-3 2=4 3-5] [2 -2 ~2}
D=l feg gugl oy oa o

D=A-B=A+(-B)

multiplication kA of the scalar k and matrix A js defined as a matrix each of
whose element is the product of k and the corresponding elements of A j.e.

kA = k[ay]=[kay]; =120 o s R

B 1 2
For example, if A= Note
3 .
y ; ® Clearly kA is a matrix of the same order as the
and k is any scalar, then given matrix A, : 2 8
1 2 k 2%k ».-@+A=2A,A+A+A-_;3Aandingeneral,
kA =k BN o P 1fn is a positive integer, then
A+A+...+A = A
(d) Mult;plicahqn of matrices n=times
Two matrices A and B are said to be conformable for multiplication giving the
product AB, if the number of columns in A is equal to the number of rows in B.
Suppose A = [ay] is matrix of order mxp and B= [by] is a matrix of order
pxn. Then their product AB js 3 matrix C=[c;;] of order mxn with elements Cij
defined aslthc sum of the product of the corresponding elements of the jth row of
A and the jth column of B ie.
3 ’
Ci=ayb +a,b, totayb =&Z_;.q,.,¢bﬁ

The following illustrates the expression for c;;

ith column
v

ith row |°
-_9




Matrices and Determinants

ol

Clearly, AB # BA
However, commutative property w.r.t. addition clearly holds if b:::m matrices are

conformable for addition and is explained below:
Commutative property w.r.t. addition, i.e, A+ B=B + A.

12

31 2]Md B=|31
FarexﬂmP“"ifA:[Z 13 23

rder 2x3 and

are wWo ma[["icﬁs Ofﬂ

product C _ AB is 2X2 matrix defined by :
H Bﬁrespﬂcﬁvcly*ﬁmuw 5 3><2+l){l+2>{3 & 10 13 ‘ ab.c .f k1
5 i 4 12 3x1+1x3+2?< 2+1x1+3-‘<3 g | Let A=|d e f| and B={m n o h°lW03x3squarematrices.
c:A_B-;[; 1 3] 3.11= 2x1+1x3+3><2 2x ghi P g r
§ 3
! 2 t D=BA defined as _
i u-icssAandBmalsocunfonnablefoﬂhePmd”': abc [if #l a+j b+k c+i
e 12 g 1 9 Then A+ B=(d e fl+|mno|=(d+m e+n f+o ()
31 : ¢ .
=(114 9 g hi pqr +p htq i
—BA=(31 [ ] I g+p h+q i+r
4 D are matrices of order 2x2and 3X3 respectively- J k1 abec
:;.1; Commutative property  #@dB+A= mno|+(def
[2 3 par| |lghi
ok [1 -2 S]Endﬁ'* _1 2| Find AB and BA and show that AB #BA.
tA= = . ;
3 72 =1 | 4 5] . Jta k+b l+¢ kg bk 6
Here Ai#aZmeauixandBisanﬁmatrix.So,ABexislsanditisoforderM =|m+d n+e o+f| =|d+m e+n f+o (2
: 1 -2 3 [ A e
WehavaAB=|:3 N -l] -1 2 ince addition is commutative in Jr_ From (1) and (2), we have A+B=B+ A
: 4 =5
7 ¥ < ¥ 9 T 8
242+12 3-4-15] [16 -16 Example i: If A=[4 -1 dnd B
s = =|=1 4 |, then show that T
[6—2-4 9+4+5] I_El 18} ; & Bl at(A+B)' = A +B'.
Again, B is a 3x2 matrix and A is a 2x3 matrix. So BA exists and it is of order 3X Solution:  Since '
2 -3 5
NowBA=l=t o> 2 | ° i 3 21 T2 . 5] [3%2 2451 [5 4
: B 3 2 -1 +B=|4 =1|+]|-1 4 |= 4 536
4 -5 o £ 1 -1+4 /=13 3/ s0(A+B)'= J“’
1] [0 3] |6+0 143 6 4 734

249 —4+6 6-3] [11 2 3 3 46
=BA=|-146 2+4 -3-2|=|5 ¢ -s NGWAr{? lﬂ'stlz[z P G]
= =T - 7

4-15 -8-10 12+5] [-11 18 17




5.3 4
5 -1 0]_[3+2 =i 6+D]=[? £ 4] ()
2 6]*[ 4 3]= 249 <A TR

5

- A+B' =] 11 g _atLpt
}fmm (1) and (2), e have (A+B)‘ =A'+B
1
uJVgiﬂmﬂoﬂnf(AB}'=B'A
| . L
le2: IfA= za;.d13=[.2 =1 _.;]",Enﬁ_r [AB]
Example 2:
[ 3

-1
e <

Solution: A=
3
-1 z 1 <
~AB=| 2 I—2—1—4]= 4 =2 -8
3 -6 -3 -12
2 4 6 :
—(aB)'=[1 -2 -3 (i)
4 -8 -12
[-17 [-2 2 4 -6
Also, BA=[2 -1 4| 2]|=[-1|[1 2 3]={1 2 3| @
3 4 4 -8 -12

From (i) and (ii), we observe that (AB]' =B'A

EXERCISE 2.1
IS Expmstlwfd!nwhgasasing]emau-ix:

10 2]2 sohn
Ot 24020104 G aalo 2 4-[2 57
01 2)6) - Py

=l

o DL o[ R AR

2.=5 1 1-2-3 0 1 -2
= 5 B= =
Let A [3 0 _4:' [0 =4 5J and C L] N —l]'

* Find 2A + 3B - 4C.

a h g X
(i)ifA=[x y z], B=|h b f|andC=|y , verify that(AB) C = A(BC)
g f c A

" S 2.1
(ii) IfA-{_l 4],5—[0 4

(@) A(B+C)=AB+AC

-3 3 =15
and C= i :
2] : l:z q 0], verify that :
(b)A(B-C)=AB — AC

144
LetA=4 1 4|, show that l,4.2—2.'5;—'5]1:0-
4 41 .
0 2b 2
Matrix A= 3 | 3| is given to be symmetric, find values of a and b.
Ja 3 -]

Solve the following matrix equations for X.

0 x_sm,g‘fm{ 3. 3} an“.-:[z : ‘}

=2 2] 3-14
(ii) 2(X-A)=B,ifA=[l £ R
: 3 =1 2r 0 -4 2
1 9721 3 A
g ¥ - 1
If A=(51 2 sladB=l1 3 -1 4]
0 -21 ¢ 3 lnon )

then show that (A+ B)' = A" + &',




1.

8 W“‘"'[s -1

el 0]. Show that
4
(A=A i) Ad#AA
(i) 7
Verify that (AB) =B’

1 2 . 120 R
ol 2 -1 3},3: 2 2 (i) A= <14 g
(1) A= 3 0 :

. 0o 4d
1 -3 4 3 Y
LetA=|-3 2-5|md B =|6-8 3
4 -5 0 7 34
Verify that A and B are symmetric. Also verify that A+ B is symmetric.
o 1 -2 0 -6 11
LetA=|-1 0 3 adB=|6 0 =7
2 -3 0 117 0
Verify that A + B is skew-symmetric.
3 &1
If A=|4 5 6 , then verify that
|23 4

(i) A+ A is symmetric (ii) A—A is skew-symmetric.

If A is a square matrix of order 3, then show that:
(i) A+ A is symmetric (ii) A— A is skew-symmetric.

Determinants
Consider a square matrix A of order n given by

Gy Gy e Gy

e Vil vateess AT
Oy 2n
A= ; . M

@i, W

a
I.'q.l = .ZI. {2]

a L T a

rl

Some determinants of higher order can be evaluated only after much
tedious calculations. The more calculation is involved, the greater the chance of
error. Our aim in this section is to describe a procedure for evaluating the
determinants of order n23. However, this procedure will be greatly simplified by
the introduction of the following.

2.3.1. Minor and Cofactor of an element of a matrix or its determinants -

1] Minor of an Element Let A be a square matrix of order n (as defined in
(1) above). The minor of the element a;; of A, denoted by Mj;. is the determinant
of (n_[)x(.n._l) matrix cblained_by crossing out the ith row and jth column of A (or IAl).

a, ap dp
If A=|a, a, ay/|, then
ﬂ" H;lz "133_.
; a,, @ By Gyze=mtipy
minorofa, =M = * " ®# g :
1 i obtained as |¢,, a.. a
a],: a” "-! e 3 232
Gy Ay Ay
a a. &
i a, d, n 12 13
minorof a,,. =M. =| "' ! A
e 23 a,, obtained as |ayp- @yy-- s and 50 on.
: a, 4a, &
31 32 33
(Rememher

From the formula A. = i+] P
il'l[egcr then the £ Ll ( 1) MJ; it is clear that if the sum i""J is an even
» cotactor equals the minor. On the other hand, if the sum ]+_| s

odd, ; ;
the cofactor is equal to the negative of the minor. The signs accompanying

the minors ma
y be best  SIETS i
the main diagousk. remembered by the rule of alternating signs with +’s on
+ -+

= ki
e gy




M,,and M, of the

3
; i 4 Find the minors MM
4 : o :
4 Example 3: Sy
; ."".. matrix A-
g : We have
r:: . e 6 4_s4-28=26,
M":’: Jras-n=abts =}y 9
ﬁg -‘I 2 =9—2|=-—l‘.?..
" i ,H'“:ﬁ j=43v—35=f3r My = 7 9
§ :i: A i c[cm::trix of order n. The cofactor of the element aj,
o e I m ‘ . :
s tfe e —(~1)"* M, where Mjj 1s the minor of ajj.
il senoted by Ay is defined by A=) M
i a, 9 %
ThusifA=|ay @n. 95 , then
a, Gy Gy -
- 141 s 3 o] il
cofactor of @, = Ay =(-D" My =(-1 a;, Oy

=1X(apdy — 0nfn )
= Ayl — Ayfiy

24 L1 all alz
cofactor of @y, = Ay =(-1)*"My=(1) |ﬂ3

1 On
=-1x(a,a;, — a,,)

= —(a,,ay, — ,0y) and $o on.

A I 23 5

i En;nplelt: Let A=[3 0 -1|. Find the cofactor A and A,; .
5 2 0

! 3 0
Solution:  We have A, = (-1)'"M,, = (-1)* |5 2‘ =1x(3x2-0x5)=6,

and A, = (1M, =<~”’|_22 50‘=_1><(—2x045x2)=10-

bl

2.3.2 Determinant of a square matrix of order n23
Let A be a square matrix of order n(= 3) given by

@y G e TR a, i
|
i
Ay Oy s yp e d,, i
A= i (m
' P 7 P a..j ,,,,,, a,
|_ﬂ", [ SR [P a, |

The determinant |Al of the matrix A is defined to be the sum of the l
products of each element of row (or column) and its cofactor, that is i
IAl= ay Ay +ap Ay + et a, A i=1,2.n (2)

or lAl=a, A +a, A+ +a,d; j=12....,n (3) l
If we put i=1 in (2), we get :
IAl=a, A, +a,A, +....4a, A, . Thlis is called the expansion of 1Al by first row
(or w.r.t. first row).
Similarly, if we put j=1 inl{3]. we get
lAl=ay A, +ay,A, +.....+a,A, . This is called the expansion of |Al by
fist column and so on. Thus, if A is a square matrix of order 3, that is

4, a, a,
A=a, a5, a,|, thenby (2)and (3), we have
Ay Gy ay,
1Al=a,4, tap A, +agA,; i=1,23 (2%
or lAl= i 3
ﬂn;‘d‘u"'”:jAz.a"'“s,iAu; J=123 3"

For example, if i=2, then by (2'), we have

1A= :
Al ayd, + a4, + a,;A,;. This can be written as

A |=021 (__1}2+1M2I +ﬂ:3{_1JZ+ZM23 Ml 2300

23
a
=-a,, 12 4 4y ap 5 a, a,
s 22 =,
[ a 13
12 33 s, fyy a; 4y,




= ﬂ::aiil,)

:] - ﬂzg(al lﬂﬂ

- ﬂpﬂsl
aan phas

a s".‘:)"’aﬂ(a”aﬂ
o |
2 R;;all.a-“

Ay in
+ &y .-a”ﬂgﬂsz
+apdyde

i 5}
= -ﬂg;f‘i:aﬂ -ﬂzzﬂ'najl z P &)
-tlu_aﬂa!l E]

nd J.
bered b

==ay s
: =d,,anﬂu -f-c:-‘m.rxnzi!JJ .
i | we can find 1Al for other

imilarly, :
’?;Texpansion of 1Al In (4) can

rocedure.
. Rewrite the first tW

use the following diagram, 1

alues of ::; > y the following
s0 be 1€

i lumn and
; fier the third co
he matrix A
o columns of t

fAisa3x3 matrix.

(5)

I hﬂ Arows F}() g WV IeS'cllll llle EhIe!.‘. pIGduCtS hﬂ'ﬁ' ing a
ve h -
‘ﬂlin dD n a.l'd er
i d lhﬂ é;l'll'o L] Poirltiﬂg Upwal'd rcpl'f:stnt I]]E i pllll ll]i: ] h
pO&il.I' Slgn and | W ree {[V[ng

a negative sign. )
3 -1 2
. ExampleS: If A=[3 1 0} then find | Al
1 0 -1
3 -1 2
Solution: 1A1=13 1% 0
I 0 -1

have
We expand the determinant by using the elements of the first row, \T? a
1)
| Al a, A +apA, +ad,;

1 0
But A, =(-D"'M, =M, = 0 -1

142 3 0
A, =(-1) M:zz'Mu:'] i
1
0

Putting these values in (1), we obtain

3

Ay = (—I)MM” =M= I

Not. F_ol_'_S_aIe

-+ Now '3

S

_— _nif 2 l cs nd Determinants

I 0 3 0 e
i —(=1 +(2
iAl—(3)|0 r]’ ( JL sof {)‘I o
= (3)(Ax~1-0x0)] = (=D[Bx-1-0x ]+ 2)[(3Bx0-1x1)]
— —3—3-22 _.8 .
We now expand the same determinant by using elements of the third
column, that is | Al= ay A, + ayA,, +ayA,, (2)

;' O )

We get the same result, no matter
2 Ry which row or column is used to
} expand a 3x 3 determinant,
1 0 The determinant of the square matrix
- A A of order 3 in the above example can
‘ also be evaluated by the two simple
3 1 methods given in (4) and (5).

As= {'UI+3M13 =M= 1

Ap= (=) My =—M, = "r

Ag; = (_1]3.3M33 = M33 =
Putting in (2), we get
31 3 -1 -1
-0
1 0 i 10 1| .
=(2)BX0-1X)-0(3x0+1x1)~1(3X1+1x3) =-2-0—-6 = —8.

233 Singular matrix and non-singular matrix
A square matrix A is called a singular matrix if i

1A= (2)

wn [
3

ts determinant is zero, i.e.

[A] =0, otherwise, it is a non-singular matrix.
1@ 4 23
fA=/4 5 6| then |A|=a 5 6 =1(45-48)-2(36-42)+3(32-35)=0
;8 & Fil 2

‘Therefore, A is a singular matrix
234 Adjoint of square matrix

Let A be a square matrix of order n L

i et /I denote the matrix obtained by
replac:ng each element

of A by its corresponding cofactor. Then A' s called the

adjoint of A and s usually denoted by adj A i.e. adj A= 4
Thus ¥ e ::” “2 G A Ap A
s T|%1 Gy ay, |, then A = Azn Az. Ay,
B Gy , Ay Ay Ay




-

- il Ay Ay
i Ay M f:a 2l e i
| e ‘
: . 2k gaa ! j: Ay As | A Ay On l #
it : .
s 1 0 o
. i
| then A=
I For example, A= e 8 ) R g
i g o -11
3 -1
Caefiell =l
adj A =4
and so ad] o
| calculate inverse of a square matrix

235 Useadjoint method to

Let A be a square matrix of on
such that AB=BA = 1, where I
then B is called the multiplicative inve

Thus AA~'=A""A=L,.

It may be noted that inverse of a square rm?.u'im

der n. If there exis A
is the multiplicative 1 $
rse of A and is denoted by A

ts a square matrix B of order n
dentity matrix of order n,

if it exists, is unique. Moreover, if

1 ;
' M =—adj A
A is a non-singular square matrix of order n, then A ST adj
i =2+
= -2| Find A™.
Example 6:  Lef A=|0 l% 2|. Find A
-12 0
Solution:  Since A™ =|%'|a.:{;’ A, we need to find adj A and | A l.

First we find co-factor of every element of A.

1 -2
A,,=(—1}'“L 0] =1(0+4)=4,

0 1
Al3=':_lJ“3‘_] 2‘ =1-(0+1) =1,

0
A'z = (_l)l+2

Azl = (_]]'zil

'2‘=_1-(o-2)=2
-1 0

-2 1~=-1-(0—2)=2
2 0

s 1

el

es and Determinants

- L
N

._ﬂ" SR i £
il 1 =2

_,421:(—1}'2 2!_1 0' =1-(0+1)=1, A,y = (=1 i 2}:4.(2_2):0
a2 1 i a

Ay= 1 'r; -'zi =~y A,==':—n""0 _2’=—1-(-2-0}=2_
1 -2

A;ﬁi*l)"]O ]l =1-(1+0) =1
4 2 3

So adiA=|2 1 2
1 01

Next we find [Al.

Since |Al=a, A, +a, A+ ay A,

=1L(4)-2(2)+1(1)
=4-4+1=1=0,

i 4 2 3 4 2 3
Thus A™=—adjA=1- =
IA!aa[,-A 2 1 2(=2 2
. 1 ¢ 1 1
24 Properties of determinants

. We shall state some of the u
simplify the evaluation of determinants,

1
0

seful properties of determinants which

Properiy i. It
i every element in a n i i
i i arow or column of a square matrix A is zero,
. I—ﬂn 4y a,
A=
% @y ay| and every element in the first row is zero,




o Bl = 1Al Proof is left s an

+0Ay +04, =0.
row Or €O

.r‘lj.

umn is Zero,
nt of any other ; '

A =
e g Ay +Opdn T 800D
Now 1Ak=a it if every eleme

We get the same result columns of a square

4 d
ding rows anc g matrix is equal to

ther the determioa o o nspose are always same.

. Aare interch - ’1 g matrix and its
;s the determinar : a, an %
That 15, o 8 a 1l e then
& ay ﬂﬂd B= a‘ll B
u’ :‘l= ay n ﬁn a” 033

a, 4 %

1Al

exercise. 3

or two columns in a square MRS A 0%
r?w:n e matrix is —JAl In other words,
rmin i

each other.

a;[ a?z ﬂn
a,, | is the

i | then the dete ;
:;::rcuf::ig:tjmﬁnams are additive inverses of

ay dy O

If: A=|ay 9n iy

ay dy Iy

matrix obtained by interchanging the first and second row of A, then
ay dp Ay
I1Bl=|a, a, dy
ay dy Oy

.= ay (8,05, — @303, ) — O (g — Ay ty) )+ @33 (0 A5y = Ay )
G2y

and B=|a; @,
iy gy Ay

= 0y, 8y — Gy, G305y — gy gy + Q0300 + By Oy ~ s

= (8,830, — @y, By lyy = Gy sy + 1y O3y, + G130y Gy — B3y )

==|Al. . : e
Property 4. If a square matrix A has two identical rows or two identical columns,

then |Al=0
Gy Gy G5 Gy 4y dy

If A=|a, a, a,|and B=|a, a, a,| isamatrix
W O Ay G g A

obtained by interchanging the first and second rows of A. Then by property (3](;
IBI = ~JAL But the first and second rows of A are identical, mean A=B and &

[AlsBLEESs S
any two columns are identical.

property 5.

KIAL ay dy ay kay, ka,, ka,,
If A=|ay Gy ay|and B=|a, a, a, |isthe matrix
Gy Gy Gy 4y 4y ay

obtained by multiplying first row of A by k. Then
ka,, ka, ka,
|Bl=|a,, a; ay

dy Oy

= kay, A, +kay, A, +ka;, A,
= k[all"qll + aleu T n]}‘qjj)
=klAl

A similar result is obtained if any other row or column is multiplied by k.
) :
Property 6. If every element of a row or column of a square matrix A is the
sum of two terms, then its determinant can be written as the sum of two

determinants.

Gy ay a,+b, a, a,
If A=l|a, a, a,| then, |Al= ay+by, a, a,
G dy a4y a, +by, iy Ay

Expanding by the first column, w;.: have
lAl=(a, +,)4, +(ay, +b,))A,, +(a;, +b,)A,
=(ay A+ @y Ay +ayA,)+ (b, A, +by Ay +b, A;)

A a4, a, bll Gy a4y

T G ayltlb, a, Oy

a3| a.‘! . a:ﬁ bj[ au o
Property 7,
Multiplied by

determinang
Matrix,

-Mathenu_lﬁ:cs:X-I_ &0

IAl =—lAl or 2IAl = 0 or Al = 0. The same result is obtained if

If every element of a row or column of a square matrix -A is
multiplied by the real number k, then the determinant of the resulting matrix is

If every element of any row or column of a square matrix is

a rea 5 :

Comresponding ¢le | number K and the resulting product is added to the
: ments of another row or column of the matrix, then the.,

of the resulting matrix is equal to the determinant of the original




+£’*”u a,
is the
then B=|9n +kay Tz 3y
If A=|ay Oy +1ﬂr L
a
3 N nof A and t
u every element of the secand chum héi
‘ 5 en
o s m“':jP':f climent of the first column of A, t
adding to the corresponding i : |
ﬁu+kﬂ|: a; ay Y2 d: M = = p[ope"y .
= Ay dn yp  @n
| =0 2
|Bl=|ay, +hay G2 OF : %
a,, +kay,, @ a, O @y ka,, n
£l 2
ay 4 LUt a, i gy
2oy ap Gulthps %2 O by property (5)
=" 3 3
a
@y 5 sy ay 9n 2
@, & T
= |y, d., n +k(n) by Prﬂpcﬂ}r t‘-‘-}
ay A 9
ay [ ﬂu
=|ay @y ax|=l4 IE

EXERCISE2.2

131
. I A=|-1 2 0 |thenfindA,, A, Ay Ay, Any Ay Alsofind Al
2 0-=2
2. Without evaluating state the reasons for the following equalitics.
i i+ % 3
s op A 0|=0 Gy |8 4 -12=0
B S |
e B 3 2 0f p 20
@) B -1 1=p -1 (Gv fi 1 -3|=-3)1 !
R 2 4 @ 2 4

1 0 -1
(v) 3 2
1 =1 0

1 0 =1 500

3. Let A be a square matrix of order 3, then verify 14" 1=l Al

4 Evaluate the following determinants.
0 1 3 i1 4 =2
{) -1 2 1 (i) |2 =6
71 1 -4 2 0
3 1 2 2 1 =3
Gi) |6 -5 4 v [T T @
0 8 -7 -2 3 4
5. Show that
. a b clla I x a b
(i) [ m n=lb m y (i) [1-3a 2-3b 3 ?E |
2- -3ci=
X z| & Rz 4 3 .
1 1 1
bc ca abl |
(Tll) a b ¢ |=0 {iv) [a b ¢ ‘——-?'
b+e c+a r¢+b[ 3 g4 f !
6. Provs that G b Ak 1P
. a=b b-¢c c¢—g
1 b-c c-a a-b|=0.
C=a a-b b-—g
1 a a’
(ii) 1
; }=
: h b'|=(a=b)(b-c)(c=a)(a+b+c)
o &

]

W
L

=5}



row R; by a non-z&ro scalar k is denoted by kR;.

+ Multiplication of 2
is expressed as Rj+kR;.

+ Adding k times R; to R;

on matrices

& Col;t;m fol;:;::u“im operations pe alled elementary
column operations:

(i) Interchanging

(i)  Multiplication of a column by any non-

Addition of any multiple of one column to anot

k is any non-zero scalar.

rformed on matrices are ¢

of any two columnsic. C; € G

zero scalar kic. KC,

(iii) her column i.e. G, +kC; .

where C,,C; are any two columns and
If A is an mxn matrix, then an mxn matrix B obtained from A by

performing a finite number of elementary row operations on A is called row

equivalent to A. Symbolically, we write BRA to denote B is row equivalent to A.
Similarly, we can define a column equivalent matrix that is replacing the

word “row” by “column” in the above definition. We write BEA to denote B is

column equivalent to A.

1.2
Example7: Let A=| 3 5| Perform the following elementary row and
-1 -4

column operations on A.
(i) R, &R (i) €, &C, (i) R+2R (iv) C,-C, (V)R —4R,.

I w2
Solution: A=| 3 5
-1 -4
[ -4 |
M ReoR|3 5 (i) CeoC|s 3
L1 2 |
. 2 1 g
(iii) R, +2R :[3+21) 5¢2)] =| 5 9
-1 -4 L

1 2+(-1) G
iv C-C:j3 5+(-3) |=|3 2
=1 -4+(-(-1)) -1 =3
1+(=4(-1)) 2+(-4(-4)) 5 18
(V) R —4R;: 3 5 o I o -
-1 =4 -1 -4

252 Echelon and reduced echelon form of a matrix
() Echelon form of & matrix
An mxn matrix A is said to be in (row) echelon form (or an echelon
matrix) if it satisfies the following properties.
(i) In each successive non-zero row, the number of zeros before the first non-
zero entry of a row increases row by row,
(ii)  Every non-zero row in A precedes every zero row (if there is any).

2 3 -4 1 D 2 3
For example, the matrices [0 1 5 3| and [0 O =5|are in echelon
0O 0 0 6 0 0 0O
0.0 1 2
form, but the matrix |0 1 2 3| isnotinechelon form.
0 0 1

(b} Reduaced echelon form of a matrix

An mxn matrix A is said to be in reduced (row) echelon form (or reduced echelon
matrix) if it satisfies the following properties.

(i) It is in (row) echelon form,

(i) The first non-zero entry in R, lies in C ; is 1 and all other entries of C; are

ZETO,

For example, the matrices and are in (row)

oo o
P
-0 2

1 0
01
0 0

Lo N o TR = Y

0
1
0
0

o o o -

0




reduced echelon form but

reduced echelon form. e o adiel echelon form

253 Reduce a maltrix to
9 3 -t ;
Example 8 Reduce A= |3 1 -1| toechelon form and then to reduced
f =58
echelon form.
2 3 -4 =3 =5
Solution: [3 1 -1 R|3 1 -1l by R, & Ry
1 -2 -5 3 3 =4

1 -2 -5 n -2 =5
rlo 7 14|by R;-3R R 0 7 14|by R,-2R,
"2 3 -4l o 7 6

i =7 . 5] i =2+ =5
ale 1 2lwir, &0 b2 by R,-TR, 0
n 3 .

' o 0 -8

e 1 0 -1
Rlo 1 Zby—-:iRl, Rl0 1 2|byR+2R,

0 0 1 o0 2 1

1 0 0 _
rlo 1 o|by R, +R,andR, 2R, ()
“la- 0 1
The matrices in (1) and (2) are in echelon form and reduced echelon form of the

given matrix A respectively.

2.5.4 Rank of a Matrix

Let A be a non-zero matrix. The rank of the matrix A is the number of non-zero
rows in its (row) echelon form.

Unit 2 | Matrices and Determinants

2.5.5 Using elementary row operation (ERO) to find the inverse and the
rank of & matrix
{a) To find inverse of a matrix

Let A be a non-singular matrix. If we perform successive elementary row
operations on the matrix [A | 1], which reduce A to I and I to the resulting matrix
B i.e. if [A 1] is reduced to [I| B], then B is the inverse of A written as A™.
Similarly, if we perform successive elementary column operation on the matrix
[A 11, which reduces A to I and [ to the resulting matrix C, then C is the inverse

of A written as A™. 5 g ]
Example 9:Find the inverse ofthematrix A=|5 4 2

2 3 1 -1 2 =2
Solution: Since |5 4 2

-1 2 -2

| . .
T = ’zji 2}! _3| 5 ?'j +1 | ’ 4| (expanding by first row)
3 =3 |1 =2 =

(-8 4) 3 (<10 +2) + (10+4) =24 + 24 +14=14 # 0.

So A is non-singular and A~ exists.
2 3 1[100 i 9 =
Now|s 4 2|0 10]|R
1

5
o TR e 1 S R 2 3

1-2 2|10 0 =1
{{5 4 2|01 0\ by(-IR,

2 3 1|10 0

[1 2 -2 |0 0-1
R0 14 8|0 1 5 by R:-5 Ryand Rx-2 Ry
jo: 7230 O %

M 2 =2] 0 0 <=l

=4 | 5

5017“!0%1—}@114?@

o e




=1 S . EXERCISE2.3
e 1 5 1R TR : Reduce each of the following matrices to the indicated form
g lop Al (9 5 PR 1.3 -1 2.3 1.9
0 0-3|-1 e . ' @ |2 1 4 |Echelonfom ()1 -1 2 -3|Reduced echelon form
6 6 13 4 -5 3 4 32
1u01.?ﬁ'%-—%2 2 =2 Ir @i =
— 3 g s : (iii) |1 1 2| Reduced echelon form (ivi|2 1 1 | Echelon form
o108 R byR1+-T—R3andRz+?R:: 4 1 7 3 2 3
T R 2. Find the inverses of the following matrices by using ¢lementary row
0o 0 1 g T T operation. )
4 -2 5 3 -1 6 1 2 =3 1 2 -
=6 <R =29 @ |2 1 ola |1 3 4|@fo -2 0j@|o -1 3
| r T -} 28 A8l et 2 1 02
Thus A~ = % %:r' ;—31 3; Find the ranks of each of the following matrices.
& ol fL. 0 =2 3 1 -4
3 18 18 (i) 2 Jgis gyfo. 2 1
(b) To find rank of a matrix 4 5 6 -1 2 3 1 =1 =2
Example 10: Find the rank of A ={1 é 39 I- 4. Find
56 122 RANK OF MATRIX
Solution: A=|1 2 3| R[4 5 6|byR&R,
788 7 8.9 2 3 a 5
I 2 4] 3 4 5 6 4X4
R|0 -3 -6 |byR,<4R,andR,-7TR, =
“lo -6 1 4 5 6 7| matrix
y 9 10 1 12

{2 3

0 1 2| byR,—2R, The last matrix is the echelon form

00 0 of A having 2 non-zero rows.
Hence the rank of A is 2.
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‘26 Syslemoﬂ]nureqﬂlﬁm : tions i ah
us and non -homogeneous linear equa
2.6.1 Homogeneo P

. Consider the equation ax+ by =k

wherea = 0,b# 0 and k # 0. The equation
(or unknowns) x and y.
-homogeneous

ax+by+c,z2=0 i (8)
ax+by+ez=0
is called system of homogeneous linear equations in three variables x, y and z.
An order triple (t,, t, t;) is called a solution of system (6) if the equations are

(1) is called a non-homogeneous
linear equation in two variables

Now consider the following two non
variables x and y.

a,x+b,y=k,} @
ax+b,y=Fk

linear equations in two
true for x=4 ,y=h andz=1, The solution set is denoted by S={(t,, t,, t,)}

In the case of system (8), we see that it is always true for x=1,= 0,y=t,=0
and z=t,=0, so the order triple (1, L;, t,) =(0,0,0) is a solution of the system.
Such a solution is called the trivial (or zero) solution and any other solution, if it
exists, other than trivial solution is called a non-trivial (or non-zero) solution
of the system. Consider system (6). Since

These two eguations together form a system of mon-homogeneous linear

equations in two variables x and y.

=0i i then it takes the form ~ ax+by=0 (3 > A
If we take k=0 in equauonS(_l), ca it takes _ : ¥ ; A i :
and is called a homogeneous linear equation v} two variables x and y. If we take :
+ D, AR e
k, =k, =0in (2), then ax +by + czl=|a b ¢ ||V],
i layx + by + c2] |4 b, ¢, ||z
ax+hy= (4) then system (6) may be written as a single matrix equation
ax+byy=0 T -
a b gq||=x k, ©) ;
is called a system of homogeneous linear equations in the variables x and y. a, b o||ly| =k Did You Know Hﬂ)
Similarly, the following equatiork . o, b oflz] |k s Rk e ;
- ax+by+cz=k,where a#0,b#0,c#0,and k #0* (3) g AX =B . (10) matrix of a linear system,
is called a non-homogeneous linear equation in three variables x,y and z and 2 we enter zero whenever a
the following three non-h li ations in three variables x.y and z. o &G % k. variable is missing in
e following £ non- UII'IGgE‘.I'IBOLIS inear equanons n (& Xy <= W]'LE.J."B‘ A=la b, e X = 5 P T N ﬂlll-ﬂ-t'lﬂ.ll. since the
S z coefficient of the variable
a, b ¢ z ky is zero. 1

a1x+b|y+qz = {r]

ax+bytez=k (6) A is called the matrix of coefficients, X is the column vector of variables and B

ax+by+ez=k is the cc-lur?'m vector of constants. If we adjoin the column vector B of the constants
to the matrix A on the right separated by a bar or a vertical line, that is

together form a system of non-homogeneous linear equations in three variables

x,yand z. 4 b g k,

If we take k = 0 in (5), then ax+by+cz =0 7 [AIB] =la, & € | k|,

is called a homogeneous equation in three variables x, y and z. a; by k ]
2 3 3

take k, = \=k =01 :
If we take k =k, =k; =0in (6) then the new matrix so obtained is called augmented matrix of the given system.

Tt e Not For Sale
Mathematics-X1 £M{0
R TR
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262 Solution of three
Consider the following system of three homo
. unknowns X;, X, X;.

a,x +apX, toh = 0 (@

g, + Oy + 0% =0 (if)

ay X, + Gy X, + A% = 0 (iid)

which is equivalent to the matrix equation

geneous linear equations in three

(1

a; G a ! 0

a4y dn Oy % =10 or simply AX =0,

Gy dp Oy % i
@, a4 a % 0
whereA=|ay, a4 6n ,X=|x| and0=|0
lay 8n s | < 0

If 1Al # 0, then A is non-singular and A™" exists.
Wehave A (AX)=A" 0= (A' A)X=0 =1X=0 =X =0, thatis

X 0
xn (=@
x 0

orx, =0,x, =0andx, =0. This shows that the system has only trivial solution.
Thus, we may conclude “A system AX = O of three homogeneous linear

equations in three variables has a trivial solution if A is non-singular i.e. Al # 0"
Next we find the condition under which the system (1) has a non—trivial solution.
Multiplﬁing equations (i), (ii) and (iii) of the system by the cofactors A ,;, A ,, and
A, of the corresponding elements a,,, a,, and a,, and then adding them up, we get
(@ Ay + a5 Ay + a3 A )%, +(ap Ay +ay Ay + a3y Ay )x, +

(@A, +ayhy + a,,.Ag,}x, =0.

From this, we have IAlx, =0. Likewise, we can have IAlx, = 0 and |Alx,=0. The
system (1) has a non-trivial solution if at least one of the variable Xy, X, and X, IS

P e s e e A0 L e S

\ _f'ﬂces;ndl!.e_lserml_nqilta .

different from zero. Suppose x, # 0, then IAl x, = 0 =IAl= 0. Thus, we may

“conclude: “A system AX = O of three homogeneous linear equations in three

variables has a non-trivial solution if A is singular i.e. IAl=0".
Example 11: Show that the following system has a trivial solution.

2x+ y-z =0 (i)
X+ y—-z =0 (ii)
x+2y+2z =0 (iii)
Solution: Since
2 1 -1 1 0 0 i
Al=1 1 =1 =1 1 -1} =1 ‘2 5 = 242 = 4% 0, the system has a
| [ Ty (BN A .

i
trivial solution. Subtracting equation (ii) from (i), we get x = 0. Subtracting
equation (iii) from (i), we have y = 3z, Putting x=0 and y=3z in equation (i) we
obtain z = 0, and therefore from y = 3z, we get y=0. Thus x=0, y =0, z=0and
the system has only trivial solution.

Example 12:Show that the system ha non-trivial solution

X+ y+2z=0 (i)
2x+y-z=0 (i1)
—x +5y+4z=0 (iii)
Solution: Since
1 1 -2 1 0 0
|3 3|
Al=|-2 1 -1| =|-2 3 3 =1[ 6"=18-18=D
-1 5 4 -1 6 6 b

Thus the given system has a non-trivial solution.

Adding 2 times equation (i) to (ii) we have y=—z

Subtracting equation (ii) from (i), we get x = —z putting x = —= = y in equation (iii)
we have —(-z) + 5 (=z) + 4z = 0 which is true for any value r of =. We get that

x =~f, y=—f and z = ¢ satisfy equations (i), (ii) and (iii) for any real value of &
Thus the given system has infinitely many solutions.

Example 13: For what value of A the system has a non-trivial solution. Selve the
system for the value of 4 .

x—y+2z=0
2x+y+Az=0
Ix+y+2z=0




. 1 -1 2
A=|2 1 Al
fon: i ﬁdmevaiueof,l.Wehave
Solution: First we fin o 1
N N L B 3 A—4
~dl= =—12-4A-d)=4-44.
so  |Al=p 1 A=z 3 2 4—1.4 _41
x 1 AP 4 -4
We know that the system has non{l;rivial solution if 1A1=0, that isd—4i=00r =1
Substituting the value of 1 into the system, we have
x=y+2z=10
2x+y+z=10
3x+y+2z=0

" Now solving the first two equations, we get X = =2, y = 3. Putting these
values in the third equation, we obtain —3z+z+22z=0 which is true for any value t
of z. We see that x = —f, y =t and z = { satisfy all the three equations of the system
for any real value of £. Thus the given system has infinitely many solutions for
iA=L =
2.6.3 Consistency and inconsistency of a system .

(a) A system of linear equations is said to be consistent if the system has only
one (i.e. unique) solution or it has infinitely many solutions.

(b) A system of linear equations is said to be inconsistent if the system has no
solution. :
Consider the following three systems of linear equations in three

variables.

2x+2y-z=4

x=2y+z=2 1))
x+y=0

x-2y+z=2

_x-—y+22= 1 ':_[I)
x—S5y+dz=35

x—2y+3z= 1
—2x+5y—-4z=-2 (II1)
x—4y—-z= 5 }
We solve these systems now by performing the elementary row operations on the
augmented matrices of these systems to reduce them to (row) echelon form.

(i)  Consider system (I). the augmented matrix of the systems is

2 2 -1 4 1*=2 L2
[MB]=|1 -2 1| 2| R|2 2 -1]| 4| byR,©R,
L & 4D S VR B
1 -2 1| 2
R|0 6 -3| 0| byR,-2R,
I &
il =2 1 2
R{0 6 -3| 6 | byR,-R,
0 3 -1] =2
[1 =2 1) 2
R[0 6-3| 0| by-2R,
[0 -6 2| 4]
1 -2 1| 2]
R|0 6 -3| 0| byR, +R,
[0 0 -1] 4]

The system (1) is reduced to equivalent system,

X =2y4z=2 ' ) Remember

6y -3z=0 (i) (R
L&. T g (i)

The system is now in triangular form. In this form the system can be easil

solved. By equation (iii) we get z = —4. g

Substituting the value of z in equation (ii) we get y = -2,

SNDII):i substituting the values of y and z in equation (i), we get x = 2. Thus the
on of the system is x= 2, y = -2 and z = —4. Since the system has a solution,




= T A )
i s[;)u : Cé':::l:i?l' system (II). The augmented matrix of the system
1 -2 1| 2
-1-1 2} 1
1 =5 4] 35 _
E1 —“2 N ! S :
den =t &k, &1 T RO =3 31 3|byR,+R,andR,-K,
it %] 5] lo=3- 3 3]
- i w2 L] 2
Rl0 -3 3| 3|byR,-R,
“loJa o ol
R T ) | ’
R|O -1 1 1 by; Rs.
0 0 0] O
The system (II) is reduced to the equivalent system
x2y+z=12 (i)
-y +z=1 (ii)
0z=0 (iii) | |
Equation (iii) is obviously satisfied for all choices of z. Equations (i) and (ii) yield
- ®=242y-z (iv)
y=z-1 W)

Since z is arbilm-}r, from equations (iv) and (v) we can find infinite.l)'
many values of x and y. This is equivalent to saying that the system has infinitely
many solutions. Thus the system is consistent.

(3)  Consider system (III). The augmented matrix of the system is

1.2 3] 1 1 -2 3 1

1 =2 31
-2 5-4| -2 then|-2.5 -4| 2 R0 1 =gl
e L B 1-4 -1| 5 O T

byR,+2R,and R, R,

| R L
RO 1 2| 0|byR,+2R,
0 0 0|4
The system (III) is reduced to the equivalent system
Xx=2y+3z=1 (i)
y +2z2=0 (ii)
z=4 (iii)

We see that the equation (iii) has no solution. Therefore, this system of
equations has no solution. Hence the system is inconsistent.

From the above, we note that the system of linear equations may have no solution,
have only one solution, or have infinitely many solutions.
2.6.4 Solution of a non-homogeneous linear equations

A system of non-homogeneous linear equations may be solved by using
the following methods.

(a)  Matrix Inversion Method i.e. AX=B=X=A"'B

(b)  Gauss Elimination Method {echelon form)

(c) Gauss-Jordan Method (reduced echelon form)
(d) Cramer’s Rule.

{a) Matrix Inversion Method

Consider the following system of three non-hom

ogeneous linear equations
in three variables x , x, and Xy,

A+ aux, +agx, = k,
X+ Ay, +ayx, =k,
Ay + a3 + ayx, =k,

This system is equivalent to the matrix equation.

a4, a, a, X k

a

1

u Gy Ay (|x, |=|k, lor AX =B, where

a:‘»l a?.: yy Xy I;\'_;
ay, alz [ 4 'kt
A=ay ay, ay X =|x, land B= o
Iy ay  ay, X k

3



= H e
ﬂ].e,ﬂ A 1 exiSlS— We hav

G |
f A is noti-singular, - _AB=IX = A'B=>X=AB
AX = B> AV (AX)= A7B2 (A AX =2 F7 TS

: iables is now determined as the produc f a system of
Thus the matrix of vana o for finding the solution 0 Al

The method discussed la’imv
non-homogenous linear equations
Example 14: Solve the system

is known as matrix inversion method.
1 rsion method

of equations by matrix inve

xn-n+5 =2
2x, + 2%, — X% =4
x+x =0
tion: Since .
i 1 -2 1 1T S 1 00 ln_l\dgig
ity 3 A==z 2 k= 0 A=l g 4
I 10 1 -2 1 1 -—_3 1
So, A ._:_,;.;jsts: -
. : i Ay Ay Au | (Did You Know 2
= adiA= % i for solving
A Sl b An : trix inversion method for sol
o o Ay Ay Ay :h:yl;:m of mon-homogeneous linear
% equations is applicable only when the
I coefficient matrix A is non-singular i.e.
= & -1 -1 3 1al # 0.
3
| 0 -3 6
i e R
But X=A"B,.mx=% -1 -1 3|4
L0 =3 6]|0
[1x2+1x4+0%0 . 6 2
=l —1x2-1%4+3x0 =§ -6|=|-2],
|0x2-3x4+6x0 -12| |4
2

=|-2|. Thusx =2,x,=-2 and x,=-4 .
—4| Which is the solution of the given system.

Gauss elimination method (Echelon form)

We are already familiar with the method of reducing the augmented
matrix of a system of non-homogeneous linear equations to echelon form. We
now apply this method to find the solution of a system of non-homogeneous
linear equations. The procedure is called Gauss Elimination Method (Echelon
Form).

Example 15: Solve the following system b); the method of echelon form.

(b)

2o+ 2x, —x, =4

x =2k +x =2

X+ x =0
Solution: The augmented matrix of the given system is
2 2 =14
1 =2 1] 2|. By2.6.3 (i) the echelon form of this matrix is
1 1 0i 0
1 -2 1| 2
0 6 -3| of.
0 0 -1| 4 -

From R;,we have x;=—4.

From R,,we have 6x,-3x,=0
Substituting x; =—4, in this equation we get x,=-2,
From R,,we have Xi=2x,+x=2

Now putting x,=-2 and X3 ==4 we obtainx, =2
Thus x;

=2, X2=-2, x3=—4 is the solution of the given system.
(¢}  Gauss-Jordan Method (Reduced Echelon Form)

Consider system of equations in example 14 above and the echelon form
L =2 1 2

0 6 -3 0f ofits augmented matrix.
0 0 -1 4




—2 1| 2 i
: :) 6 -3] 0| 0 reduced (row) echelon form, that is
matrix .
We reduce the o g oA 4
I &
o<1 1 1 g andDR,
e by — R, an
o 6 _3(0 Rlo 1 2 0 y 6 Rﬁ
0 g =vlY g o0 114

1 -2 0 6 1
Rlo 1 o -2[byR-Ryand Ri+3Ry
by YA A
1 0 0] 2
Elo 1 o] -2|byR+2R,
o 0 1l 4

The equivalent system in the reduced (row) echelon form is

x =2, II 3"2113=-4'
which is the solution of the given system. The procedure illustrated abov.e of
transforming a system of non-homogeneous linear equations into an equivalent

system in the reduced (row) echelon form is called the Gauss—Jordan Method
(reduced echelon form).

(d) Cramer’s Rule

Consider the following system of three (Ditf You Know S ?)
non-homogeneous linear equations in three
variables. Like matrix inversion method,
Tayx +apx e =k, g:r fr:g;ﬂ‘s ;ﬂie ]ils a};ﬁ;;ﬁ ;
o applicable only when
o Fapt tapn =kt (1) Cramer’s rule is simpler than
ayhy +apX +ayx =k, matrix method for finding

which is equivalent to the matrix equation ‘solution of the given system.
AX=B ()

d‘ll

where A=|a, a, ay,|.X=|x|and B=|Fk, |
2y 4 4y X k,

If 1Al#0, then A~ exists and (2) can be written as X = A™'B.

~ -1 _ 1 i - ]
Since A —madJ A,wehave X =A7'B= (maﬂ:ﬂ]ﬁ
NEEEEN Y Ak, + Ayky + Ay k,

:W Ay A, A, k: =—

ALk +A32k3+ k
Ay Ay A, ks | e l oty

Ak, + Ay, + Ak,

Ak + Ak, + Ak, -I

i 1Al
1
that is x, |=| dulit Aaky + Anky
:rL 1AI
g Ak + Ak, + Ak,
141 J
k, LUE R O
k, a, Ay
Thus %= Ky +k, A, +kA4, [k a, a,
Y T
ﬂ-” '{rl ﬂ]J
ay ky ay
x =kAa Ay v A, oy K, a,
1Al T
ay a, Kk
Oy @y Kk,
x = kA, +k, A, +thA, a;, kK
1Al FEE

This m i i
) ethod of finding the solution of the system is called Cramer’'s Rule



ramer’s rule to solve the following system.

Enm‘p}elﬁ! Use C
J'-._lzxz"'x} =2

. 211+'2‘x1_xa =4 ]

x5+ =0

1 -2 1

=1 =35é0
lation: We have 1AKE]2 2
A |

| LR ol
k, ay ax 4 2 -1
. ky ay 03 __,E__i_ﬂ : (Expanding by third row)
Now x= l.ﬁql = 3
2 |
4 -1 _6 -
=— —5— '
!
O e I e We observe that
ay k ay| (2 4 -1 the solution of
1-00 : : the given system
Iz:aal 5 tal 3 (Expanding by third row) ubtaigned by any
|AI ; of the above four
2 ]l methods are the
- ame.
2 4 1 E =6 _ o s
3 3
a, 1 -2 2 1 -3 2
e 2 0 4 (Expanding by
ay ay k| |12 2 4 ¥
1 0 0 2" Column)
autlJl:,=a“'a32 ) | L e
Al 3 3
g
1 0
=3 =4
3

Thus x, =2,x, =-2and x, =4 is the solution of the given system.

EXERCISE 2.4

Solve the following system of equations by matrix inversion method.

(i) dx=3y+z=11 (ii) x+y+z =1
2x+y=4z=-1 x+y-2z=3
x+2y-2z=1 2x+y+z=2

Solve the following system of equations by the Gauss elimination method

and Gauss—Jordan method.

(i) x—y+4z =4 (ii) 2x+d4y—z =0
2x+2y—-z =2 x=2y-2z =2
3x—2y43z=-3 =5x—-8y+3z=-2

Use Cramer’s rule to solve the following system of equations. -

(i) x=2y=-4 (i) x-p+2z =10
Jx+y=-5 x+y-2z=-4
2x+z=-1 3x+y+z.-=T7

Solve the following system of homogeneous equations.

(i) X=x,+x, =0 ()  x+x,+2x, =0
X +2x,-x, =0 2x+x,-x, =0
2x,+x,43x, =0 =X, +5 x,+4x; =0

For what value of A, the following system of homogeneous equations has
a non-trivial solution. Solve the system.

X +5x,43x, =0

S +x,-Ax, =0

X, +2X,+ Ax, =0

| Solutions of Systems of Equations
‘ B el
-5

A [

One Solution Mo
Selution
‘ o rrriih Infinite sohutions |
| Consistent Independent Inconsistent . Ci e [
: onsistent Dependent |




~ Unit2 |!_\;i§|h:ipes'-a-l_1|itbéu1-m“luants"' e

R 4 0 -1 _
4. IfA=|0 4 6|amdB=| 2 0 3| .Find [24- 8|

ions
1. Choose the correct 0ptio s 7 .2, 4 -1 2 4
-~ Ta—5b 3¢ which one of the following ‘ . '
) \ 5 =0, then 5. Using properties of determinants, prove that
3 3c=5b (b) 14a-3c=5b |a*+2a 2a+1 1
(a‘; 113:3(: -lﬂb (d) l4a+10b= 3c 2a+1 a+2 |l = {5—1}3
(c SLua
3 3 I
a a 3
- x i : an and A, is the cofactor of a; in A. Then the | b o :
(). HAS |8y fn- Ta | i 6. IFA= , then show that AA' and A'A are both symmetric.
a:ﬂ an 333 : 0 ] 2- .
vyt |
value of | A | is given by A | - S T
)ay Ag +a12 A+ 313 An ) A+ 2 bn s h . 7. IfA=|-1 0 -1|,provethat A=A
ik ol Ao+ 823 A3 (d) ay Ay + 8y Ay + 231 Bal | . P
(c) 2z Ay +an AT o3 | -4 -4 -3
a 2 | he value of @ is
- i nd|A?| =125 then the 4 3
(i) A= [2 u_] s | | 8. IfA= 5 then find A+10A™
@zl ® £2 (©£3 g ; : i
(iv) If | A| =47, then find |All ined ? 9. Solvethesystem X+ y+z= 4
¥ 0,41 (047 ©0 (d) Cannot be determine i 2x-3y+z= 2
(v) Ifd::; (A) =5, then find det (15A) where A is of order 2x2. J| —x+2y-z=-1
(a) 225 (b)75 (c)375 (d) 1125 |- by using the following methods:
%5 I. (i) Matrix Inversion (i) Gauss Elimination
(vi) lfA:[U 3]‘ il sty !, (iii) Gauss Jordan (iv) Cramer’s Rule
10 | Elementary row operations: = __., o
% 0w > () L E hlaoy
(a) 0 3n 03 LU 1 | 1. inteschange of two rows ‘

: 1234 5510
LA 5 . 212
; 1[4.5 o il Ty B

4 [ Co:npul.e the pfﬂduﬂ 6 -1 5 6 1 4. 2, multiplication of a row by a non-zero number

I
i, | 1] . . ; l i [1234 1
i 2123|3 | ) 5
1 2 2 i : ' 5510] [5
B -
e
s

[y
L

oW s

R =T
AN ol

[ |
=, Tareas

3. additien of & multiple of one row ta ancther row

(1234 " r123 4]
ZI23)-2 2
lssi1o -

3. Provethat A=|2 1 2| satisfies A2—44-51=0.
' Dl < o]
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veclor.
resentation of a vector.
amental definitions us

@ Define ascalarand a
e Give gec:metrical rep
@ Give the following fund
« magnitude of a vector,
o equal vectors,
o negative of a vector, .
o unit vector,
o zerofnull vector,
o position vector,
i m:;mbtr tion of vectors,
ition and subtrac : »
: :‘:‘;nlgl,?: parallelogram and polygon laws of addition,
o scalar multiplication.
@ Represent a vectorna

vectorsjand j. ) ¥ :
Recognize all above definitions using analytical representation.

i i irecti i LOr.
Find a unit vector in the direction of an-::-thgr_gwen vee a0
F:nd the position vector of a point which divides the line segment JOIMINg

two points in a given ratio. Wy
Use vectors to prove simple theorems afdlcscnplwe geometry.
Recognize rectangular coordinate system in space.
Define unit vectors i, jand k.
Recognize components of a vector.
Give analytic representation of a vector.
Find magnitude of a vector.
Repeat all fundamental definitions for vectors in space which, in the plane,
have already been discussed.
@ State and prove
« commutative law for vector addition.
e associative law for vector addition.

ing geoméiﬁcal representation.

Cartesian plane by defining fundamental unit
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Prove that:

o 0 as the identity for vector addition.

e —A as the inverse for A .

State and prove:

e commutative law for scalar multiplication,

e associative law for scalar multiplication,

o distributive laws for scalar multiplication.

Define dot or scalar product of two vectors and give its geometrical interpretation.
Prove that. -

e Qi=jj=kk=1,

e jj=jik=ki=0

Express dot product in terms of components.

Find the condition for orthogonality of two vectors.

Prove the commutative and distributive laws for dot product.

Explain direction cosines and direction ratios of a vector.

Prove that the sum of the squares of direction cosines is unity.

Use dot product to find the angle between two vectors.

Find the projection of a vector along another vector.

Find the work done by a constant force in moving an object along a given vector.
Define cross or vector product of two vectors and give its geometrical interpretation.
Prove that:

o Ixi=jxj=kxk=10,
o IXj=—jxi=k 4
o jxk=—kxj=i,

o kxi=—ixk =]

Express cross product in terms of components.

Prove that the magnitude of A x B represents the area of a parallelogram with
adjacent sides A and B .

Find the condition for parallelism of two non-zero vectors.

Prove that AX B=-B x A.

Prove the distributive laws for cross product.

Use cross product to find the angle between two vectors.

Find the vector moment of a given force about a given point.

Define scalar triple product of vectors. ’

Express scalar triple product of vectors in terms of components (determinantal form).
Prove that:

o ifXk=jkxi=kixj=1,

o ikxj=jixk=kjixi=—I.

Prove that dot and cross are inter-changeable in scalar triple product.

Find the volume of

e aparallelepiped,

e  atetrahedron, determined by three given vectors.

Define coplanar vectors and find the condition for coplanarity of three vectors.




3.1 Introduction
Physical quan

re and work are measured by
alled scalars. Scalars
plied and divided by

tities such as mass, temperatu
ome chosen unit. These pumbers are ¢
an therefore be added, subtracted, multi

f elementary algebra. . :
ch as displacement, velocity, acceleration and .

numbers referred L0 §
being just pumbers, €
using the fundamental laws ©

Other quantities exist su

i ire for their complete specification 2 11 as a scald
mé‘;miﬁum called vectors and may be reprssenled by a straight line with

ipli divided by ordinary

not be added, subtracted, multiplied or _
a a:ornws;ﬁ::ic‘:urlsegagu? we use methods of vector addition (13'1:11'.‘31& rule or
?:rtalfe'lngram rule) or other analytical methods for their multiplication, for this
purpose. . Fny
Vectors have many applications

We begin with geometrical interpretation 0
shall apply vector methods to prove some fundamental resu

geometry.
3.1.1 Scalar and Vector -
Scalar Quantity: A quantity which has only magnitud

a scalar quantity or simply a scalar. :
Examples of scalar are mass, temperature, volume, work etc.

direction as well as a scalar.

in Geometry, Physics and Engineering.
f a vector. However, in the sequel we
Its of descriptive

e and no direction is called

* Vector Quantity: A guantity which has magnitude as well as direction 18 called a

vector quantity or simply 2 vector. -
Examples of vector are displacement, velocity, acceleration, force etc.
‘ H
i
3.1.2 Geometrical representation of 2 vector
A vector is geometrically represented by an
direction of the vector and the length of the
he vector. The tail end O
head (tip) P 18 called the

arrow or directed line segment

say OF , where the arrow indicates the
arrow specifies, on appropriate scale, the magnitude of t

 of the arrow is called its origin or initial point and the
terminal point or terminus (Figure 3.1)

Terminal Point e

In printed work, it is usual to denote all vectors by P
bold faced letters @, b, v etc. In hand written work, the
vectors are denoted by @, b, v etc. The other notation  <nitial point
used for vector is a, b, v etc. 0 Figure 3.1

3.1.3 Fundamentals of a vector

(i) Magnitude of a vector = A
The magnitude or modulus of a vector OA or a is the opP :
length of the line segment representing the vector to ¥

the scale used. The magnitude -of the vector oL O Figure 3
is denoted by 041, lal, lal or a. kg

(ii) Equal veetor

Two vectors a and b are said to be equal if they have
the same magnitude and direction regardless of the I S
position of their initial point. Symbolically, we write b

a= b (Figure 3.3)
(iiiy  MNegative of a vector g
A vector ha_wil}g the same magnitude as another
vector & bu-l opposite in direction is called negative of a a
vector and is denoted by —a as shown in (Figure 3.4)
" ) =
(iv)  Zero vector or null vector Figure 3.4

A vector which has zero magni i
agnitude and arbitrary direction i
vector or null vector. Zero vector is denoted by O 5 orQ SRR

(v) Unit vector
Av i i i
- dimctiut:lcgc;ra\n;hose magmlfude is one is called unit vector. It is used to represent
o s ector. A unit vector is denoted by a letter with a hat over it, such
] * L4 o i i :
elc. Any vector a can be written in terms of unit vector as a = lala

Hence unit vector in the direction of a is obtained as a = i
- . ¥ i ﬂ I
1.e. unit vector in a direction = Vool et dueotis

Modulus of the vector

(vi)  Parallel vectors
i /
WO vectors @ and b are parallel if and only ifa = ab, p

where & is scalar. See for example (Figure 3.5) z

For Your Info P g
Chor You normation ) o

{ The magnitude lal of a ; '
. of a vector a is a positive scalar ity ‘and
can be added, subtratted, multiplied and divided like all m@gw@-'wf



3 ition Vector
(vii) Pesition : P
ich joins a given point P 10

A vector which ] o denot

position vector of the point P and

the plane or space with the origin is called
ed by 0P (Figure3.0).

&Y
i th
The magnitude of the position vector 15 _equal mh e SR
' igi 05€
distance between the given point and the ongin and w or
stan @
irecti i m the origin. .
direction is the direction of the point fro b .
‘ O! Figure 3.6
I ctors.
Example 1: Using graph paper, draWw the ve : | T
3 -
(a) 2a (b) —a (c) 4& : t; ‘
where a is given in (Figure 3.7) ‘
=1 = =
from its EESREE 4
- (a) The head of the vector & - o
es:;n:a::t is( j squares to the right and i square: - HI
i i are
up. Hence 2a is 8 squares to the right and 4 squ LELLL
5 a. Hence —a is 4 squares to

(b) —a is the negative of @, s0 its di!-:cﬁon is pppusitc to
the left and 2 squares down from its end point.

: in (Figure 3.7).
(© 2ais3 squares to the right and 1and a half squares up as shown in (Fig
4

; s are
Example 2: In Figure 3.8, vectors &, p, , 7
shﬁwn?State each of the vectors p, g, r and 5 in the

form ka.. . : .

Solution: The direction of a is 2 squares to the right 7

and 4 squares up. : = ;, ,
" Hence p=-a,q=§a 7 i

|

i1

r=32a,s =%“ i Figure“ié
Example 3: What type of quadrilateral is ABCD, if (i) AB=CD  ii. A= 3 ‘_f"

Solution: (i) AB=CD means that AB and CD are >

equal in length i.e. IABI=ICDI and AB Il CD. Hence

ABCD is a parallelogram as shown in (Figure 3.9.) /
T

Figure 3.9 B

(i)  AB=3CD means
IABI=3ICDI and AB || CD.
Hence ABCD is a trapezium as shown in (Figure 3.10.)

(viii) Addition and subtraction of vectors -
(a) Addition of vectors Figure 3.10 B

Any two vectors can be added by the following two laws.

e Head - to - tail or Triangle law of addition
To add two vectors & and

b that is, to combine them into / a+b

one vector, we draw them in such b
a way that the head of the first

vector coincides with the tail of a > =

the second vector. The sum or Figure 3.11
resultant vector a+b is obtained by joining the tail of the first vector with the head

- of the second vector as shown in (Figure 3.11),

We call this way of adding the vectors as Head—to—Tail or Triangle law of addition.
e Parallelogram Law of Addition ool .o D
If the two adjacent sides AB and AC of a 4
parallelogram represent the vectors @ and b as
shown in' (Figure 3.12), then the diagonal AD
represents the vector sum or resultant @ + & of
vectors & and b. Thys E:E+E:a+b A
We call this way of adding the vectors as the
Parallelogram law of addition.
* Polygon Law of Addition of Vectors
The method of vector addition of two vectors can be extended to more than two
vectors. Leta, b, ¢, d be four given vectors. g c
L_“_’f O be any point and let us draw the vectors
OA = a. From the terminal point A of the
vector a, draw AR 1o represent vector b.
From the terminal point B, draw BC to

fepresent vector ¢. From the terminal point

C, draw CD 1o represent vector d. Join OD. g
Then, from (Figure 3.13),

Hb*ﬁd
m




. we have a+b+c+d g
: = OB + BC +CD e o2
oc +CD [~0A+AB=0B]
oD [-.-6_3+E=55]

tor OD joini L1 of the first vector a and the terminal

vector OD joining the initial point of th :
.m; t:: the last vector d represents sum of the given vectors. This method of
ﬁditicn is called the polygon law of addition. 4

[ ]
———
(b Subtraction of two veclors . £
The difference of two vectors @ an_d b, .
denoted by a— b, is the vector ¢ obtained

i d the negative of b,
< o : Figure 3.14

that is c=a-b=a+(-b) ] b
i b is equal to a vector
us, the difference a — b of vectors a and ‘ Vet
when a:;{lhcd to b yields the vector @. The difference a — b is shown in (Figure 3.14.)
(%)  Scalar multiplication
In dealing with vectors, we re
and a is a vector, then the multiplicatio
magnitude is k times that of a. Thus, if
(i) k=0, then ka is the zero vector 1 -
(i) k > 0, then a and ka are in the same direction //a ,f;:;
(iii) k < 0, then a and ka are in the opposite direction

For illustration, see (Figure 3.15).
Example 4: For the vectors a and b given in (Figure 3.16 @) ,draw the vector

we refer to real numbers as scala{s. If k is a scalar
n of a by k, denoted as ka, is a vector whose

Figure 3.15

() 2a+h (ii)a-b (iii) a-2b mEm
Solution: The vectors are shown in aEm
(Figure 3.16 ().) ne 48

b el E§

a : ]
D% : ariicans

-~ j e

Figure 3.16 @) Figure 3.16 (b

—— o T b 1

Draw vector 2a and from the head of 2a draw b. Then use head—to—tail rule to f
obtain 2a + b.

(i) Draw a followed by -b, use triangle law of addition of vectors to obtain q — .
(ii) Draw a followed by —2b, use triangle law of addition of vectors to obtain a-2b.

Example5: In AABC, AB=a, AC = b and D is the midpoint of AB

(Figure3.17), State in terms of @, b. (i) AD Gi)y DC (i) CD
Solution:

i A=l gl o
2 2 b
() DC=AC -AD=s-1a : - \
z = ] B
(i) CDwm-D a=ab e ——
: Figure 3.17

’]‘Imnl'wn, For any vector a,
F}) "1]:]?]1& zero vector o has the property thato +a =g +0 =g
(i € negative vector —a of a has the propert + =a-a=
Proof, () easy, i A
If OA = a._ we have, according to the definition of the multiplication of vectors
by scalars, A0 = (- 1) a Thus, a+(-1)a=0A + A0 =00 =0
(ii) On account of this property, the vector (—

1) a is called the negati
vector a, and we write — g = (-1 a gative of the

So that the relation a+(—1)a=0 : ’
:
may also be re-written as a + (—a)=0 % 1 :
—
Figure 3.18
A o’
Vector Zero vector




— P C = b
AB =&, B
. xagon
ABCDEF is 2 reE'J::: ]:2110 wing vectors a5 scalar

and -,C._D' =0 state S
itipleof s Bore- __ —= . BE
::T %E (i) EF (iii) FA (w)_ﬂg ag(o:al 5
. In a regular hexagon Main ©-%
Hint: Ina BC and parallel to 1t

is double the side draw the vectors:
Given the vectors (iii), 3a - 2b
(i a +2b

agandbasin Figure,

(i) 2a-b _ =

gF=p.00=4 R is the midpoiit of op; REEEEE:

In: gifs; 5:Q su;;h that 105! = 3I5QI. State in terms O : —0
an

2 — . am— - —s—

p';ndgﬁ (i) PO (iii) OS (iv) R i»

(i parallelogram with Zi-a and OB=Db,ACisextendedtoD
isa

3':3 :ACI —2|CDI. Find in terms of ijnd b

(i) AD @yop . (i) BD

_ . : idpoint of OA and G
e .+ DA =a, OB =b. M is the mi
OAB is a triangle with O

—_— 1 =% Q
Ties on MB such that IMGI = = 1GBI. State in b
@ oM @) MB (i) MG (iv) 0G

terms of a and b

In A OPR, the mid-point of PR is M. ,
If OP =p and OR =r, find in terms of pand . i
@ PR (i) PM i) OM - 2

ABCDEF is a regular hexagon and O is its centre.
The vectors x and y are such that AB =x and BC =Y.
Express in terms of x and y the vectors

AC. A0, CD and BF o

3.1.4 Representation of a vector in a cartesian plane
We recall from our previous class that a. rectangular
coordinate system consists of two lines xx' and yy' drawn at
right angle to each other as shown in(Figure 3.20),are known as
coordinate axes. Their point of intersection is called origin ¥——————»=x
and is denoted by O. The rectangular coordinate system is also
called as Cartesian coordinate system.

The horizontal line is called x-axis with positive
direction to the right and the vertical line is called y—axis with y
positive direction upward. If P is a point in plane, it has two  +  Figure 3.20
coordinates, one along x~axis and the other along y-axis. If the

distances along x-axis and y-axis are determined by a 2y

and b respectively, then the point P is assigned an ordered pair i

of real numbers as (a,b) or P (a,b) as shown in(Figure 3.21 ).We | Plak)
call a and b the x~coordinate and y~coordinate of P. : ¥ " ’"_E x

|

The set IR* = {(a.b): a,be IR} is called the Carteslan !
plane. Thus an element (a,b) e IR? represents a point Pfa,b) I
which is uniquely determined by its coordinates a and b. |

In this section, we use rectangular coordinate system to ;.
represent a vector in the plane.

Let i denote the unit vector whose direction is along the Peusal
positive x-axis and let j denote the unit vector whose direction is along the positive

y-axis. Then every vector §P in the plane can be written uniquely in terms of the

vectorsiandjas OP = r = xi + yj where x and y are scalar. See (Figure 3.22).
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of the point P. Thuys, the

— . called the — hose initial point is the orje;
ot o vedor OF .0 it votor O ¥ o
int P(%,
stion vector of any PO~ . .
'O'Iand whose terminal point 1 P e,
of a Vector f the position vector to any p 5 ‘f i diis:
3P . o
In the representation o and y ar¢ called the wm?ope?recﬂon ?Svector r
asOP=r=x+ yj, the scﬁlxlxs gt e sipeseting nfld :
oY in j—directi , the vector r represented by e
4 pﬂlnm;l:?; —4)bea point in the plane. Then
ample, ifP—4 7 3
gi:iﬁn vpactor to the point P(5 ~hi
r=.ti+_‘if=5l'+{'r4],l'.

and the j—direction component is -4,

5 ;
S rs of points A and B respectively,

AR
Thus, the i—direction COMPE™
Theorem: If a and b are position vecto

then E =b-a . d B respectively, then
i f the points A an
. If @ and b are position vectors 0 B
l"mo;l';ll'a e e =
a=0A andb=0B (Figure

Using triangle law of vector additions, we bave

OA +AB =0B = AB =0B -OA

Q a ¥ |

> AB=b-c Figure 3.23

Example 6: Find the vector AB from the point A (—4,6) to the point B (6,8).
Solution: The position vectors of A and B are OA =—4i + Gjand OB =060 + §.

Therefore by the above theorem

Vectors with initial point not at the origin

We defined the component of a vector to be the coordinates O
point when its initial point is at the origin. Now we will find the compone
vector whose initial point is not at the origin. —
Suppose P (x,,y;) and Py(x;,,) are two points in the plane. Suppose OP1 27
be the position vectors of P, and P, as shown in (Figure 3.24).

£ its termind

4 OP:

pts of @

Then PP, ={_),'52 -"g_ﬁ;
=(xi+ni) —(x, i+ yj)

=(xX-x i +(,=-y)l 5 _': Bixx)
Thus the i~component is x, — x, and the j—~component is 3 =
3,1.5 Algebra of Vectors
In this section we define addition, subtraction, O ; %
scalar multiplication, and so on, for vectors in plane.
Figure 3.24
Equal Vectors

Two vectors u = xi +,j and v = x,i + y, j are said to be equal if and only
if they have the same components that is

w=vifandonly if x, = x, and y,=y,
Example7: Ifu =2i+ yjandv =x -}, then find x and y.

Solution: u=vor2i+y=xi—j
By comparison we have x=2 and y = -]
Addition of Vectors

If u = x)i+y,j and v = x;i+y; fare two vectors, then their addition, denoted by u + v,
isdefinedas u + v = (x,+x) i + (y +3, Jf
Thus, to add two vectors, we add their corresponding components.
Scalar Multiplication
The multiplication of the vector u = xi + yj by a scalar k, that is ku is defined as
ku = k(xi + yj) = (kx)i + (ky)j
Negative of a Vector
If u = xi + yj is a vector, then negative of u, denoted by —u, is defined as
=U = —~(xi+ yf) = —xi — yj
"_l'hus, if we take k = —1 in the definition of scalar multiplication. we obtain
—# that is the negative of the vector u.
Subtraction of Vector
Ifu=xi+yjandy = X + y,j are two vectors, then their difference,
denoted by u-v, is defined asy — y = (X, = xo) i + (v, — ¥, )f
Thus, to subtract two vectors, we subtract their cor['es;n{:nding components.
Example8: Ifu=3i+4jandv = 4i— 5, %
Sl Find (i) u + v (i) 2u (iii) —v (iv) 2u = 3v
) w+v=(3i+4) + (4= 5)) = (34 4)i +[4 +(=5))j = 7i - j
(JI) 2u=2(3i + 4f) = (2-3)i + (2-4) = 6i + &
(W) v =—(di - 5j) == di- (~5)j =—di + 5
(V) 2u-3v=203 + )= 3(4i - 5)) = 6i + & - 12i + 15 ==6i + 23j




d otcdhyﬂandisdeﬁnedas0=o;+qj
5 den

1 or Null Vecto
orm or length is denoted by lul

r "
: 'Ymc zero vector of null vector 1
by t;:-r its magnitude or B

Eu:;ﬂﬁisavec

and is defined s -
lul=y/%" +Y :
; _ 3, then find lul.
le9; Wu=2i-3 _J/B
sE;:ﬁm i@ +(3 = V4+0 Vi3 =
Unit Vector ¢ the given vector =3 yiis 1, it is called a unit vector. Tha
If the magnitude © gl A

i i if lul =
is, u is a unit vector if -
i Ifu —Iﬂey?li’: a‘:re,clor and k is a scalar, then

mrﬁl >0 i) lul=0 if and only if u = 0 (zero vector)
Egi) bal=ll (V) Nl =1kl

Proof.
) =X+ y? >0forall xandy.

Gi) ll=yx+y =0 if and only ifx =.0 an-dy =0
if and only if & = 0i + 0j

if and only if u = o (zero vector)
(iii) Hl:kﬁ—ﬂ[:@z + (-y:lz :.\rxi + yi =lul
(iv) lal=l(o)i+(y)l = JU) + (ky)* = JEGE+9Y)
= Ve +yt =1k lul

31,6 A Unit Vector In the direction of another Vector . ‘ i
If u = xi + yj is a vector with magnitude lu| # 0, then i is a unit vec

. i i in the
whose direction is the same as that of u. It is usual to denote a unit vector 1

direction of vector u by ii. : :
Clearly any vector u can be written in terms of unit vector as u = lul i/
Hence a unit vector in the direction of u is given by

y= ‘n.+2ii__ X . ¥y

e h: = j
i = u f+}- f-g-y"H- Py
T - S

Example 10: Find a unit vector in the same direction as the vector 3i-2f

Solution:  Letu =3i-2j Note
= JO? +-27 =0+4 =413

Then lul = {(3)" +(-2) e ;r— g The vector # is in facta

. A u A I=4] . . 1 .
Since w=—,s0 u==-==2 ;_ 2 ; unit vector, because by

lul’ Y3 iz i3 property (iv) of magnitude
Notation for Vectors in Coordinate System g vﬂ:m lul
lal=l—l=—= 1

Sometimes we use the notation [x,y] or <x,y> for the TG
vector r = xi + yf which has its initial point at the
origin of the rectangular coordinate system. The terminal point of r will have
coordinates of the form (x,y). We call these coordinates the components of r.
In this notation, the unit vectors i and j are given by i =[1,0),j =[0,11.1f r,= [x,y]
and r; =[x,,),] are vectors and k any scalar, then addition and scalar multiplication
are defined as ry + 7, = [x,y)] + [, ] =[x + X, ¥ + ) and kr, =k[x,y]=[kx,, ky;]
Using the definition of addition and scalar multiplication, the vector r = xi + ¥j can
be written as

r=xi+y =x[1,0] +y[0,1]= [x0] + [0,y] = [xy]
Thus r=xi+y = [xy]
3.1.7 Ratio Formula
Thwt_’el_m Let a and b be the position vectors of the points A and B respectively.
If C divides AB internally in the ratio p:gq, then the position vector ¢ of C is given

qtp

Proof: If C divides the line scgment AB internally in the ratio p:q, then £_£=-§
as shown in the (Figure 3.25). l{:.‘;E‘B

Hence g AC=pCH = gle—a)=p(b-c) \qc
b
= gc - qa = pb - pe = gc¢ +pc=ga +ph P \P
= (g4 pomgaseph = g= BEH O a %
qa+pb = ¢ T Figure 3.25

Corollary: Ifp: q=1:1, then Cis the midpoint of AB and its position vector ¢ is

given by ¢ = a;b
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Suppose that ¢ is the position yector of the point C that divide
ratio 4:3. urt
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o e pomserr some basic theorems of geometry.
I this section, We shall use vectors tohpnr:}';ining asis forst w s feiaenl .

:  Provethat the stra@ght
triangle is arallel to the third side an
= :gbal ISAB be a triangle and D.E be the

Proof: )
respectively (see Figure 3.26)
Let 0A =a, OB =b, then .
oz D E
oD == . a‘f:% . D & E are the mid-points of OA N
. %

A" Figure3.26

d equal to one half of it.

midpoints of sides OA and OB

& OB respectively
Now DE =D0 +0E --0D +OE

=:2£+% =£:2.f- (1)
15 A0 +0B =-0A +0B =-a+b=b-a @)

Therefore from (1) and (2), we have

DE =-12— AB Hence DE | AB and DE is equal to one half of AB
Theorem: The diagonals of a parallelogram bisect

each other.
Proof: Let the vertices of the parallelogram b

be 0,A,B and C (See Figure 3.27)
Let a, b be the position vectors of A and B c

respectively. O » A
kpecs o . a

Then OA =a, OB =b. Figure 3.27

By addition of vectors, we have OC =0A + OB =a+b

EHT ek m
Again by addition of vectors, we have AR wDB -0k mb<a

" The midpoint of the diagonal AB has the position vector

AB b—a _2a+b-a _a+b
2 2 A (2)
From (1) and (2), we have e=d.

This shows that the midpoints of the diagonal OC and AB are the same

— AB
d=0A +—2— =a +

“Thus the diagonals of the parallelogram bisect each other.

3.2 Vectors in Space
In section 3.1.4 we discussed vectors in the plane.

Inthis section, we again consider vectors, but vectors inspace

1,21 Rectangular coordinate system in space >y

,[“ space, a rectangular coordinate system (or

Cartesian coordinate system) consists of three
mutually perpendicular lines through a common point = L
0. The lpoint O is called origin and the mutually F
perpendicular coordinate lines xox, yoy' and zoz' are 3 e
res]?e:.t:lwely x—, y— and z-axis (Figure 3.28). The
positive x—axis points towards the reader, the y-axis
to the right and z—axis points upwards.
The coordinate axes, taken in pair, determine three
coordinate planes namely the xy-plane, the xz-
plane and the yz-plane. If the distances along x—, y—
and z— axes are denoted by a, b, ¢, then the point Pis
assigned an ordered triple of real numbers as (a, b, ¢)
El't:f a b, c) as'shown in Figure 3.29. We call a, b and
S Pe IJ:Ic;—(:‘tv:mrl:hnsi.t_.e, y—coordinate and z—coordinate
o .unt??mf: the point P whose coordinates are (4, 5, 6)
¥ &15 rom O in the direction of oX. 5 units from
s e direction of oy. 6 units from O in the
nrccuon u}’ oz as shown in (Figure 3.30).
th:esﬂld{R = {.(a, b, ¢): a, b, ce IR} is called the

e~ dimensional space (or 3-dimensional space). *




as shown i | R
P(x, y, 2) is any point in the
P can be written in

If

position vector P of the point

the form.
OF =r

Thus, a position vect
whose initial point
terminal pointis P.
3,23 Component
In the representation of
any point P(x, ¥,
the scalars X, ¥ and z are ¢a
of r. The unit vectors i,j an
vectors for this coordinate system. —
rdinatesystem 1 FiF:

=xl'+xf+5k as shown

or of the p

of a Vector

z) in the spac

3.2.4 Notation for vectors in coo!

As in plane, we use the n
or <x, y, z> for the vector r =

space.

k are given by

In this notation, the unit vectors i, j and

i=[1,00],j=[010], k= [0,0,1]

Ifr,=[x,y,z] and ;=[5 ¥» & Jare vectors

space
utually Pﬂmmdm“lar -

space, then the

in Figure 3.32.
oint P is a vector JP

is at the origin O and whose.

the position vector to
cas OP=r=xi+y +2k

nit vectors in the direction
‘L E

x

lled the components
d k are the unit base

otation [x, ¥, 2/
xi wy + zk in

( Did You Know E )

is a vector in space with

initial point Pr(x, ¥ z,) and
terminal point Py(x, Y Zh

Then Pl_P; = (XX Ji+ (- i+
(z-z,)k. So the components of

PP, ini,jand k directions ar

(x=% ) (=Y b (% 2) respectively.

and @ any scalar, thenaddition and scalar multiplication is defined as
r+n =0 ) + 6 ) = [x+%, Yi+Yn +2) and

ar=alx,y, 2] = [ax, ay, az)]

Using these -:‘i!eﬁr}itions, the vector r = xi+yj+zk can be written as
r =xi+yji+zk =x[1,0,0] + y[0,1,0] + z[0,0,]]
= [x0,0] + [0,5,0] + [0,0,z] = [xy.2]

Thus

r=x+y+zk=[xy1]

Not For $El_e

Thatis u = v i
cAhatis w=vifandonlyifx, =%, y =y andz =z
=z

3,2.5 Magnitude of a Vector
The magnitude or norm or length lul of a vector u = xi + yj + zk in th
: e space

is the distance of the point Py P
p (x, , z) from the origin. That is lul= [, 42

Unit Vector
If the magnitude of ok e :
gnitude of the vector u = xi + yj + zk is 1, it is called a unit vector. That is

lul=1

Example 12: Ifu = 2i-j+ 3k, v=1i +j -k, then find
(i) u+2v (ii) 3u-2v (i) 3(u—2v)

(iv) lutvl ™) il i) L
Solution: ful

(i) u+2y = (2= +3k)+2(i+j-k)= 2i— [ 427
. B B j—k)= 2ij 43k +2i+2j-2k = 4i+j~

(ii) 3u-2v = 3(2i~j +3k)-2(4 ~k) = 6i-3j +9k-2£-2j+2;: : :' 5+
(i) Hu-2v) = 3[4 +300)2(i4j-H)) = 3243k 20 42K] e
i = 3(0i-3j+5k) = 9j+1 5k il

(iv) syl = 1(2ijo+ 3+ (k)| = |2ij+ 3k tisj-k) = |3i+0j+2K]

= J(_3)3+(U)’_+ (2° =+9+4 =413

O el = Q2P+ (1P + 3+ +)7 + (1)
=4+1+9 +/1+1+1 =14 ++3

iy vy, Mg 2n, T,
Il Ji3 NG *—EJ +E
3.2.6 Algebra of Vectors ) )

In this sectio i
n w )
vectors. Our definitions zrge;;l:i addition, subtraction scalar multiplication etc of
; same as giv
case we consider vectors in space given for plane vectors except that in this

Equal Vectors

T'wo vectors u = x,i + y,j
. i+yj+g5kand v = xi +y,j .
a d i nd v -
nd only if they have the same co [:wncms Xi +Y,J + 2,k are said to be equal if

?;]Jdilion of Vectors
¢ addition [
of two vectors u = x,i +y,j +z,k and v =x,i +y,j + .k is defined as

Uty = [ r
ey (X + )i + (3 + Rl + (2, + )k
8, 10 ¢
» 10 add two vectors, we add their corresponding components
- 5 s




u=ﬁ+y‘+zk by a scalar & is defined as

a vector

{a}"y + (&‘Z)k

b ar multplication & ¥ OF

N A Gl
Vector

stive of 8 _xdi+y

sve of a vector ¥ A
negatl =+ Y+ F)=

zk is defined as
iy —&

Yector . i i i
The dﬂm!’“ e of two vectors & = i + i/ % gl andy =i +2 +5KS

T Sl )i+ (z -2k
as u=-v=[% x)i+ (=l (4 .
;d ® ubtract two Vectors, we subtract their corresponding components.

Vector or Null Vector
The zero vector of null vector O is defined as

rties of Vectors . .
The following properties hold for vectors in plane as well as in space.

v and w be vectors and let o and g be scalars, then

(corruﬂutative property for addition)
(Associative property for addition)
(Identity for vector addition)
(Inverse for vector addition)

- (Associative property for scalar multiplication)
(Distributive property of scalar multiplication over
vector addition)
(Distributive property of v
scalar Addition)

0= 0i + Qj + 0k

uty=v+u
(uvyrw=uHv+w)
u+o=0+tu=0
uH-u)=0

a (Pu) = (aB)u

o (u+v)= au +av

(a+) u =au+pu ector multiplication over

lu=u
cation to Geometry
1ce between two points in Space

Let A(x,, ¥, %) and B(x, Yo z,) be any two =

in space. Let OA4 and OB be the position
: A v 05 )
s of A and B (Figure 3.33). Then
i+y,j+z,k, OB =%+, j+k
j+zk OB = B(x, )22,/
OA+ AB = OB AR
AB=0B-0A
= (x-x) i + (yy )i + (-2 )k : o i
NABI= (-2 + (-0 + (g -z ¥
 is called the distance formula.

Figure 3.33

points in space. The coordinate of point C which
divides :LE-‘ in the ratio m;:m, are
mx, tX MYy, tmy, mz, +m,z
» § 2>
m, +n, m, +m, m, +m,

Proof. Let C(x, y, z) divides EE i

! A b ; in the rati :

mtemall)_-' (Figure :.’:._34). If a is the position \l:;c[::;?tz‘

A and b is the position vector of B, then the positi 5 Fi

vector ¢ of C already found in Ratio theorem is = L
_ mb+ma

n, +m,

xi+y+zk= Y §
n, + m, [m, (x,i+y j+z.k)+m,(x i+y,j+z k)]

m,x ' .
_ (myx, +mox, Ji+(myy, +m,y, )j +(m,z, +myz, k

m,+m,
- max, +myx, . gy, My, . Iz, +m,z
m, +m e X ¥ = N k
, Hm, m, +m, m, + 1,

Comparing the corresponding components on both sides
el

mx, +
.= % X, = ny, +m,y, mz, +mz
m, +m, m + P o Gl
A L+ m, m, +m, :

If A is negative,

Thus C(x,y,z) = C (nr] X, +1,x, ’ my,+m,y, mz,+nz :
m, +m, m, +m, : P %E::tut (i;lﬁvides
Corollary: If 5 o Ay iy L
: . = - then the point C divides AB in the the i Ag)
ratio A: 1 and
. . C .Y, 20
I:M r_alyg"'_')’, ﬂ,lz +7 2
2 R R T
st 1+4 1+ . M
i f rove that the coordinates of the
o z? a triangle ABC with vertices G
J:|+Il 175 {le ¥a Z]j, (xj, }'3: zj_‘} are
(= Lt y+yn+ty z+5,+7 A,y B, y.o
3 : 3 ’ 3 X Figure 3.35

Theorem: Let A(x;, y;, z;) and B(x,, y,, z,) be any two ;
A



+% Nth +33) .
i wd;;d:nm{ of BC has the coordinates MEZS 25 e =
| : rdinates
i Gdiv:'djngAMin the ratio AG:GM = 2:1 has the coordl
point
X T (- )
25 +5) 41y, ________2{:\@; J’3JI+1-J.'[ ____.3_22 +1-z,
gy S
2+1

2+1 : 2+l

[,r:-l*x +x Ntrhth _z_li'_z?.ii:‘—}
= . ¥ L 3

3
; ; hrough O of the triangle OAB, where

Find the length of the median t

Example 13: : )
i i 7,-1)and B is the point (4, 1, 2).
gg;::gamt (lz.et OA}B be a triangle as shown in (Figure 3_36),
The coordinates of M the midpoint of AB are_ i
(24,74, 7142) 0 ]y
2 2 2

So the length of OM is
101

s 2 _]_2 ol
|OMI= (3)f+(4) e

: Af2.7-1,
° Figure 3.36 ks

EXERCISE 3.2
If a = 3i - 5j and b ==2i + 3, then find

1- ~ "

() a+2b (i) 3a-2b (iii) 2(a=b)

o el

(iv) la+bl  (v) lak-1bl (v) - : 3

2. Find the unit vector having the same direction as the vector given below.
Ak : o e

(i) 3i (i1) 31— 4j (i) i+j-2k (iv) —2—1- EJ

3. Ifr=i-9j, a=i+2jand b = 5i - j, determine the real numbers p and 4

such that r=pa + gb. -
4: If p = 2i - j and ¢ = xi + 3, then find the value of x such that Ip+ ¢ I=5-

5. Find the length of the vector AB from the point A(-3,5) to B (7,9). Also

; find a unit vector in the direction of AB .

6.  If ABCD is a parallelogram such that the coordinates of the vertices A, B
and C are respectively given by (-2,-3), (1, 4) and (0, 5). Find the
coordinates of the vertex D.

7. Find the components and the magnitude of FQ
i P:(=1,2), Q(_Z, -1). ii. P(-2),Q(2,3).
Il.[. P ':: _1!]!2]l Q(?'s _1:3)- v, P(2,4,6:|1. Q(l =2 3]
g, Find the initial point P or the terminal point Q whichex;er i; m.issing'
i. PO=[-2,3],P(l,-2). ii. PO=[4,-5], Q(~1, 1).
iii. PQT [—},3,:2], P2,-1,-3). iv. PG=2, -3, 4, Q@G3, =14)
9. If d=itj+k , b=41-27+3f ande={-2]+F, find a vector of
magnitude 6 units which is parallel to the vector 2d-b +3C

10.  Find the position vector of a point R which divid e _
fE . es the line jo i

?vhose positionvectors are P(f + 2f — k) and Q14+ .Iﬁ;riun:];1 the po:n.ts

internally and externally. n the ratio 2:1

(11. Find the position vectors of the point of division of the line segments joining

(i) Point C with position vector 5 j and point D with positi
oint ( : : osition ve
" 4i+jin the ratio 2 : 5 internally. e E v{.c@
(ii) Point £ with position vector 2i-3j and point 'F wi it
oint £ _ with
3i+27 in the ratio 4 : 3 externally. H R

12.  Find @, so that |at + (a + 1)f + 2k| =3

13. Ifrr'=2.-' +3j+4k, V=={+3] -k and W= 46+ zk represent the sides of
a triangle. Find the value of z.

14. The position vectors of the points A, B, C and D are2; —j+k, 3i+]
2i+4j-2kand—i -2j+k respectively. Show that AB is parallel to CD .

3.5 Dot or Scalar Product

351 The dot or scalar preduct of two vectors a, b denoted by

a ‘i_is defined as a-b=lallbl cos © where 6 is the angle

between the vectors a and b (Figure 3.37). b-
For-example, if lal = 2, bl = 4, 6 = 60°, )
then a-b=3x4c0s60° = 12x L = 6. ;

: 2 Figure 3.37

Sy . . .
This will be negative if 5 <0< mascosd is negative, and lal, Il are always
Positive,




Dot Prodtlct_._q___)

I
- 1lel vectors : direction as b
() [Para parallel but in the same di Figure 3.38

If @ and b art a=0°.
i lEure 3.35)! then I
el = lalllcost” = 7% direction as shown in Figure (3.39)

In this case a-b . 9
t in Oppo b

e a?ﬁﬁ%ﬁiﬂ T;s; a-b =lallbl cos 180° = ~lallbl

then &= .

ase when @ = b, then
aa = lallalcos(® = lallal = lal? g b =

Figure 3:39
Henliﬁe lal= -J'Ee-r
(i) Orthogonal vectors

—a

In the sp&Cial C

If @ and b are orthogonal vectors, then € =90°and cos 90°=10

- a-b=k cos 90°=0
ality of two vectors is a-b = 0

Hence the condition for orthogon ;

3,53 Scalar product of unit vectors i, j and k

iii= i} cos 0°= 1,5 = il il cos 90°=°0
iU cos0°= 1ik= W cos90°=0
kek = |k [ cos0°=1,ki= k|| cos90°=0

—

a

Z

Figure 3.40

—

The dot product is always a num_bt'.r
(scalar). We sometimes refer to it ast
the scalar product or inner product.

Remember

. be two vectors in space. Then using the properties of

F 3 | Vectors N Lrill ;
. % 4-' :i-—b— ':!--.' :l._:. il -.I ".'. I'i1 -:

3.54 Expression of Dot Product in Terms of Components
LEIG:—‘I]I“F)’JJ‘"{'Z]k and b=x1i+y2j+12k

Remember

Ifa=xi +y,,r'an!j b=xi+yf
-are vectors in the plane,
then  ab=xx, +yy,

¥

dot product, we have

ab

(i+ni+zk)-(xi+y,j+z,k)

X)X, ff-!} + x, Ya ﬁ*_ﬂ +.x; 2, (l-k) + ¥ix, Gi} _|_ylJJZ U‘.ﬂ i y|23§-k,i
+ 2, xo (ki) + 2.y, (kf) + 2,2, (kk) = x,x, F2 V2,2,

& ab=xx, +yy,+2zz,

Thus, dot product of two vectors is the sum of the product of their corresponding

components. |

Example 14:  Ifa = 2i-3j + 4k and b = i+3j-2k, then find a.b in term$ of their

components.
Solution: ab

= (20 -3 +4k). (i + 3f - 2k)
- (2)(1) +(-3)(3) + (4) (-2)= - 15
3.55 Commutative and Distributive Properties of Dot Product
Theorem: If a, b, and ¢ are vectors and « any scalar, then
(a) Dot product is commutative i.e. a-b = b-a
(b) Dot product is distributive over vector addition i.e. ab+cl=ab+ac

Y nll's
Proof: y

@ Leta=xi+yj+zk andb=x,i+y,j+z,k

Using the properties of dot product and scalars, we have

abh = 1",1‘,!'+}'|j+z|k).['.1'31'+}’=j+22k)
= YX N n+ 0,5 =nx+yy+5
= b-a

Thus, g-b=p-q

() Let ¢ = Xyi+y,j + 7,k then
a-(bre)=(x\i+yj+2,k). [(x,0 + 3,0 + 2, k) x,0 + 3 +2,K)]

(xyd +y,j+zk). [(xy4x, )i+ (y,+ ¥, Ji+ (2,42, k]

X (X3 4X3) + (Vo +¥3) + 2,(2,+ 2,)

XX+ X X+ Y Yo+ Y Y+ 32,4+ 5,3

(X)X, + 3,024 2,2,) (X, X, 4+ ¥, ¥, +2,2,)= ab+ac

¢ Thus, a-(b+c)=a-b+ac :

—

T ——————— SR
. ' ==
3 ke i

"




f Vectors :
o ?ufr:: :r /3 and ¥ be the angles which
or. o .
i d:::ctiuns of the coordinate axes where each
itive

ies betw
ansjcsncsbe el

yect
ese
;:wmangles ¢, j§ and yaré call
i 1.42). - ' Z
ijaﬁﬁfme figure, we have three right triangles ‘C
AP, OBP nd OCP.Then

' * in right triangle OAP
LB
o

=2l =
cosx = Tl Fx;+yz+zi o

Y in right triangle OBP _,~&

= =
cwsf =i = ey e7 Figure 3.42
_ Figure 3.

z in right triangle OCP

e 2N 2y i
cos¥ Irl ;i;‘ +y + z

The numbers cos&, cos § and cos Y are ¢ :
r. The directi on cosines cos &, COS f and cosy are usually

respectively.

Thvepeent:If ¢, fand
cos?a +cos? fHcos?y =1.

Hirwdt: By the definition of direction cos

z

= = Y and cosy =————=

05X = — ,ﬂﬂﬁﬂw— = - = 2 2 5

- L+y+r Xy tz JE Yy FZ
z ¥ z

Pay.2)

*y

alled the direction cosines of the vector
denoted by 1, m and n

v are the direction angles of a vector r, then

ines of the vector r, we have.

y
a ey
S ttasalionyy < Py +x2+;-;’!+z2 ¥y +z
R EA e g
Ly +T

124 mi+n2= 1

Using symhoi',sf,m and i, we may write the above result in the form
' 1,62)

Examplécl55: Find the direction cosines of the vector from P(4,8,-3) to Q-
Sediéen: W e know that for any two points P and Q we have pQ=00-0F

Here OQ . =-i+6j+2k OP =4i+8j-3k
PO = (-i+6j+2k)(4i+8j-3k) = —5i-2j+5k

sincelPQ | =P +yieg
So 1PQ1 =(=5'+(27+(5) = 57 =305

[—

Hence direction cosines of the vector PQ are

cosa = i-» =.__Ji— , 505:3=___}_.I_ =% andcow:——z— =9
|PQI  3V6 1PoI 36 1PoI 36

3.5.7 Direction Numbers or Direction Ratios

The position vector OP of the point P(x,p.z) i
/ J.Z)in term i if
W ) of unit vectors ij and &
OP =r=xi+y+zk
K coser, cos f and cosy are the direction cosines of r, and p is a-pusitive
constant, then the numbers Pcose | Pcos i and Pcosy are called the direction

numbers or direction ratios of the vector r. The directi
: dire . The direction number
specify the direction of the vector r. T -

Since x =lIrlcoscx, y = IWleos f and z = Irlcosy where Irl is the length of the
vector r, s0 x, y and z are direction numbers of the vect
r [ or r. The
coordinates of P(x,y,z) may be written as (IFlcos e, Irlcos IFlcosy) i
Hence OP =r =Irlcos @i + Irlcos B + Irlcosr k
= OP=lrl(cosai + cos S + cosyk) or
OP = Irl (li+mj+nk)

{Did Yoo Hnow ﬂ)

l&'xamplﬂ 16: Find the direction numbers and direction . From the above. we
cosines of the point P(2,-3,6). gbtain fhe componées of
E o 2 r from the directi
Sdlution: The direction numbers are 2,-3, 6. msim::t muliiplﬁgug;
Since QP = F=2i—3j : OP 2
_ =r=2i- 3+ 6k 10P|=7, ivi

direction cosines are * A RAE E;;;EMI{; :I“:'Iing‘ s

; nents oy brl gives
the direction cosines.

X

ey

0P|

~1|r2

’m_—_-—_}_——-’:_-_—‘?' andn=—r = u
opi lop1 7
Ex *17: Fi i oP
f_n:mt 17: Find the coordinates of P, if 0P is of length 6 units in the direction
of OR where R is the point (2, -1, 4)
Solution; We have OR = 2i -J+%& 10k 1= Va1




The direction cosines of OR are

2 -1 4
f=—— m=—= ,n= Pleys)
NE V21 J21
The coordinates of P are (Irl#, Irlm, Irin)
where Irl=| OF | = 6. Figure 3.43

Therefore Irl e:%, It =:,.'i . Irin =%

24
Hence the coordinates of P are ( T % :r"

Example 18: A vector v has inclination 60° to o, 45° to 0y -
Find its inclination to 3z If vl=12, express » as xi + )j + K.

E o 0 5 og -
Solution: Here [ =cos 60"’—5 , m=cos 45 =
Let n = cosy, where ¥ is inclination to 0z .
Since P+m?+n? =1
So n? =1-0P-m? = ¥ =l-—=-_-=-

1
= n =+
T2

This shows that v is inclined to oz either at 60° or 120°.
3l ok 4 el 1i. 0 .1
N ] i k f 5 = o
ow i, mj, n arecompanerrusn v,s50 ¢ 2:+_:E-_;+ zk .
Buty =My =12 (2i +—=j+ ~k)=6i + 642 + 6k
2 o 2

3.58 Angle between two Vectors
One use of the dot product is to calculate the angle between two vectors.
(i) Let a and b be the two vectors. Then h:,v definition of dot product
= |a|b| cos & where 0 sg<x

a:Fﬂ

i.e. the cosine of the angle between two

ivi vec i i
divided by the product of their moduli. tors is their dot product

£ B Bl g i

AT I N g S Y

(iii) @b = |a|lp| cos @

(ii) ifg = 'ti‘l')'l.l‘l‘z o
a-b= xx’-+yl}'2'|'z|?,z

bl =y + 3 +z' and |-bl=\;'x§+y§+z.§ since by (i) above

x;x2+y,}-?+zl% b
2
Vi +J’|z+z.1\fx§+y:+z: /

cosf =22

b=x=£+ylj+zzk

cos = ab Sonat
“HH s8=

A A a o

| el = =

Example 19: Find the angle between the vectors 3% and 83 where G = 2i 4},
00 =-3i + 2j

Solufion: Let O be the angle between

the vectors OF and 00

Then cos @ = OP OQ Jﬁ%‘
OP“OQ . A — "2isj
3 : d [+)

_ (34 25).(204)

33+22 2% 412

Figure 3.45

= Cosf= =-0.4961

oF
= 8=119.74°
Example 20: Find the value of t such that the vectors 2i —j + 2k and 3i + 2( are

-

~ orthogonal.

Solution: Leta = 2i~j + 2k and b =3i+2¢j. If @ and b are orthogonal, then a-b=0

) zm + =120 +2(0)=0 = -2t=-6orr=3
3.5.9 Projection of one Vector on another
Let @ and b be two vectors and & be the angle between them as shown in

(Figure 3.46) ,0<@s7

R.‘. is perpendicular to E)Té . Then a’."‘ is called the projection of @ on b.




IR AL

e
5

=

— I0C1 =104 | cos 8 = lalcos & (1)
By definition of angle between vectors
o ab @
lallhl :
—= ab
Using (1) and (2), we have Iqm o

B s gt M
This gives that the projection of a on b is %r_I' Similarly the projection of b onais

Example 21: Find the projection of the vector @ =i~2j+k to the vector b= 4i - 4j+7k.
Solution:  The projection of a on b = %
Now a-b = (i-2j+k). (4i—4j+7k)= (1) (4) + (=2) (—4) + (1) (7) = 19
Andlbl = J(@) (4P +(7P =V16+16+49 =Bl =9
ab _19
b
3.5.10 Work done by a constant force
If a constant force F acts on an object during any interval of time and: the

object undergoes a displacement S, then the work done on the object by the force
F is defined as

W= F.§
or W= F5 Cos 8, where 8 is the angle between

the directions of F and 3, as in (Figure 3.47)
Example 22: Find the work done in moving an object”

the projection of @ on b =

along a vector 9i - j + k if the applied force is 3i + 2 + k. >
Solution: Here F =3+ G+k " Figure 3.47
S=9%-j+k :

W=FS$=(3i+2+k) (9%i-j+k)
= 3(9) + 3r~u +11)
=27-24%
=26

Hence work done = 2¢ units

If a=3i+45- k,b—z—_; + 3k and ¢ = 2i 4 j — 5k then find
(i) ab : . (i) ac (i) a-(b+¢)
(iv) (2a+3b)c (V) (a-b).c
2. Write a unit vector in the direction of the sum of the vectors
d=20+2]-5k andb= 20+ ]-7k.

Find the anfgl&:s between the following pairs of vectors:
@) i-j+k, <i+j+2k - (i)3i+4,2j-5k Gi)2i-3ki+j+k

b

B

. Show thati + 7 + 3k is perpendicular to both i - j + 2k and 2i + j —3k.

Leta =i+2j+kandb =2i #j-k Find a vector that is orthogonal to
both a and b.

6. Leta =i+ 3_;—4kandb 2: 3j + 5k. Find the value of m so that a+rnb
is orthogonal to Ma (Db .

LA

7. Given the vectors @ and b as follows:
@ a= —%j+%k, b=i-2j-2k" (ia=—3i+j+2kb=rig+5k
Find in each case the projection of aon b and of b on a.

8. What is the cosine of the angle which the vector /2§ + j+k makes with
y—axis?

9. A force F = 2i + 3j + k acts through a displacement §=2i +j - k.

Find the work done.

10. Find the work done by the force #=2i + 3j + k in the displacement of an
object from a point A(-2,1,2) to the point B(5.0.3).

11. (i) Show that the vectors 3i-2j +k, i= ~3j + 5k and 2i + j—4k form a right
triangle.(ii) Show that the set of points P =(1,0.1), 0=(1,1,1) and R=(.1 [:i)

form a right isosceles triangle.

12. Prove that the angle in a semicircle is a right angle.
13: Prove that perpendicular bisectors of the sides of a triangle are concurrent.




3.6 The Cross or Vector Product of two Vectors
In section 3.5 we noticed that dot product

of two vectors in plane or in space gives a scalar.
However, in this section we shall see that there 1S
ariother product known as ¢ross or vector product,
which. gives the result as vector 1n three

dimensional space.

3.6.1 Let @ and b be two non-zero vectors. The ~—

cross or vector product of @ and b, denoted asa xb, b L‘""-\._:w}

is defined by J »
axb=lallblsinfii . ks C -

where 7 is a unit vector perpendicular tothe plane | Figure 3.48(b)

determined by a and b (See Figure 3.48 (a))

The direction of n is determined by the right hand rule % .
“Join the tails of a, b, stretch the fingers of your right hand along the direction of
first vectora and curl them towards the second vector & through smaller angle &
between a and b (0<@<180°), then the erected thumb will show the direction of n
ora xb."

If @ and b are as shown in (Figure 3.48 (2)). and the plane containing a, b
represents upper surface of a table then a x b is directed above the table.

Clearly, the direction of b » a by stretching fingers along b and curling

towards a gives the direction of the thumb of right hand downwards (under the
table) direction from the plane (see Figure 3.48(b)). i

Hence b xa=-[bl lalsind n

. where i is a unit vector perpendicular to the plane directed upward.

In Figure 3.48(b) b x a is the scalar multiple of — 7 .

- Ifa and b are’two vectors, then the length of @ x b is given by la x bl = lal bl sing

362 Inpmediate consequences of the definition of Cross Product
(i) Sincea x b =-bx a, hence vector product is not commutative i.e.

axbh#bxa
(ii) Paral!e] Vectors. Ifa and b are parallel but in the a
opposite direction as shown in Figure 3.49(a),
then &= 180°. —
b

In this case a xb:hllblSiHIBU”A= -
(.. sin 180°=0) == Figure 3.49(a)

e — : : ______Not For Sale
< - ; - Sl

crafics

shown in Figure 3.49(b), then 8=0°

In this case @ x b=lal bl sin 0°/=0 (--sin0°= 0)

Hence in either caseax b=0

If @ x b = 0, then either at least one of the vectors a, b
zero or a and b are parallel.

In particular @ x 0 =0 for all vectors a.

3.6.3 Expressing Cross Product in terms of components

If a and b are parallel but in the same direction as

is

a
—

—

b

Figure 3.49(b)

Let a = x;i+y,j+z,k and b=x,i+y, j+z,k be two vectors in space. Then using

the properties of cross product, we have -
axb = (xi+yj+ k)= (it y,j+ k)

= XXy (ixr'}-!-x,y, [ix j)+xlz= [ixk}-ry,& (jxr‘]"')'ll':(ij]"' )‘@:U.xkl

+z,x, (ke xi)+ 2y, (k% j)+ .2, (k xk)

=x% (0)+ %, {k)"'xlzt (-j)‘*')'l"": (“k)"' 02 (0)+ 0z () +2x5, (/) + 2y, (<) + 3,2 (0)

=(y2, — Y i (%2, — 2,0,) J+ (), — wx )k

The expansion of 3 x3 determinant :

i ok

XY 2| =002 =2y - (xze2)J + (xyyixJk

¥ T £ o

d R R -

From (1) and (2), we have g x b=lx, ¥ gz
- ) X Y2 %4

3.6.4 Application to Geometry

Theorem: Prove that the magnitude of ax b
represents the area of a parallelogram with adjacent
sides a and b.

Proof: Let @ and b be two non-zero vectors
representing the two adjacent sides of the
parallelogram and & be the angle between them as

shown in Figure 3.50. We know from geometry that ¢

Area of parallelogram = base x altitude
5 " = lal bl sin@ = la x bl

Thus Area of parallelogram = la x bl

(1)
(2
R W :
B/ i
L |blsird =
A . =
= a




........
____________________________

heorem: Prove that the area of a triangle bg:
equals = laxbl
Proof: From Figure 3,51, we have that
L I
i = = f parallelogram). e
area of triangle = 5 (area of P 2 5y
By above theorem . Figee 2,51

: : 1
Area of parallelogram = la x b1 Area of triangle = & 1&%@1

whérc a and b are vectors along the two adjacent sides of the triangle.

Example 23: Find the area of the triangle whose vertices are A(2,2,0),

B(=1,0,2) and C(0,4,3).

Solution: Let AB and AC be the adjacent sides of the parallelogram determined,

so the required area of the triangle is half the area of the parallelogram, that is

— -
ABx AC

Area of the triangle = %

Since AB- = (-102)—(22,0)=(-3,-2,2) and
AC = (04.3)- 22.0)=(-2.23),

— — f 4 k g
s0 AB x AC = |-3 =2 2| =-10i + 5j -i0k
R
={Exﬁ|= JE10+ (5°+ (-10) =225 =15
Area of the triangle = %IATB’XAE = %

3.6.5. Su_:lnr triple product of i,j and k ;
By applying the definition of cross product to unit vectors
i, j and k, we have
(@  ixi=lillilsin0°n =0
Fxi=llhl sin0®n =0
o kx k=K sin0°n =0
() i xj=lilljl sin90% = k
J ok =il Ikl 5in90% = §
‘ k> i =kl lil sin90°% = j

jxi_:..(,'xﬂz_-k
’f"-”c == xk)=~i
tAk=—(k i) = s
Thus h% et
- t:x':=j"‘.f=kxk=ﬂ
'_"J_=kﬁj"‘k=l}kxi=j
Jx :=—k,k,xj_—._,',;xk=_:i

For convenience we i
; arrange u L ik i
clockwise order as shown in Figugn: 31;; ﬁzmmf'k 5
product c_>f any two Fonsccutive vectors is the mmainingct;?i; % ]
vector with a Elus $1n or a minus sign according as the order
of the product is clockwise or anticlockwise, ' /
Property

3.6.6 Anticommutative .
Theorem: Ifa, b are vectors, th

axb=<bxa e ey
Proof: -

This prope ' ) ) :
fo]lblgs. perty has already been proved geometrically. Analytically we prove it as

Leta = xi +y,j+ 2k b = x,i+ y,j+ 7,k
R -

axb=lx, y g === % z (by interchanging the rows of the determinant)
X, ¥ 5 RS
=-bxa
Thus axbh =-bxa

Ifa=0o0rb=0o0rsinf=0, thenclearlya xb =0
3.6.7 Distributive Property
Theorem: If a, b and ¢ are vectors, then
(i) (a+b)xc=axc+bxe (i) ax(b+ec)=axb+axc

Proof:
(i) Leta =xi+yj+zgk b=xi+%j +z.k and ¢ =xd + %j + 2k, then
@+b=(x,+x, )i+(y; +), Jji+(z,+2,)k and so :

i j ke &/l ek
(@+b)xc=lx+x, w+y. atz|=lx ¥ |+ ¥ zl=Faxc+bxe

X3 i 20 Ly X; N o Xy M O
Thus (a + b)x c=a xc +b x¢
(ii)  Proof is similar to (i) above
Not For Sale
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; n two vectors
368 Angle betwes culate the angle between two vectors.

One use of the cross product is to cal gl
(i) Let a and b be the two vectors. Then by definition of cross product

la x bl = lal Bl singwhere 0 =@=n

5 osinf= g b ie. the sine of the angle between
[t

the two vectors is the modulus of their cross product

divided by the product of their moduli. .
a x b - Figure 3.54
Hence #=sin™ I
Jafle]

Example 24: For the vectors a = 2i + 57

find :

(i) (a-b)x(c-a) :

(i)  aunit vector perpendicular to both @ and b

(iii) sing where @ is the angle between a and b.

Solution: (i) a-b =(2i+5 +3k)- (3i+3j+6k) =—i + 2j - 3k
c—a =(2i+7+4k)-(2i+ 5+ 3k) =2+k

P &
s@-bxe-a)=|-1 2 -3 =2+6)i-(-1-0)j+(~-2-0k=8i+j-2k
B3 "
(i), Let f be the required unit vector orthogonal to both a and b, tﬁen
A~ axh
rl=I::n-<.bll M
i j k
axb={2 5 3 =(30-9)i-(12-9)j+(6-15)k=21i-3- 9%,
3 3¢ 4

la x bl =V 21H=3)+(=9) = V531 =359
Putting in (1), we have
A i=-3j-9%  Ti-j-3%k

W59 T J59
(i)  Since la x bl = lal bl sin@ where 8 is the angle between @, b, we have
Cin@=eXbl g 3 35 _ 35 V59

T

V38454 m'—%fﬁ 331“6'=E

Mathematics-XI f

+ 3k, b = 3i + 3j + 6k, and c=2i+ 7j+k,

3.6.9 Moment of Foree

The moment: M of a force F about a point P is defin
M= |F| d, where dis the (perpendicular) distance between P
of action L of F as shown in (Figure 3.55) -

If r is the vector from P to any point Q on L, then
~ d=||sine |
M= |FP =HF|§1H€

Since @ is the angle between r and F,s0 M= rxF .
The vector M=r x F is called the moment vector or vector moment of F aboutQ
Example 25: Find the moment about a point A(2,1,1) of the force F=7i + 4 :
1dy F=7 — I
applied at (1,-2,3) ‘. : MRSk
So!utlon: Ifr is the position vector of the point P of application relative to the
point A about which the moment is calculated, then moment M is given byM=rxF

where r= AP =(2i+j+k) - (i-2j+3k) =—(i+3j-2k).  Hence,

ed as the product
andtheline -

Figure 3.55.

i j k
M=rxF =[1 3 -2 =—-{(—9+8)i+{—}4+3§+|'4—21,Ik}=i+Hj+ 17k
7 4 -3 '

1. Find the following cross products.  *
() Jjx(@2ji+3k (i) (2i-3/) xk (i) (2i= 3/ + 5K) x (6i+ 2j—3k)

2. Show in two different ways that the vectors & and b are parallel:
(i) &=-i+2J-3k,b =2i-4j+6k (ii}'a'=3i+61-9k, b =i +2J-3k

3. Find a unit vector that is orthogonal to the given two vectors:

() = i-2j+3k,b=2i+J-k (il) T=3i—J + 6k, b=i+4J+k
4. % =3i—6+5k b=2i—Jj+4kC=i+Jj-k, computc _
HaFxb . () bx < (iii) (+b ) x(q-b)
5.  Use the vector product to compute the area of the triangle with the given
vertices: @) P: (2,3),Q:(3.2), K (-1,-8)
(if) P: (-2,-13), Q: (1.2, -1, R: (4.3, -3)
6. A force F =3i-2J+5k actsona particle at (1, =2, 2). Find the moment or
torque of the force about (i) the origin: (ii) the point (1,2,1).

7. If A+B + C=0, show that AXB=BxC=CXxA.



- 8. (i) Find.aunit vector perpendicular to both @ =i+/+2k, ::;5'— 2 +J -3k
(ii) Find a vector of magnitude 10 and perpendicular 10
1 =203 +4k b =4i-2J-4k. : .
9.  Find the area of a parallelogram whose diagonals are:
()@ =4i+] -2k and B=-21+3/+dk
(ii) @ =31+ 2J-2k and B=i-3/+4k

37  Scalar Triple Product of Vectors

- 3.1 Leta, b and ¢ be three vectors. The scalar triple product of the vectors a, b
and ¢ is defined by  a-(b x¢) orfaxh):¢ .
The use of parenthesis with @ x b is not important, a the only other alternative
given to the expression a x b-c, namely @ x (b-¢) is meaningless. The scalar triple
product a-b x ¢ is usually denoted by (a bc). :
3.7.2 Expression of Scalar Triple Product in Terms of Components

Let a=x,i+yj+z,k b=xi+yj+z,k and c=x,i+y, j+z,k be vectors, then

o
bxe =lx, y, 7| = bxe=(nYu)i-(xuxnl+HX)—x%yk
B Y 4 E
a-(b % e)= x,(y3z; = Yi%a) = Yil%2-X:2)+ 21 (X)5%3)2)
Hoh
o T
R T S TS
H Nn g
Thusa-(b x c) =l 3 b
R TS LR 1

:rluch is called the determinantal form for scalar triple product of vectors a, b and c.
heorem: For any vectors a, b and ¢, a-(b x c)=b(cxa)=c (axbh)
Proof: Leta=x,i+y,j+zk, b=x,i+y, j+z,k and e=x,i+yi+z,

' ; k, then b i
form for scalar triple product of vectors a, b and ¢, we hay y determinantal

e
N N g

abxe) =ix, y, z, (1)
EET SR A !

Z; ; X N
similarly (e X @) =X "y, | ==[x y 3z
x. oy -T. Ya
N g
= bfexa)=|x, y, 2, 2
R TP £ T
BT T n N o
and claxb)=x ¥ 4| ==% ¥ 4
X, J’:I 2 X ¥ o
Xon %
= claxh)=|x, ¥ (3) From (1), (2) and (3), we have _
RS ) -

a-(bxc)=b(cxa)=c(axb)
By virtue of above theorem [a b ¢] = [bcal=[cab]
3.7.3. Scalar triple product of ij and k
Theorem: Let i, j and k be the unit vectors. Prove that
(@) ijxk =jkxi=kixj=Iand (b) ikxj =jixk=kjxi=-I
Proof: The proof is simple, so it is left for students. ;
3.7.4 Dot and cross are inter-changeable in scalar triple product
Theorem: The positions of dot and cross in the scalar triple product can be
interchanged.

‘Proof: Let a= x,i+y,j+z,k, and b=xi+y,j+z:k and c=x;i+yi+zk be any three

vectors. Then

: n »
-ﬂ\{b KC}: e s 1 g . (1]
X N 4 '

By definition

i j ok
h g|= f}'rzz'zr)’zJ‘f—f-frzz“ztx:y vk

X, ) o .
@xbye = (yz—ay—{xzzx)yHExy %) )




zIaY|zl

; %
% » u |h abe g B
=% N 4 =-l » b .

x: ¥ % |x, 'ﬁ

=(axb)c :
a(bx f;ln ; T::ss{n the scalar triple product can be

x ¥ A
From (1) and (2), we ha\:c.
This shows that the position of dot
interchanged.
375 (s) The Volume of the Parallclepiped
Let us consider the pm]]ﬂlepl.pe‘d with g, :
as co—terminal edges are shown in (Figure 3.56).
Thena =04, b= 0B, ¢=0C
Leta x b = d. Then by definition of ¢rC
d is perpendicular to the plane containing @ and b
and geometrically represents the area of the J _
parallelogram OAFB  given by laxbl. The Figure 3.56
parallelogram is regarded as base for the L
parallelepiped. If @ is the angle between the vectors d and ¢, then | 0D = el cos @
being the projection of ¢ on d represents the height of the para]lclepiyed. 'icn from
elementary geometry, we know that the volume v of the parallelepiped is the area

of the base multiplied by height.

of cross product

Hence volume of parallelepiped = (Area of parallelogram) (Height)
= v = lax bllelcos®
= Vv = (axh)c

The scalar triple product will be positive if & is acute and ¢ lies on the same side

of the plane which contains a and b.

As |b x cl represents the area of the other side OCGB of parallelepiped, hence
v=a(bxc)

Thf.:refme v=a-(bxc)=(axh)c

E&s cs:so the f:h::::gi;a?;rggx b)¢ is the volume of the parallelepiped with @, b,

3.75 (b) Volume of Tetrahedron- A tetrahedron is determined by three edge
vectors a, b, ¢ as shown in (Figure 3,57).

The volume of a tetrahedron with a, b, ¢ as its ¢ i :
given by O-terminal edges is

T T %{a-(bxc)]

1
6

3"‘1'6 &
(i)  ab x c being the volume of a parallelepiped with a, b, ¢ as co-terminal

Properties of Scalar Triple Product

edges, hence the evaluation of the determinant
SR T
X, ¥, 2| givesthe volume of the parallelepiped as discussed earlier.
X ¥ G '

(i)  If two of the three vectors are equal, then the value of the scalar triple
product is zero because for any two identical rows, the determinant

vanishes.
(iii) [abec]=0ifand only if the three vectors a, b, ¢ are coplanar.’
Example 26: Find the volume of the parallelepiped determined by
a=2i+3k b=6G-2k and c=-3i+3f

Solution: Let v be the volume of the given parallelepiped.
: 2 0 3
Then V=abxe =|0 6 =2 =2(0+6)-0(0-6)+3(0+18)
-3 3 0|
=12-0+354=66

Example 27: Find the volume of tetrahedron with a, b, ¢ as adjacent edges where
a=i+2k b=4i+6+2k and c=3i+3j-6k
Solution: Let V be the volume of tetrahedron.

Then

I
4
3

= 2

V= = é [(=36-6)-0(=24-6)+2(12-18)]

o | —

w oo o

_GL

( Did You Know ﬁ)

We ignore the minus sign, because volume is always Two or more vectors are
said to be coplanar if they

non-negative. lie in h I
EI& le 29:5 < A4, =21 .B 5.1.6). e in the same plane or
mple how that the points A(4 ).B(5,1.6) caraIalto AR A

CR.2 =
5(11 2 5), D(3, 5, 0) are coplanar. e
olution: : Non—coplanar vectors lie
Let @ = AB = (5-4)i+(1+2)+(6-1)k=i+3j+5k in three—dimensional space.
b= BC = (2-5)i+(2-1)j+(-5-6)k==3i+j-11k
¢ = CD = (3-2)i+(5=-2)j+(0+5)k=i+3j+5k
The four points are coplanar if the vectors AB , BC, CD are coplanar. We have

1 =34
6( 2 6




y

7 | ren v
be= _13 ? il = 15539 3-15#10-59-D) S
135

Hence the four points are coplanar.

EXERCISE 3.5
47 Find E[ExE}.if§=zf+i+a‘k.5=-f+2?+"‘"“d°=3'+’7*2"

2, Find the volume of the parallelepipec: whose edges are rep_resemcd by
a=314 -k b=2i-3+k, c=i-3- -

3. Porthe'{ectors a=3i+2k b=;+2j+kl c= J+4._k .
verify that 2 hxc=biexa=c-axh buta-bxc=-cxb-a

i i, J= " k-iis zero.
ify that the triple product of i=j, J=F anq
‘5‘- ]‘:’;r::ia?l-f-ajjfa; and b = bji + b,j + b,k. Find ax b and prove that

(i) axb is orthogonal to both @ and b (use dot product) (if) Find (ax b)*
2 7
(iii) Find (a-B)}, [af'» [o]
(iv) Show that |axB[ = (a-a) (b-b)-(a:b)
6. Do the points (4,-2,1), (5, 1, 6), (2, 2,-5) and (3, 5, 0) lie in a plane?
7. For what values of c the following vectors are coplanar?
G) u=i+2i+3k  v=2i-3+4k w=3i+j+ck
(i) u=i+j-k v=i-2j+k w=ci+j-ck
(i) u=i+j+2k v=2i+3+k w=ci+2f+0k
8.  Find the volume of tetrahedron with the following
(i) Vectors as coterminous edges a=i +2j +3k, b = 4i +5j + 6k, c=7j+8k
(ii) Points A(23,1), B(-1-2,0), C(0,2,-5), D(0, 1,-2) as vertices.
9. (i) Writethe value of (Tx ). k+1.] (ii) Write the value of ( x ). i + j

REVIEW EXERCISE 3

"1. Choose the correct option.
@ The value of i+ (xK) +/:(ixE) +F{ix])

e e @l @ 3

()  The vector 37 + 5] + 2k, 27— 3] — 5% and 57 4 27— 27, :
a triangle which is ) =Sk and S+ 2 ~ 3F form the sides of
(a) Equilateral (b) isosceles, but not right-angled

(c) Right-angled, but not isosceles

(d)right-angled and isosceles

(iv)

)

(vi)

(vii)

(viii)

The two vectors & =2i + J +3k b =47 -

; AJ+6Kk are parallel if A=
Wos T s ©3 P
If |ﬁ'+b‘ =|ﬁ'-b| , then -

(2) @isparallel toh (b) 7 L5

(c) ‘Hl=ﬁ;l
The projection of the vector 27 +37-2F on the vector T+ 27+3% is
IS N (02
V14 V14 N
Find non-zero sca_l.ars o, Bforwhich er(7+2b) - Ba+(4b -a) =0 for
all vectors @ andb .

(d) None of these

|
|
i
(d) None of these 'i
I
f
|

(a) g=-2,0=-3 by =2, B==3"
(c) g¢=1, f=-3 (d) a=-2, =3

If a, b, ¢ are position vectors of the vertices of a A ABC, then
AB+BC+CA= :
(a) 0 (b) 2a (c)2b (d) 3¢ -

If & be the angle between any two vector @ and b, then|a -5]=|a x Bl,
when @ is equal to
@0 OF ©F @m
Find Aand p if (T+37+9% ) x (37— 4] + ;:E) =0.
If =97 - +k andb =27 —27-F , then find a unit vector parallel to the
vector T +b.
If F=xi+yj+zk, find(Fxi).(7Fx])+x.
If @=7i+j-4k and b =2{+6]+3k, then find the projection of @ onb. '
Find A, if the vectors a=i+3]+k, b= 2i-j-kand F=Aj+3k are
coplanar, - _ gy e s ;
Vector @ and b are such that |@| =3, |b| = 3 wd (@xB) is aunit
vector. Write the angle between @ and b.
Find the area of a triangle whose vertices are (0.0,2), (-1,3,2), (1,0,4).
Find the area of the parallelogram with vertices A(l .2,-3), B(5,8,1),
C (4,-2,2),D(0,-8,-2).
Prove that in any triangle ABC
(i)a? = b? + ¢*—2be cos A (Cosine Law)
(ii)a = b cosC + ¢ cosB (Projection Law)
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@ Find the sum of n terms of a geometric series,
L]
L ]
L]
L]
L
[ ]
L ]

; T T
T :r number E?mmnn
hterm 11“ e of terms difference

e sequence in the

sequence

ter reading this unit, the students will be able 05

terms.,

ion) and its ; :
P/Dzline &iscqucace (prOgEess ) d from a formula or an inductive

@ Know that a sequence can be constructe

definition.
Recognize triangle, factorial and pascal sequences.

Define an arithmetic sequence. .
Find the nth or general term of an arithmetic sequence.

Solve problems involving arithmetic sequence.

Insert n arithmetic means between two numbers.

Define an arithmetic series.

Establish the formula to find the sum to n terms of an arithmetic series.

Show that sum of n arithmetic means between two numbers is equal to n times

-
[ ]

-

L ]

e Know arithmetic mean between two numbers.
@ .

L ]

L ]

o

their arithmetic mean. :
Solve real life problems involving arithmetic series.
Define a geometric sequence,

Find the nth or general term of a geometric sequence.
Solve problems involving geometric sequence.
Know geometric mean between two numbers.
Insert'n geometric means between two numbers,
Define a geometric series,

Find the sum of an infinite geometric serjes,

Convert the recurring decimal into an equivalent common fraction
Solve real life problems involving geometric series I
Recognize a harmonic sequence, )

Find nth term of harmonic sequence,

Define a harmonic mean,

Insert n harmonic means between two numberg
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4.1 Introduction

In practical life you must j

3 ave observed many things i
pattern, 5u:l:1h as the_peta]s of a sunflower, the holes of a ﬁoneygonzinf: ik G
a maize cob, the spirals on a pineapple on a pipe cone etc Ve
In Umf day_t%;ddy life, we see patterns of geometric figures on clothes pictures.
posters etc. They make the learners motivated to form such new pauems, T
Number tpa[t;:i‘l‘l_s a1’"c f?cit:ii by learners in their study. Number palterf;s play an
important role in the field of mathematics, Let s s i '
g tudy the following number
@) 2,4, 6,8, 10,... (D) 1,132, 24.3,... (iii) 10, 7, 4, 1,-2,... (iv)2.4,8.16,32

gl 11 ; 1 "
W) 45 sqe g (D 1?%1:‘ (vii) 1, 11, 11,1111, 11111,...

It is an interesting study to find whether some specific names have been given to

some of the above number patterns and the methods of finding some next terms of

the given patterns. i

Observing various patterns various sequences were defined to solve various

summation problems.

Among various sequences A.P. (Arithmetic progression), G.P. (Geometric
progression) and H.P (Harmonic progression) are most common.

Idea on A.P. was given by mathematician Carl Friedrich Gauss. who, as a young
boy, stunned his teacher by adding up 1+ 2 + 3 + ...... + 99 +100 within a few
minutes. Here's how he did it.

He realized that adding the first and last numbers, 1 and 100, gives, 101 and
adding the second, and second last numbers, 2 and 99, gives 101, as well as

3 + 98 = 101 and so on, Thus he concluded that there are 50 sets of 101. So the
sum of the series is 50(1 + 100) = 5030.

4.1.1. Sequence

A sequence is a function whose domain is the set of positive integers. The

numbers in the range of a sequence are real numbers, called terms of the
sequence., ;
4.1.2 Construction of a sequence from a formula (inductive definition)

Let fbe a function defined by
f(n)=2n,ne{l,2,3,..}
f(1)=2, the first term
f(2)=4, the second term
£(3)=6, the third term ...............

Thus the required sequence is 2.4, 6, ...

Remember

then

Mathematics-XI SEFEH




: Ullltd.l Sequences and Serles ) for the nth term
- In sequences, instead of using & symbol sui%;iﬂﬁat corresponds to a
{usually called the génera] term) which denotes R fI:,r f(n). When the nth term of
given integer n, it is customary fo use mfhsey?nﬁleﬂ;equmce by the symbol {a,},
a ;ﬂ]uencca is knnw:m mftfa \Eem fﬂ:;"n‘gl the second term, _mc_thur(; rteir::i ugf tlh'te
:;qf:n :51. , ai} a;;-.lcll.so o Since the order among the positive integers e the
ordering among the corresponding tlfnnsdoi'l t:; Romember 1)
i hat the orde P e T L £
séquence, this clearly shows ! sequence may be described

has a vital role in the definition of & sequence, A sequence m; |
so we can also define a sequence as follows. by specifying first few terms

A sequence is a collection of numbers m‘dafﬁtmula (ora set c_nf
arranged in particular order. {qﬁ_l‘lgi_!.}l_as:)_. gx_\r;ngl-a_ralauun
The sequence 1,1,2,3,5,8,...can be written as between Successive terms,
X =Xy= 1, Xy=Xp+¥p2,n>2,n €N, Such a formula is called
This sequence of numbers is called the RECURSIVE FORMULA
Fibonacei sequence. Some sequences may not (or RECURRENCE -

be described by any rule 2,3,5,7, 11,13, 17,... ,REILQTIONJ_. i

the formula for a,, the nth prime number hasnot

been found yet. _

Example 1: Write the first four terms aj, a,, a3, and a4 of each sequence,

where a, . f(a). -
( Remember g i)

(a) f(n) = 2n=5 (b) f(n) = 4(2)™*
(©) fm)= 1)" (z27)

Solution: ':iia-?séqumce'is said to be -

finite if there is a first and
r'l_'ast term otherwise it is said
!I:_tofbe;inﬁqite.'

a) Since f(n) =2n-5
a=f(1)=2(1)-5=-3
4 =f(2)=2(2) -5 =-1
In a similar manner, a;= f(3) =1 and a,= f(4)=3,
b) Since f(n) = 4(2)"™"
a,=f(1)=4(2)"" = 4

Similarly, a;=8,a3=16and a;=32, |

3 ay=1f(1) = 1)' (V1+1) =112,
a=f(2) = C1)*(22+1) = 273,
a3 =1(3) = 1)’ ( 3/3+1) =-3/4,
as=f(4) = 1)* (4/4+1) = 45

Did You Know
mfaﬂMr {—1)'f causes
the terms of the sequence |
o alternate signs

e o

Mathematics-X1 BT
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Example 2: Find the first four terms of th
=200+ 1; a,=3

€ recursive sequence that is defined by

Solution:The scquence s defined recursively,so we must find the terms in order
a=3 .
u2=2ﬂ]+ | =2{3]+ 1 =7

Did You Know

"y =

.

!i' x e ], iy
!-Therﬂ 18 HO I.I.'Iﬁq!lﬂ- epresenta

=2m+1=2(T+1=15 | s - TCPIESt
= ‘general term of a sequence,

as=2a3+1=2(15)+1=3] .alwmwsibhhm
The first four terms are 3,7,15, and 31, \term of a sequence, = e

4.1.3 Some special Sequences

Some wcll-knu'.‘vn sequences are given in the following example.
Example 3: Write down the first five terms of each recursively defined sequence.
@  h=1, 0, =t e+, n=123,.
) fo=l.fiu=0r+Df, , r=0123,..
© =l p. =%p,. r=0,123,..
Solution: (a) =]
L=h+2=1+2=3
L=t+3=1+2+3=6
t,=t,+4=1+2+3+4=10
tg=t +5=1+2+3+4+5=15

(b) fo=1 )
fi=Lf,=1x1=1
fi=2.f,=2x1=2
f,=3.f,=3x2x1=6
f,=4.f,=4x3x2x1=24

This sequence is so important that it has its own special notation, r 1, read
as ‘r factorial’, It is defined as: 0! = land (r+ D! =+ 1) x 1!, r=0, 1, gt ]

5 pﬁ%ﬂﬁ@(l}ﬂ Pz=%P.=[%](4]=6
e I




Unit 4 | Sequences and Serjes

t 4 | Sequences and Series ; . ] | !/ id You Know
— I _ xample 3(2) 3(b) and 3(c) are SPecmid'}l;I;z le Did Y : . |
i ine ! ia] sequence an ca e ] e i
The s?ﬁtécgfcin:gal:eli o Sber s6quence, the facton?li: ig A expanizion o8 summatpxn Notation ; . : i 4:». :|
sequences, called the triang an important 1o Summation notation is used to wri 1
|

sequence respectively. These seq;.wnces play
binomial expressions like (x + ¥/

the uppercase Greek letter sigma, indicates

nte series effectively. The gymbniZ. o
a sum. 1 AT

i 3 i
The complete Pascal sequence in 3(c) is ' : : _ : Al :
1,4.6,4,1,0,0,0,0,... i 55 o Y ax = a + a + a-)"f""""""'an ) o .
“This is only one of the families of Pascal sequences. Due to its importance, it has k=l A . 3 4
a special notation, The letter k is called the index of g i . £ |
i3 4 : . the sub-scripts of the first and last t;:lnn?i‘:otll]{g];:]ﬂ:nbﬂfyl i::-g n;nirgsﬁ ,
(J L r=0L23.. lower limit and upper limit of the summation, respectively. : 2 i

i (;J o [?] =% [:] ik [:J a4 [ﬂ S (3 sl ((Practice LD, ( Remember ! f) = :1'

Obviously, different Pascal sequences will have different multiplying factor. Using summation notation

- Sequences and Series

The general definition of a Pascal sequence is: Evaluate ea;h Series A gequeuce is anordezed Jist!| |
: (a) gkz whereas a series 'is a sum of | ;
n n n—r (n y =1 the terms of a sequence. 1
[CJ =1 and (rHJ e [J » 7=0,1,2,3,... n | For example. ' {
®) 235 , 1,35, 1.9 513 1500 - ||
We obtain the following Pascal sequences for n=0,1,2,3,4,.. by using the = sequence, and g
bbove general definition: () EI(ER -5) ;:2;55” +9+11+13+15 H
=0:1,0,0,0,0,0,... ; - e
=1:1,1,0,0,0,0,... ' IL;
2 j : § ; ? g: 3 o Example 4:  Find the sum 3 k*(k~2) 'I'
=4:1,4,6,4,1,0,... 7, |

Solution: D (k-2)=1(1-2)+2}(2-2)+3 (3-2)+4'(4-2)

m which we extract thewell-known triangle, called e =(-1)+0+(9)+(32) =40 %
|
I

1
' 10
1 1 2 1 : Elﬂmple 5: Find the sum Zc, ¢ is constant
1 k=1
1 3 3 I 10 -
1 4 6 4 I Solution: Y c=c+c+c+...+c=10c

k=l
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4.1

dinfinite sequences:
i) D,I,U;:!,sli' ' 1
" 2187
general terms:

| ‘ -]-'- e g U R
s of a sequence with the given

T N |
Ty R _1(n=2)
3 i 5 El) S W) n(n ;(

Wrtte down the ﬁtﬁ term of each sequence as suggested By'the pattern.

(ii) 2,-4,6,-8,10;... (i) 1L-L1,-1,..

; X Write each of the following series in expanded form.
A ;

: i:;z j=3) ) > (12"

i=l

=] A " 3 E

e s (iv) (—]
i 2! E 2
Find the Pascal sequences for: (i) n=5 (ii) n=6 (iii) n=8 by using its
B0 peneral recursive definition.
E"‘.;.:.“-: St gell m i il
4. Arithmetic Sequence (A.P)
4.2.1. Numbers are said to be in Arithmetic Sequence (A.S) or Arithmetic
Frogression (A.P) when its terms increase or decrease by a common difference.
Thus each of the following sequence forms an Arithmetic Progression:

e B B L PR e

CR T B (R D

p (i)

a, a+d, a+2d, a+3d,.......ccuu........

The common difference is found by subtracting any term of
which follows it. In the first of the above exam
the second it is —6; in the third it is d.

the series from that
Ples the common difference is 4; in

Mathematics-X1
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4,2.2 The nth term of an Arithmetic Séquence
We find a formula for the nth term of an arithm

first term and d be its common difference,
sequence are given by

4 =a+0d =a,+(1-1)d

etic sequence. Let g, be its
Then consecutive termis of the

G=a+d=a+1d=a-+(2-1)d
d=a,td=(a+d)+d=a +2-d=a,+(3~1)d
d=ay+d=(a+2d)+d=a +3-d=a,+(4-1)d
as=a,+d=(d,+3d)+d = a +4-d=a,+(5-1)d

=a,=a,+(n-1)d
Example 7: Find the 15" term of the arithmetic sequence whose first three terms
are 20, 16.5 and 13. :
Solution: Herea; =20,d =16.5-20=-3.5 and n=15. Substituting these values in
the formula: a,=a,+(n-1)d

We obtain, g, =20+(15-1)(-3.5) =20-49 =29

If any two terms of an Arithmetic sequence be given, the series can be

completely determined; for the data furnish two simultaneous equations, the -
solution of which will give the first term and the common difference.

Example 8: The 8" term of an arithmetic sequence is 75 and the 20® term is

39. Find the first term and the common difference. Give a recursive formula for
the sequence.

Solution: We know that a, =a, +(n-1)d "
then a,=a,+7d=75 (i)
and a,,=a,+19d =39 (i1)

Subtracting (ii) from (i), we obtain
-12d =36 = d=-3
From (i) we get a, +7(-3)=750or a,=96
Since a,=a;+ ‘{u—f,ld =96 + (n-1){-3) = 99-3n
Qnep =99 -3(n+1)=99-3n-3=96-3n =(99-3n)-3=a,-3

* Gns1 = ay— 3 s the required recursive formula for the given arithmetic
sequence,

Not For Sale
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43 Arithmetic Mean (A.M) - Aithmetic progression; the middle one is saig
bers are 1
43.1 When three numbers fhe other W0 g+4b a and b are cal]
to be the arithmetic méan o bers aand bis—— where alled
i ic mean of two um _
Thus arithmetic m in the following way:

the extremes. Mathematically, iti$ dcbr;fun two numbers @ and b,'then a, A b,

Let A be the arithmetic mean b* ;
form an arithmetic sequence. By definition, we have

A-a=hb-4
2A =a+bh
a+b
Hence . =-—2-

Thus the arithmetic m;san of two numbers is equal to one-half of their sum.
Example 9: Find the arithmetic mean of ¥2-3and J2+3
Solutlom:  Here a=v2-3, b=2+3
i 3 = 9
A= a,,;b= V2 3-24—1.[4-3 3

Between two given numbers it is always possible to insert any number of terms
such that the whole series thus formed shall be an A. P.; the terms thus inserted
are called the arithmetic means.
4.3.2 Inserting n Arithmetic Means (A.Ms)

: Let A,A,.,A be n AMs between a and b then
a, 4, Ay,...A,,b form a finite arithmetic sequence of n+2 terms, that is:

ao-2=b
a+(n+2-1)d = b, where d is the common difference
(n+l)d=b-g
_b-a
n+l
Thus A=a+d=q+820
4]
A=a+ =u+2[-b-:f1_
\n+]
A;=a+3[-"’_-_f_J
Ln+]

Av=a+n [',;1“
n+l

which are the required n A.Ms between a and b, Thus, A.4....4, are real numb
such that a, 4, 4;...4,,b1s an arithmetic sequence, then 4,. A, A "are, diiver :l]]r: r;:rs
arithmetic means between the numbers a and b. The process of determining these
numbers is referred to as inserting n arithmetic means between a and b. "

Example 10: Insert three arithmetic means between 2 and 9.

Solution: Let Ay, Az and A; be the arithmetic means between 2 and 9 such that

2, Ay, Az, A3 9 forms a finite arithmetic sequence of 5 terms witha = 2. b = 0. Let
d be the common difference, then as= b e that H :

a+dd =9 = 2+4d=9

7

4d =17 = -ﬂ':E Thus the three arithmetic means are

A|:a+d=2+1=E |

4 4

A2=a+2d=2+2[:{jzﬂ f
.4 2

A =a+3d 221‘-3[1]:E
4 4

S N EX ERCISETAT2

— - e e

L. Find the 15th term of the arithmetic sequence 2, 5. 8, ...

= The 1" term of an arithmetic sequence is 8 and the 21% term is 108.
Find the 7th term.

- Find the number of terms in the arithmetic progression 6.9, 12, ...... 78.

% The nth term of a sequence is given by a; = 2n + 7. Show that it is an A.P.
Also, find its 7" term. .

. Show that the sequence log a, log(ab), log(ab®). log(ab™), ......... is an
A.P. Find its nth term.

6. Find the value of 'k’ if 2k+7, 6k-2, 8k —4 are in A.P. Also find the
Sequence,

Mathematics-X1 B
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27574 fhe arithmetic sequence:

3 . 'l_,l-lﬂIcinA_P.
a b c

m during the first second, 21m

d how many meters it

r:_‘:_,_..q_‘._é._:_ e .

“9. Ifa,+a,=6and a;,—a,

are in A.P. then prove

S bicea c+a-h a+b-C.
e e

a a
* 9 A ball rolling up an incline COVEr= Fin
""" juring the second, 18m during the third second. Fi
covered in the eighth second? t
* 10. The population of a town is decreasing Y :
- population in 1960 was 20135, what Was its pop Gt g
' 11. Ahmad and Akram can climb 1000 feet in the first hour dndh'll’! eet in
- each succeeding hour. When will they reach the top of a 5400 feet hill’ e
" 12, A man earned $3500 the first year he worked. If he received a raise -:_)f
f '$?50 at the end of each year for 20 years, what was his salary. during his
* twenty first year of work? ’ ] '
" 13, Find the arithmetic mean between the given numbers:

(i) 12,18 (ii) %_i (iii) —.6,—216 (iv) (a +b),(a —b?z

14, Insert: (i) Three arithmetic means between 6 and 41.
(i) Four arithmetic means between 17 and 32.

5'9() inhabitants each year If its
Jation in 19707

n+l n+l

TR is the arithmetic mean between a and b?
a .

15. For what value of n,
16. Insert five arithmetic means between 5 and 8 and show that their sum is
le) five times the arithmetic mean between 5 and 8.
.+ 17. There are n arithmetic means between 5 and 32 such that the ratio of the

~ 3rd and 7th means is 7:13, find the value of n.

. 4.4 Arithmetic Series
44.1  As we know that associated with every sequence is a series, the indicated

sum of the terms of th_c_ sequence. If the sequence happens to be the arithmetic
sequence, then the associated series is called the arithmetic series

Let {a,) be the arithmetic sequence then the serjes

a + - : ; ; :
1T tuta = ;al 15 called the arithmetic series.
=]

The arithmetic series in the general form or standard form is given as:

S, =& +(ﬂ,+d}+{a,+2d)+...+[a,+[,-;~l)r_;] =ZIHI +(k=1)d] i

where S, denotes the sum of the first n termg of th::'-nrithmetic i
: series.

Mathematics-XI 128

442 Sum of first n terms of an Arithmetic Serjes

The next result gives a formula for finding the sum of the
arithmetic sequence.

Theorem: For an arithmetic sequence (a,

by 5 =%[2a, +(n=1)d)

first n terms of an

b the sum S, of the first n terms is given

= g‘(ﬂ‘ +a"}

Proof: The sum of the first n terms of an arithmetic sequence is denoted by S,.
Let . S,=a+a,+a,+....+a f

Since d is the common difference between terms, S, can be written forward and
backward as follows.

Forward: Start with
the first term, & . S“ =a

Keep adding d. # (ﬂ] g d) # {al + Zd) t---ta, Add th.c

S, =a;, +(a,—d) + (a,— 2d) +---+a, wo equations,
28, =(a1 + ap) + (2 + 2) + (2 + 25) + - - - + (2 + ay)

Backwarnd: Stast with
ihe last term, a,. Keep
subtracting d.

=n sums of (a; + a,)
28, =n(a) + a,)

o %[fﬂ ¥ a,.} Solve for sy, dividing both sides by 2.

a,=a,+(n-1)d,

L

S8 = %{H! +a,+(n- l]d}.
- =8 =2{2a +(n-1)d).
Example 11: i 2{ 24 }
Finding the sum of a finite arithmetic series. Use a formula to find the sum of the
arithmetic series 2+ 4 +6+8 +.......... + 100.
Solution: The series 2 + 4 + 6 + 8 +........+ 100 has n=50 terms with a; = 2
and as0= 100. We can use the formula § = B(a,+a,) to find its sum.

Sso=50( 2+ 100) = 2550
2

oy
We can also use the formula S, = E{Za, +{n—1}d}.
Sso= 50/2 ( 2(2)+ (50-1) 2) =2550

Mathematics-XI JFETH
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5 terms iS 285. If as = 40,

'Unit 4 | Sequences and Series b1
: . ppies Wi

Example 12: The sum of a1 arjthmetic 571
find a muld
s]-htllﬂl To find a, we apply the sum e d a|s=’40

s = (a +a,) withn =132

]-i(a: +40)= 285

z 40) =570 Multiply bY 2.

15 +40)= Divide by 15-

(a+40)=38 4
5 Subtract 40 45 and the sum 400. Find the

; a = ;
Example 13: The first term of 2 series is 5, the last
numebr of terms, and the common difference. s
If nbe the number of terms, then

Seolution: 3
Sn __-_2-[a| +ﬂ“]
4@0:%{5”5);

Hence n=16.

If d be the common difference &
45= lhe 16™ term = 5 + 15d;

Hence d= 2-5.
Example 14: Find the sum of the first 200 positive odd integers.

Solution: Since the positive odd integers:
1,3,5,....2n-1,. form an arithmetic sequence with

a,=|,d.=2,n=20(} then a, =a,+(n—1)d
=1+ (200 -1)(2) = 399

200
S = ﬂl{a, +a) = ———{] 399) = i (400) = 40000

Example 15: Flnd the 18" term and the sum of the 18 terms of the arithmetic

sequence:  -§,-3,27,.
Solution: Since we are given that:
-8,-3,2,7,... isanarith
metic se uen
- % quence.
en o, =~8,d = Sand n=18. We have to find a,, and S,,
Since G =ar+(n-1)d

ag=-8+ ]7 (3); putting valiies ofa, & d

Mathematics-XI

=77
n
S" = E(al + ar-]

g 18
= _2.(_3-1. TT) putting values of a; & a,

=9(69)= 621
Example 16: The 10th term of an arithmetic sequence is 32 and the 18" term is

48, what is the sum of the first twelve terms?
Let a; be the first term, d be the common difference and n be the

Solution:
number of terms of the given arithmetic sequence.
Then  a,,=32, a,=48
a,+(10-1)d =32, a +(18-1)d =48
a,+9d =32 (i)
a, +17d = 48 (ii)
Subtracting (i) from (ii) we obtain
8d =16
d=2
(i) gives that a;+18 =32
: a =14

Mis i
Now § = E{‘ZEI] +(n—l}d}

Sig = %{zu:m 11(2)} =6{28+22} =300

Exampie 17: Find the sum of all the integers lying between 100 and 600 that end
in 5. .

Solution: The integers lying between 100 and 600 that end in 5 are

105,115, 125, ..., 595
which form an arithmetic sequence with
a, =105,d =10,a, =595

then a =a+(n-1)d
595=105+10n-10
10n=595-105+10
=500
n=50

Sf'nce S, = %(:’!1 +ah.} _

Mathemiﬂcs-xl
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_50105+59)
Which gives S0="
=25(700)
ithn AMs bet bers is equal to n

; wi
4.4.3 Relation of AM of two uumhtll]'fwns petween two pum

Theorem: The sum of n arithmetic

times their arithmetic mean.
t there be n arithmetic mean

Proof: Le
; a.a+d,a+2d,...,a+.-;dt. Y i
i i : ith n+2 terms-
forms an arithmetic sequence Wi e ; +(”+2_1)d}
+rm’)+b=-2-—[ a

a+(@+d)+(a+2d)+.+(a X
=f:-1|:a+[a+(n+1}d}]
2

"+2'[n+b] b=a+(n+1)d

=g

n+2 -
(a+d)+{a+2d]+...+{a+r!d}=T{ +b}—(ﬂ+b:‘

H+2_—1
=_(a+b) >

(aﬂb]
=0 |—
2

Thus the sum of n arithmetic means =n (arithmetic mean)

4.4.4 Real life problems involving arithmetic series

Example 18: Finding the sum of a finite arithmetic series

A person has a starting annual salary of Rs.300,000 and receives a 1500 raise each
ear. :

‘ga} Calculate the total amount earned over 9 years.

(b) Verify this value using a calculator.

Solution: (a) Using S, =-’%{za, +(n-1)d},

S = lg{h 300000+ (10-1)1500} = 3,067,500

b) To verify this result with a calculato
( T, compute the sum a, +a, +a, +- +@p

= 300000+ 301500+ 303000+ 304500+ 306000 + 3075
+312000+313500=3,067,500 - 00+309000+310500

Unit 4 | Sequences and Series

Example 13: A ".3“:- car costs Rs.1200000. Assume that it depreciates 24% the
first year 20% the second year, 16% the third year and continues in the same
manner for siX years. If all the depreciations apply to the original cost, what is the
value of the car in six years? :
golution: Since the depreciations 24%, 20%, 16%, ... form an arithmetic

sequence with

a=24,d=-4andn=6
Calculating the sum of the depreciations over six years

S, = %{?.a, +(n=1)d}

6
S, = 5{43+5H)}
=3(28) =84

Now the total depreciation in six years is 84% of 1200000

= 34 1200000 = Rs.1008000
100

Thus the value of the car in six years = 1200000 — 1008000=Rs.192000.
Example 20: A display of cans in a grocery store consists of 24 cans in the bottom
row. 21 cans in the next row and so on in an arithmetic sequence. The top row has

3 cans. Find the total number of cans in the display.
Solution: Since the display of cans are in arithmetic sequence with

a, =24, a, = 3 and d = — 3 calculating the number of rows, we have

a,=a+(n-1d

3=24-3n+3
3n=24
n=_§

' ; n
Now the total number of cans is givenby S, =—_(a,+ a,)
g 2
5, =—1(24+3)
-2

=4(27)
=108 cans




13.

14,
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: m .
Find the indicated term and ¢ Y tic sequence:
case of each of the following 2™
@ 9753 .. 20thterm
87 , . 119 term; 11 terms
R Ty R B U
(i - 3 3’3
Some of the components &
are missing: .
® aq =2,n=17,d=3

l:]ll) a, =-7,d=3-3n =225
mbers divisible by 5 from 25 through 350,

d and S are given. Find the ones tha

.,
(i) a=-40,5,=210
(iv) a,=%S;s= 30

Find the sum of ail the nu
| ’ an arithmetic sequence: is 36 and the sum of

[Hint: suppose the numbers are a — d, a, a+ d]
ence, whose sum is 20 and the sum of
the numbers are a —3d, a—d, a + d,

The sum of three numbers in
their cubes is 6336. Find them.

Find four numbers in arithmetic sequ
whose squares is 120. [Hint: suppose
a + 3d]

X, X3 X5 ......are in AP Ifx +X+¥ 0= —6 and X3+Xg+ X 2=—11, find
I3+ Xg+Xa. =

Find: 14+3-5+7+9-11+13+15-17+... up to 3n terms. .

Show that the sum of the first n positive odd integers is n".

" Find the sum of all multiples of 9 between 300 and 700.

The sum of Rs.1000 is distributed among four people so that each person

after the first receives Rs. 20 less than the preceding person. How much

does each person receive?

The distance which an object dropped from a cliff will fall 16ft the first
second, 4!? ft the next second, 80 fi the third second and so on. What is
the total distance the object will fall in six seconds?

Afzal Khan saves Rs.1 the first day, Rs.2 the second, Rs.3 the third and
Rs. N on the nth day for thirty days. How much does he save: at the end

- of the thirtieth day?

%tﬁezt]crtg?sdti{] rows with 20 seats in the first row, 23 in the second row,
= o SN 80 il oy many seats are in the theater?

Insert enough arithmetic means bet
resulting series will be 450, Ween 1 and 50 so that the sum of the

Unit 4 | Sequences and Series

4.5 Geometric Sequence

4.5.1 In nature, certain phenomena can be described by geometric sequences. For
example, archacologists use the half-life of carbon 14 to w:stin'ja':.'tf.l the ag.e of
ancient objects. Carbon 14 is a radioactive element that decays gradually

. changing to nitrogen 14. The half-life (i.e. the time it takes for half of a given

amount to decay) of carbon 14 is about 5600 years. Thus, one kg of carbon 14

Tiae: 2
will be reduced to = kg in 5600 years, to % kg in 11200 years, to L] kg in 16800
8

years and so on. Which is obviously a geometric sequence with r = e
2

A geometric sequence (progression) is a sequence for which every term after the
first is the product of the preceding term and a fixed number, called the common
ratio of the sequence. We use the same notations as we use in A.P. with one
exception that is instead of d, the common difference, we use r, the common ratio

in geometric sequence.
Thus each of the following is a geometrical sequence.

T e
i AR
gl T
DT it T - ) S,

The common ratio, and it is found by dividing any term by that which .
immediately precedes it.

In the first of the above examples the common ratio is 2: in the second it is—-lz- -

in the third it is r. A geometric sequence is recursively defined by equations of

the form:
.a,=aq

and a,, =ra, where @) and r are real numbers, @, #0,r #0, and ne N
4.5.2 The nth term of a Geometric Sequence
The nth term of a geometric sequence is given by: a, = ar""
To find a formula for the nth term of a geometric sequence, we write down
the first few terms using the recursive definition to observe the pattern:
Istterm =g, =a;r’ =q,r'""
2nd term = G=ar =ar "

3rdterm =a,=a,r=ar’ =ar”
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’ . a,r’ =aqr

4th term =% ="~

; =g =T Y +
nth term =4, =% rm of the geometric

1: Find the first five terms

first term 3 and common rd
1
Solution: Here a, =3,r= —-2- l
Then the first five terms aré -
35 38
31_-'2_:4| 8.16 ’
the formula a, = &7

and the tenth 1€
Example 2

. tio—7 -
sequence having

Substituting the values in

101
1 e
we have 4y = (3)(-5] withn=10

) -3
=iy S T
Emp]ezz: Show Ihal the SﬁqueﬂCE {n"}sz_ﬂ ]S gﬁ(}me[ric a_nd flnd 1ts

common ratio.

Solution: Since a=2"
then &, =2""

: z;tmh 1

a

and P= —ntl =
25 2

a,

The ratio of successive terms is a nonzero number independent of n, thus {a,} is

. : 1
geometric sequence with r= 2

Example 23: ].f the third term of a geometric sequence is 5 and the sixth term is
— 40, find the eighth term.

Solution: Here a,=5and a,=—40 then_we have ar'=5 and ar®! =-40
or {I:f'z =3 (1) ;
and g7 =-40 (i)

Mathematics-XI #8Ee{0
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Dividing the equation (ii) by the (i) we obtain

a',r5 _-40
ajrz R
3
- r=-8 =(-2)>r=-2 and g4 = by (i)
4

5 3
o ama (e e

4.6 Geometric Means (G.Ms)
4.6.1 when three numbers are in Geometrical Progression, the middle one is

called the geometric mean between the other two.
Mathematically, it is derived in the following way:
Let a and b be the two numbers; G the geometric mean then

b _G since a, G, b are in G. P.,

Example 24: Find the geometric mean of each of the following pairs of numbers.

1 e

(a) 9 and 16
10 6

Sul_utiun: {(a) By the above definition
G=-+fab =ox16 =+/144=12,Sinceab>0 . G>0
(b) G = —Jab .Sinceab <0 .~ G<0

4.6.2 To insert n Geometric Means between two numbers a and b

Since the terms between a and b of a geometric sequence are called the geometric
means of a and b. Thus Gy, G, ..... . Gy, are the n geometric means between a and
bif a, Gy, Gy, ....., Gy, b form a geometric sequence. Moreover it is a finite
geometric sequence of n+2 terms with a; = a and a2 =b.

Let r be its common ratio, then a2 =b gives that ar™' =b,

=
:>r=[%]nbl

va, = ar""
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- - __ 2 = | o
: G, =ar =(2)(2)° =8 (Did You Know ! E)

3 3 :
(g) Gy=ar =(2)(2)" =16 1t can be seen from Example 25|
Hence G =ar= %@ =-2 then anc 26 that if the mumber o
1 Ifr=- .required geo;netxicr?eﬁns is

b s e SR even, a single set of geometric’
Gy=ar? = a(a]- L meansimb%ained,iftl%enumber'
G, =ar*=(2)(-20=8 . of required geometric
2 : means is odd, two sets of

G,=ar=2)(-2'=-16 geometric means are obtained.

b el
n:EJ"" = ﬂ['ﬁ)

means between 64 and 12;1 S — ! 1. Write the first five terms of a geometric sequence given that: . :
i nd 122> such that 1
elrc means b':twccn a 11 — Tl ol — 1 =& )= ——
= tric sequence. (i) @=3r=3 ) & =8r=

‘Example 25: Insert two geometric

) ,Gz be the two ge
Selufien:  LetCy 264¢G|, G, ,125 is a geome

Thus a, =64,n=4 and a, =125 \ s | (i) a[=—i;r:--% (iv) ﬂ]=£;r=—£—

Let r be the common ratio of the geometric Sequence, £ W i e 16 . 3 Y x

a,=125 gives  ar =125 : ) Suppose that the third term of a geometric sequence is 27 and the fifth
ﬂ 3 =125 putting value of a, ; term is 243. Find the first term and common ratio of the sequence.

i Find the seventh term of a geometric sequence that has 2 and —J2 for

(5}

- 125 (E) gl ' . its second and third terms respectively.
i 4 . 4 e, How many terms are there in a geometric sequence in which the first
g53 1 ; 1
5 Rr o] [ -and the last terms are 16 and — tivel dr==7
Henceoy Gymars [64}( _4_) =80 and G, =@y’ = (64}[4] 100 erm and - respectively and r >

- Example 26: Insert three geometric means between 2 and 32.
Solution: Let G;,G3,Gj be the three geometric means between 2 and 32 such that
2,G,Gy,Gs, 32
is a geometric sequence. Show that the reciprocals of the terms of a geometric sequence also -
We have a,=2,n=5 and a, =32 _ fc:_nnn a geumetrit:_sequence. _
let r be the common ratio, then : . : Find the geometric mean of the following:
ag=32 (Iy 3.14 and 2.71 (iiy —6and -216

(i) x+yandx-y (i) /243 and V2 -3

5. Find x so that x+7,x-3,x~8 form a three term geometric sequence
in the given order. Also give the sequence.

If g, = E,ﬂ.g =m,a,, =n; show that In=m"

I —————

Mo

(=

gives. ar' =32

¢ e 1]
(1) Insert 5 geometric means between 3% and 405.

=3 r=16 =2 = r=22

we have two sets of geometric mean
then G = ar=(2)(2)=4

s given below: Ifr=2 (i) Insert 6 geometric means between 14 and =y

Not For Sale
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m s hetween aand b is equal
o mean between them.

ge,osm

1 "'*‘ Prove ﬂ:at the"pl'Qa
_tothenth powerﬂf

the smsif-
m +b is the gwmetric mean

between a and
n+b" i

4.7 Geometric Series ociated geometric series,

4.7.1 Since with any geometric §
which is the indicated sum of the terms

Let {a,) is a geometric sequencc, then

equcnce: we have an ass
of the geometric sequence.

Za =g +a,t..+a,+.. . is called

then the above serir:s can be written in the form

g 1O (1)

a geometnc series.
If r is the common ratio,

Zal_r" =g, +alr+-a|r2 +.. 47

=1 ]
known as the general form of the gcumetric series.

4.7.2 Sum of first n terms of 8 Geometric Series
Theorem: For a geometric sequence with first term a; and common ratio r # 1, the

sum S, of the first n terms is:

s, SAlF % ¥ )
: 1-r
Proof:Let S, =a+ar+ar+.+ar”

S, is the sum of the firstn
terms of the sequence.
Multiply bothsides of the
equation by r.

=+ T+ Pt e b2 Py

I'Sn=a|r'+a|rz+a|r3+ e F T 10

Sq—rSp=a;—air"  Subtract the second equation from the first equation

Sa(l-D)=a;(1-1")

Sp = a(1-r")° ividi

7 (1 ) Solve fer S, by dividing both sides by 1-r
. (assuming thatr # 1),

Wh'.Ch is the required sum of the first n terms of 2 geometric sequer
: CE.

Factor out S, on the left and a; on the right.

Not For Sale
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e (1-r)
Since 3y = [—r
_a-ar il =(agr")r
1-r 1-r
S a| e ar.'r pe T .n—l *
== — /@ =ar" isthelastterm (Remember ! )
L T SR, : I
= = ,IT# 3). It is better to use the forms i
is the alternative form of the result given in (2) ® s, Jﬂl 1 -}. and abese i'
—r '
7: Approximat i j o
Example 27: Approximate the sum for the given | &, =a.l:_r ,whenever |r| <1 |

@)If || >1 then the following

values of n.
(@) 1 #1/2 +1/4 + ...+(1/2)";n=5,10,and 20 forms-are used 5, = _a’-D |
r—1 1
)3 — 6+ 12 — 24 + 48 - .. +3(=2)*, and §, =222 i
L " oor=1 s '
.n=3,8,and 13 because the numerators and |
: denominators are positive.
Solution: (a) This geometric series has (iii)If =1, we have the tn\na.l

a=]landr=%=0.5. ﬁ‘em:"'fm series:
= ﬂ|+...+ﬂ._‘ =na,

Ss=1(1-05)=1.9375
1-0.5 '

-Sw=1(1-05") =1.998047
1-0.5

Sw=1(1-0.5") =1.999998
1-0.5

(b) T his geometric series hasa,=3 and r ﬁ_-ﬁ___,
S3=3(1=(=2 =9 3
1-(=2)
Se=3(1 -(=2)° =-255
1- (-2)
S=3(1-(2)" =8193
1-(=2)
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Eﬂmplelﬂ Sum the series 3" -1, 2

3, henCB by f(}l’mu[a —-r

S'pllttion: The common ratio = --i.

Sequences and Series

3 .07 teods

a(1-r

_____._.—-—

95'

# glp(‘?‘]" L 2{1._[-—-
3 2 s
The sum :____—-—-3'—'_'_
1+= 1+—
2
2 2187
g{'*‘—lzg' 2 "3315, 2 - 463
= — e
& 3 128

Example 29: Compute: 2+6+18+54+1 62+486

Solution:

Substituting the values in

6
In this case q, =2;r=5;3>1,rz=6

5

=48 and §, —32-14 find r and n

_a(r"-1)
5 r-1
2(3° -1 :
S, = G_ ) 729 -1=728
Example 30: Given that g, _%
: 3
Solution: Since a = Z =48
Then a,;"" =48
and E ol = 43
= =64
Also, wehave  §, = o

(i)

Mathematics-XI
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3
129 E“igr
e

129 - 129r =3 192
63r=—126 =
r=-—2 . =
From (l) we have
D77 =64 = (-2 =(-2)*
n-1= -6:;, n=7

Example 31 Suppose that the third term of a geometric sequence is 27 and th
fifth term is 243. Find a;, r and Ss. the

Solution: Since a; =127 and a, =243
Then we have ar” =27 (i)  ar*=243 (i)
a, =ar*"
Dividing (ii) by (i) we obtain

ar 243

uirj 27

r’=9= r=143

We obtain two different solutions since there are two values of .

r=3 [ r=-=3
ﬂlrl =27 . alrz =27
a(3)? =217 | a(-32 =27
a,9=27 | a.9=27
a, =3 ! =
: | a,=3
The first sequence is . The second sequence is
39,27 31 243,... ' 3,-9,27,-81,243,.
AL a; —a, ra;—a
r—1 5 55 = J:—l |
_®e3)-3 | (-3)(243)-3
| e
3-1 : . -3-1
729 - ' 930
Rl PP =132 183

—4
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L :
62
Example 32: Find the sum :ZL:

iﬁ ) =62+62°+62 4ot 62"
Solution: 2 = me'
ee that each term
m?oginiore;n by 27 To find the sum Of’[l‘II:Z
5:3 first term, a,, and the c—:_mrnc-n ratio, I
ai= 12, The common ratio 15 2.

Wi btaiﬂ‘:d by muhlp]ymg 'Ehﬁ
ﬁ[.;‘lﬂltscr':ns (n=10), we need to know

first term is 6.2o0r 12:

; Use the formula for the sum of the first n terms of a

= (™1
Sa : 11:-—1 geomctric sequence.
a; (the first term) = 12,r=2, and n = 10 because

=1202"-D
= 2-1 are adding ten terms

= 12,276 Use a calculator -

e .
Y62 =12,276

" Thus,
2

4.7.3 Sum of infinite Geometric series

Our discussion of series has so far been restricted to those associated with

finite sequences. The series associated with the infinite sequence:

2 -1
q,a.r‘a]r .--.,ﬂ'.].l"|I gaaa

is denoted by: y
a, +alr+a|r1+...,al_r"'1 +..= zﬂlrl:_1

in]

and is called an infinite series. Important questions arise over here are, what do
we mean by the “sum” of an infinite number of terms, and under what
circumstances does such a “sum” exist? The answers to these questions depend

upon the concept of:uiim.jzu which is studied in a course in the calculus. However.
for some particular infinite series we can give an intuitive idea of the concept of

L

“sum”.

‘Mathematics-XI SEFE!
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Consider the formula for the sum of the

first n terms i "
ave already proved that: s in a geometric

ﬂ]+ﬂt+al+...+a|=na”r=1 g - .-j
a—a+ta—.+(=)""a,r=-1 g ;
_Ja(r"=1) R i
S.n" e =1 ,r|::l ) . :
L]
a(l-r"
Al
l-r
(i) Since §, =na,, when r=1
As n increases, the sum of the infinite’ geometric series increases without

limit. Symbolically it is written as:
lim§, = lim ng =oo
Lot 5 R - - . -
Thus the infinite geometric series in this case does not have a finite sum.
" (i) Here S,=a,-a,+a-..+(-1)""aq, whenr=-1
The sum of the first n terms is ajor 0 according as n is odd or even;
therefore the sum oscillates between the values 0 and a;. ’

(iii) R Lk, YECR L SRR
r—1 1-r r-1

Since Lr|>1 , then the absolute value of each term is greater than the
absolute value of the preceding term. Therefore such an-infinite"series cannot

have a finite “sum”.
Mathematically, it is shown that:
lim 5 = lim [ﬁ-—-—i] = m{—J = E
R=pe Fi—bos l—r l_r. R I 1—-r 1-r

a,(1-r")

1-r

™ 5= <1

- _ ﬂlr"
o 1 ks 1 =
This is the case which provides us a quite different situation and we have
Some useful result.

Since || <1, then r" approaches zero as n increases with out bound, that is,

,|r|<1

We can make 1* or 2 as close as we wish to 0 by taking n sufficiently large. It
=T
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Unit 4 | Seq ut a bound and we write

: B 4 nincreases witho
, follows that S, approaches o

a A g .

=i, | i { @ _ar J
i B 4 My T o

Mathematically, it can be shown as liM, . “n 1—r 1=r

- : A lim r
T 1-r l=r

This gives us the following:
If [r|<1, then the infinite geometric series:

a

1
5 . =1 o L
i +- has the sum:

a+ar+ar+ +ar {—r

: Theorem:

-

Example 33: Find the sum of the infinite geometric series:

3.3,3 3.
8 1632 64
Solution: Before finding the sum, we must find the common ratio.
ply = < Q6 md B o]
& 3/8 16 3 2

Because r = —1/2, the condition that | r | <1 is met. Thus, the infinite geometric
series has a sum

_ This is the formula for the sum of an infinite
I-r geometric series. Here a, = 3/8 andr= —1/2
= 318 ade 3o i
1-(=1/2) 2 83 4
3.3
i 8:3.3 ®
us, the sum of et +32 By s Put in an informal way, as We

continue to add more and more terms, the sum is approximately -
T

Mathematics-XI

xample 34: The sum of an infinite number of terms ; i
cﬁ'their squares is 45. Find the series, fms in G. P is 15, and Lhe: sum

Golution: Let a denote the first term, r the common ratio: then the sum of the

erm i i_f'_; and the sum of their square js—%
= 1-#%
a
Hence = —15(1]
a!
= i (2)
&
pividing (2) by (1) o = 3[:3}
1+r
And from (1) and (3) :25; = r=§, and therefore a=5.
st 20 )
Thus the series is 5, T ?
Example 35: Find the sum of the infinite geometric sequence: L I
397

Solution: Here a, =1,r =% and H:% <1

Thus the sum exists and is given by the formula:

4.7.4 C_nmrers_iun of recurring Decimals into an equivalent fraction
Recurring decimals furnish a good illustration of infinite Geometrical Progressions.

Example 36: Convert 2.34 to a common fraction.
Solution: Since 2.34 =2.3 + 0,03

23
=— +0.
10 04444 ‘s

23
=— + 0.04+0.004+0.0004+. .......

10
23 a,
=— 4 | — = =
= (l_’_)al 0.04, |r|=0.1<1
L. (0.04J 23 4. 211
=+ |—|=— = = —
10 \1-0.1) 10 9 90
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# — 3 n ;
Convert 021 to a common ff:;‘:i 0.0021+ 0.000021+...
: i 2] .en =W .
Since 031 =02121 (0.01%(0:21) + -«
th

- 01)(021)+ =
_0.21+{Umc erics, with a1 = 021, r = 0.01,
e a, p21 -7

Example 37
Solution:

Which is an infinite 260

and |"| =0.01<1 somesumaﬁswandisgivenbysz 1-r 1-001 33

Thus 02l = 1

47.5 Real life problems invol:r.:;l?i g:omem
Exall_lple sst:ractc:pr:cﬁlf]i::?h:t cazh warker will receive a 5 % pay increase ear:_h
‘t:rm f?)rn ;1?““ 30 years. One worker is paid Rs. FO,EOD the first year. What is
L rson's total lifetime salary over & 30-years pcfiod. % :
Sa:upl;oﬁ- The salary for the first year is 20,000. With a 5% raise, the second-year
i ted as follows:
;flglfsﬂf‘(;’g.‘rUZ — 20,000 + 20,000(0.05) = 20,000(1 + 0.05) = 20,000(1.05).
Each year, the sa]ar&,’js 1.05 times what it was in the prczvmus year. Thus, the
' 20,000(1.05), or 20,000(1.05)". Thus

¢ series

salary for year 3 is 1.05 times
R, 2 Yearly Salaries
Year 1 Year 2 Year 3 Year 4 Year 5
20,000  20,000(1.05) 20,0001.05)  20,000(1.05)"  20,000(1 05)
The numbers in the bottom row form a geometric sequence with a; = 20,000 and
formula

r = 145 %=1+.05=1.05. To find the total salary over 30 years, we use the
for the sum of the first n terms of a geometric sequence, with n= 30.

n w0’ \ o]
s a, (1-r") _20,0000-(1.05)° _20,000[1~(1.05) L 1,328,777
1-r 1-1.05 -0.05 (Use a calculator)

The total salary over the 30-years period is approximately Rs.1,328,777.
Example 39:. The tip of a pendulum moves back and forth so that it sweeps out
an arc 12 inches in length and on each succeeding pass, the length of the arc
traveled is' 2 of the | . ‘
2 e length of the preceding pass. What is the total distanc®

traveled by the tip of the pendulum?
Solution: Since the pendulum eventually co . icti
the following geometric infinite sequgngg_ % to rest du to friction. We

Mathematics-XI
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7 ™ 7\? '
l?.,(g](ll).[g] (12),(§} 12),...

and the total distance traveled S = 12 _{3 (]2]+(1]= i [1)5 e
3 3

which is an infinite geometric series with

7
a,=12,r= = and |r|<1,so the sum exists.

Di

Thus the total distance traveled = -2 sl - ?1"
e The symbol = (infinity) is |
. A2 merely a notational device il

7 and does not -represent a |

e real number. Loosely, it is !

A the concept of a value

= 96 inches beyond any finite value.

Example 40:
A ball is dropped from x feet above a flat surface. Each time the ball hits the

ground after falling a distance h, it rebounds a distance rh where r < 1. Compute
the total distance the ball travels.

Solution: The path and the distance the ball travels is shown on the sketch of
figure. The total distance s is computed by the geometric series

s=a; + 2a;r + 2a;r° + 2a,r° +... n -
The common ratio is 213—’1" (I1)
ﬂ.l [

— distance = a,

distance = 2ar

s 2
ar? distance = 2a;r”

3 . 3
ar distance = 2arr

-

= Mathemtit.ﬁ-—KI
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Adding the first term of (D) with () we

For example, if = 6 ftand r=

o

10.

form the total distance as
s =a;+ i__ a =

e :-otal diétance the ball travels is

.1+2."3= 30 ft
B=6%172/9" -

EXERCISE 4.5

= Compute the sum:
TRt i ot
@) 34612+ 4320 G 8+4+§+1+ 16

| W

(iil) 2*+2°+2°+..+2" m?__g'j_l'_ﬁ’_",',__ . -
e S I b R TR ——

' = L= (V= =, — e to 7 terms. |

> v} ZIJ'E‘!-LJE 2 :\;—_?'_z_i-__‘ T
Some of the components a,a,.n,7 and 5, ofa geometric sequence are
given. Find the ones that are missing.
i) ag=lLr=-2,a,=64 (ii) r=5,ag=1
(ili) r=-2,§,=-63,a,=-96 |
Find the first five terms and the sum of an infinite geometric sequence
having a, =2 and a, =1
Find the value of: (i) 08 (i) .1.63 i) 215 0123
Find r such that: 5, = 2445, .
Prove that: §,(S,, - §,,)=(S, -5, )* ’

Find the sum S, of the first n terms of the sequence {(%} }

The sum of three numbers in G. P, is 38, and their product is 1728;
find them.

The sum of first 6 terms of a geometric series is 9 f; i

. esis Ot he sum of its

first three terms. Find the common ratig, Ry ot

How many terms of the series: 1443 43+.... be added to get the sum

404133,

Mathematics-XI

Unit 4 | Sequences and Series

1. } If p”‘,q“‘,r"‘

terms of a G. P, be ab,c respectively,prove that QP ],

12.  Find an infinite geometric series whose sum is 6
term is four times the sum of al] the terms that fo]lu:,nﬂ such that each .

x
13. Wys §+3_2+3T+ where 0<x< 3, then show that x=_§}'_

z 3
X

I+y

14. A ball rebounds to half the height from which it is dropped. If it is
dropped t‘ro.m 10 ft, how far does it travel from the moment it is
dropped until the moment of its eighth bounce?-

15. A man wishes to save money by setting aside Rs.1 the first day, ks,z

the sc::conr.:I day, 1_15.4 the third day and so on, doubling the amount each
day. If this continued, how much must be set aside on the 15* day?
What is the total amount saved at the end of 30 days?

16.  The number of bacteria in a culture increased geometrically from
64000 to 729000 in 6 days. Find the daily rate of increase if the rate is
assumed to be constant. '

48  Harmonic Seguence

4.8.1 A harmonic sequence is a sequence whose reciprocals form an arithmetic

sequence.

The sequence:

i 06

2°4'6'8'10 )

15 not an arithmetic sequence. However the reciprocals of these numbers, namely:

2,4, 6, 8,10 do form an arithmetic sequence. Thus the sequence (1) is an example

of a harmonic sequence. A harmonic sequence is also called a harmonic

progression (H.P),

Exnm;m- 41:

Selution:

Three numbers a,b,¢ are in H.P. when 2=t ml
c b-c
Given 9. 8n0 then a(b—c)=cla—b)
c b-c
or ab—ac=ca—be ~ Dividing by (abc), we obtain:
1A L %
¢ b b a
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nic S
482 Finding nth Term of 2 Harmonic

The typical form of 2 harmonic sequence 1S
1 i
1 ——g a2
e 1d

ad e A

f this H.P. 15
- The general term of the nth term of this H

oy
a.l+(J’I"l).d

whose reciprocal @+ (n=1)d isthe nth term of th

i h term of the h
Example 42: Find the twelvet |
% Suiuﬁzn: The 12" term of the corresponding A.P
A 111 welvih
6?4!3?"
e L e h=13
R
a2
i == =1y —
is @, 6+(12 ) T

_B i
12
. A b
Thus the 12 term of the given H.P is =
4.9 Harmonic Means (H.Ms)

;. rbpcrties of harmonic

pmgxcssion can be obgained
from the corresponding

" |arithmetic progression.
'However, there is no

elementary formula for the
sum of a harmonic sequence,

e AP

armonic progression: 6,4, 3,...

a_=a,+(n-1)d

4.9.1 (i) A number H is said to be the Harmonic Mean (H.M) between two

number a and b-(a # 0,b # 0) if @, H, b are in H.P.

I 15 L. 1
Then —,—,—areinAP. and —=

a Hb H

1 1

between — and — .
' a b

L

H  2ab

(1 1 I &
1l 1) .. —is the AM
'Z[a+b) ke g

2ab .
H= i is the H.M. between g and b

+b
(ii)The numbers H,.H,,...H, are said to be
between two number a and b (a #0,b #0) if

he n Harmonic Means (H.Ms)

Mathematics-X1 &Y
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a,H,, Hz,H3,...,H",b are in H.P.

) o T 1 1 :
Then obviously: a'H, E:E_E;E are in A.P with n+2 terms,
1, Ir o
. _("+2_1_]d=_,5; ,uhllzinga,,-—-a;+(n—l)d
= g a-b
ab(n+1)
1 1. a=b
Thus —=—+ = gb(n+1)
H, a abn+l) o Hi nb+a
1 _1, . a-b i
= 2 .a . o H2=M_
H, a ab(n+l) ‘(n=1)b+2a
1 ~b ' '
kL a-—o, o H3=M—
H, a "ab(n+l) - . (=Db+3a
1_1, _a-b g =ab[n+l)
H a abn+l) " - b+na

. 1 . ;
by using F=a, +id, i=1,2,3,..,n. Hence H,H,,H,,...H,, are the n HMs
between a and b.

Example 43: Find the harmonic mean of 24 and.16

2ab
a+b

Solution: H=

., where a=24,b=16

_2(24)16) _ 2x24x16 _ 96
24+16 i =5

Then

Example 44:  Insert four harmonic means between “%""d% ;

Solution: Let H,H,,H, and H, be the required H.Ms, then

1 1 :
‘E’HqusH:sHa»l—?; are in H.P
1 1 1 1
_2'__v_|_1_113 in A.P
AL A T

e = R e TR BT
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. ==2
with &= [ : uences are
a, =13 _'Hﬂmom? =2y iC becanse
! called harmoni
a +5d=]3 .nfﬂ]ej]-us,c in the study
' . d their
-13 musical chords_ an
-2+ 5;1# ; .::laﬁonSbiP' that is, harmony,
1 =1=H= 1
—==-2+3
Now H,

1
L _143=42H,=]

—_—

2

1
2 4+3=7=>H3=7

—

H,
il
: I 1 1
——and —
H 1 111 are the required 4 H.Ms. between 2cm 3
ence M gt |
47

i ic Harmonic
le 45 Find a relation among A[’i[h.l'l'lﬂflc, Genme!rlt An I
Examp e : d

Means. ‘
- two positive numbers,
Solution: Let a#0,bz0 beany P
a+b
then A=—2——
H= Ei and G — \(r(E
a+b
) A=t g, =(Vab) =6* = A,G,H are in GF
W SUF Cawh

+b
i) A>Gif QT'P’-";JT?
a+b>2Jab
a+b—2\|ﬁ>0.
(fa = /b >0, whichis always true

‘, Not For Sale
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6,

=]

9,

A>G 4 (0
G > Hif Jab > 292
a+kb
a+b>2Jab :
(Va - & )¥>0, which is always true 1
G>H ) ‘

(Dand Q) = A>G>H

indicated term of each of

Find the thi-~ alloving | Wrmonie
progressions:
111 W 6 =
= =voed 9 ferm (ii} 6,2,=,...: 20" term
258 _ 5
3 1|
SESSElz_Ohv; Sth term |
c, R |

Find five more terms of the H.P. %,1’_],_" . i

The second term of an H.P is % and the fifth term is —% . Find the

12" term.

Find the arithmetic, harmonic and geometric means of each of the
following. Also verify that A x H = G~

3.14 and 2.71 -6 and ~216 x+yandx—y

rel r#l

For what value of n will %bc the harmonic mean between a and b?
a

Insert two harmonic means between 12 and 48,

5
Insert four harmonic means between i an;lﬁ.

Prove that the square of the geometric mean of two numbers equals the
product of the arithmetic mean and the harmonic mean of the two
numbers, L

The arithmetic mean of two numbers is 8, and the harmonic mean is 6.
What are the numbers? :

- The harmonic mean of two numbers is 4;— and the geometric mean is 6.

What are the numbers?




s B

+6+5+1l+6+ ....... i

he correct OP : o 4
{?)hnos‘]‘;; m to 200 termS 31'}:2; 5;(;"0"5 b :
b ¥
m,) 323'2333 ’ [d}anbﬂfﬂlﬂﬁe ‘ " bér
(-_-J [f;;h,;umafmesm:s2+5+ g+ 11......38 60100, then the num
n
the terms is
::; 130 (b), 200 (c) 150 (d) 250
iiiy Ifa b, ¢ are in G.P., then p S )
& (a) &, b7, c*are in GP. (b) @ (b+E)C (a+b), b* (a+c) are inG.P.
*ch—k* s a—jf are in G.P. (d) None of these
(iv) Ifthe nth term of an AP is 4n+ 1, then the common difference is
(b4 (c)5 - (d)6,

@3 e following is nota G.P-?
‘ ich the following 13 ot a G.r.! :
[e): Wt b) 5,25, 25, 625, ......

(a) 2,4,816, -eeene
() 1.5,3.0,60, 12.0.... (d) 8, 16,24,32, ...occee
thmetic means between 2 and -18. The means are

(vi) There are four ari
{a) -4, -17,-10,-13 b 1, -4,-7,-10
‘(c) =2, =5, =9, -13 {d) -2, -6, ~10,~14
(vii) If A, G and H are AM, GM and HM. of any two positive
numbers, then find the relation between A, G and H. :
(a) A*=GH '..]JJGZ =AH (c H2 =AG . i GZ=A2H
(viii) Find the number of terms to be added in the series 27, 9.3, ...50
that the sum is 1093/27
(a) 6 (7 ; ()8 (19"

; 1
(ix) Find the value of p (p>0) if Ts+p,%+ 2p and 2+p are the three

consecutive terms of a geometric progression

3
(a) = (b~ e '@
4 B oo B 2
(x) The 10% term of harmonic progression 1/5, 4/19, 2/9, 4/17,...is
(2) Ilf{i (b)13/4 - (c)4/13 () 4/11
{xi)’ Find the sum of 3 geometric means between 1/3 and 1/48 (r>0).
(b) .5/24 {c) 7124 (dj 113

@14,
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11.

T4 | Sequences and Series ﬁ

If the first term and common d :
respectively, then find: ifference in an AP are 8 and -1
(i1) The Progressi :
. - 1on rjl:' ; :
(iv) The expression for sum to n teims aﬁ.;;[ h;['m::ﬂ lﬂt]'llutt_-,nn and

um to 10 terms.

If the sum of the n terms of th :
value of n. © series 54, 51, 48, ... is 513, then find the

If the sum of n terms of an AP ;
P. is 2n +3n?
+3n°, generate the progression and

find the nth term
Find the sum of all natural numb
exactly divisible by 3. ers between 250 and 1000 which are

Find the sum of the series 1, 2/5, 4/25, 8/125
% 7 B e saaay oo

Ifa, b, c are in A.P. i
and X, y, z are in G.P, show that x"y°2* = x° y*z°

Find the arithmetic mean between 10 L and 251
2 2i

Find three numbers of a G.P. whose sum is 26 and product is 216

HO‘W many Odd I‘Illegers bc iIl]l‘III W. mu [+

A gas_-ﬁllcd balloon has risen 100 feet.
lf] each succeeding minute, the balloon
rlseslon]y 50% as far as it rose in the
prct‘uous minute. How far will it rise in
S minutes? |

Not For Sale
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MISCELLANEOUS SERIES

/ the formula for
’/' the nth term

5

sigma for
summation

e
£
k is the index *
(It's like a counter.
Some books use i.)

Recognize sigma (T ) notation.
¢ Find sum of ;

= the first n natural numbers ( X n),

« the squares of the first n natural numbers ( £ n?),

« the cubes of the first n natural numbers ( Zn3).
¢ Define arithmetico-geometric series.
¢ Find sum to n terms of the arithmetico-geometric series.
Define method of differences. Use this method to find the sum of n
terms of the series whose differences of the consecutive terms are
either in arithmetic or in geometric sequence.
Use partial fractions to find the sum to n terms and to infinity the

1 1

a(a+d) ' (@a+dya+ad)

series of the type -

' Cance], | ; p :
e 0 the second sum, Jet k=j+2 and in the first sum, let k = J. then we

51 Introduction

In the previous chapter, we com
eometric sequences. In this chapter, we

computing sums of some other sequences, Since we are already familiar with the

standard notation, called the sigma notation () anq its rules. However here we
properly define it with a few examples of Summation notation,

51,1 Sigma Notation

The Icttcr_ E of the Greek alphabet (pronounced as sigma) is used to
denote the sum of a given series. The letter X is placed bef,

: ore the rth term, say,a,.
We, thus write ¥ a, to denote the sum of terms of the type a . If we want to sum
up terms a, for values of r corresponding to r =1, 2,3..

-1, we denote the sum by
E_ a, or b_}' Z“r
[ ]

=l

Example 1:  Find the following sum.
4

3 '
i K (k-3) iy 2
) Z: @y o

k=0

]
i) 3 (-1Vk
k=2

Solution: (i) >’ k*(k-3) =1%(1 - 3) +2(2-3)433-3) 447 (4 =3)
k=l =D+ (4)+0+16 =10

3 & a 1 . s

. 2
2 G+ ©0+) T @+ ) T @e) Yo

=]+ +i +2=E
6 3 3

11 S Y 5 )
k=2 ;

= (D2 + -I'VB + (1A + (1’5 +(=D*V6
=~f5—\f§ +2—\E + V6

10 g
Example 2:  Simpiify Y sayteds
Solugj 2 J G J+2
Ution: P
n It can be seen that most terms are common to both sums and will

10 1 3 1 10 1 10 1
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Unit 5 | Miscellaneous Scries

o = 7
erics zz "' ¥ Z 1= n'g +2n
Jul =1

ts Aliscellaneolts S

=
0 | =

Uni

0
1
=E+Zk E

l‘-] . . 1 L ;
how changing the index can slmplify expressiofit ZZ Jtn=n*424
This example illustrates | “'
: 3 sums. [l
e atonof umof e - 2} j=n420n :
i, Natural numbers . e
. i Squares of natural PUMDEES _ .' ;
i  iii. Cubes of na;:rﬂlafll’l::e mentioned sums, here we discuss a general ; -ZZ J=nten
; BFf“‘_;]::]-‘:f:':E;ﬂajT:w uz to compute a wide variety of sums. | =
i ]
SIE:;JPOSCIJ[, bz, ----hnl jsgsoqucﬂl:e Hen(;c Z J-= "l:i'?+l}
and  a;,=b, -b; 2 : : < -———-——2
- = .an iy
then >a, =2 (b,—b) iy let b=j 5
o =35 ' then b, —b =(j+]) =P
=(b,-b) + b,=b) +..+ b, b)) I o ({H} J
=—b +(b, —b)+ (b, =b)+..+ (6, =b)+b,, =372 4341
s T . thusherea, =3 +3j41
Thus if : a;=b;,, =4, : Now, using the following Z a, =b,, b
[hcﬂ Zd = bﬁH-I" bl . i J=1 ]
/ - =2 s . 1
= | 2 GR+3j+1) = (n+1y’=p by (2) i
=l . 2 |

This statement seems very simple, yet in practice it can be very powerful.,

=l

3% s +i I =(n+1)" -1 [
J=l :

Suppose we want to compute Z“;" If we can find a sequence by, by,... such that

J=l
b;,,—b; =a, , then we can write down the answer immediately, that is b, = b, . 32 i +3(”(-‘?+ I)J FnE@eDy -1
(i) Let b, = j? , (1) J1 2
then b, ~b, = (j+1)*-j* 32 P= (n+1)° _113[:1(» + 1)]_ :
=2j+1 i 2

ﬂmu_s here, we take a,=2j+1 =(n+1) _(n+l)=--%n(n+l)

' n . _h+l s
Now using gﬂﬁfa.;-h &t % [Z(ri+i) —2-3::] | ; ]
! ' n+l 1 i
b =——[2n?+2+4n-2-3n] = 231152
Z Q4= (ra 1 - ity 5 [n +4n 3n] 3 [2;: +nJ
Jal ' = n(n+1)(2n+1)

2
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risecll e Serics
e 3L [aa+0@1+D)]

=%
2 _ &

Hence “
b= .f' ] 2 ;
@)  Let _ it =4p+67+4j+]
dai *h 'b.'"('”-:‘ I
A46j 214+l

we take 4T 4
- Now, using the following

3 a,=b.,h
Jel

3> @ +624j+D =+ =1 oY)
el

42; +6ZJ- +4E J+Zl {ﬂ'i’])d_l

J,'.r J=1 Jmi J=l

g n(ﬂ+!}(2n+1,'9 4( (n+ll)+ et
i peofmsimen). o),

4y 7=t D) ~1=n(n+ )2+ =2n(a+1)~n

it
=(n+1) =(n+1)—n(n+1)(2n+1)—2n(n+1)

=m+D[(n+1)*-1-2n* —n—2n]
=+’ +30° +3n+1-1-2n" =3n] =(n+1) [0’ +n’]
=,-:’(n+1)2

. 2
. 4

S g | n(n+]) g
Z"{ 2 J

j=
Example 3; Find the sum of the n terms of the series.
; ¢ I-2+23 +34 +...
Solution:  Let T} be the general term of the given series, then

= j(j+1)
and §ﬂ=ZU”ﬁ
£ _f=|

Y (2
Mathematics-NI1 10z

L nit 5 J amiscellaneous Serics

-ZJJFZ;

J=l
2

_n(n+1) [2ﬂ+l+3]

6

+1
= "iﬂﬁ T i

_n(n+1)(n+2)
_,—__5____

Find the sum of the n terms of the series
1224232 4+3.42 4

Solution: Here T, = j(j+1)*
then 3 7, '=Z (’+27%+ j)
Ji=1 i

"ZJ+2ZJ’+ZJ

J=l
=£(n+1) +2n(n+l}(2n+l}+u(n+l)

4 6 2

nin+1 e
= (12 }[3n'+3n+8n+4+6]

_n(n+1)

Example 4:

[3n* +11n+10]

—'Ii n(n+1)(n+2)(3n+5)

E L 5
Xample 5:  Find the sum of n terms of the series whose nth term is
& 2" +8n° —6n°.
Olution: Given that = 2" 1 8n° —6n®
then T,=2"+8;" -6

Z T,= Z (27 +8;°-6j)

—Z 2”+sz j -ez 7P

. =l =l

Mathematics-X1




laneaus Series

yiscel

; . _ 3%

! i =0 ],s n’{n‘f-l)z:r'_ﬁ[n(n+1)6(2u+ )}
e i AT .
5 . ﬁ2"—-1+u{n+l)[2n=+2u—2rr—l]
E =2"_-{+_w(1|:+1}1:2n2 -1)

B
.. y

ing seri rms
1. Sum the following series up ton te

() Pagtesteriee @ Pr@E2)FE 2+

::.".': L (i), 224464 (V) P+3+5+ MP+5+9 4
: 2. Find the sum 12423+ 34+ .-+ 99-100

- 3. Find the sum P43 450+ 7 4+ 997

4. Find the sum 2+ (2+3) + (2 + 5 + 8)+--- o n terms

5. Sum 245+ 10 +17+ ton terms .

6. Sum tonterms. 1:2:3+2:34+ 345+
7. Sum ton terms 159 4 2:6-10 + 3-7-11+--

8. - Find the sﬁm to 2n terms of the series whose nth term is 4n*+5n+1

s

9. Find the sum of n terms of the series whose nth term is:
B () n’@2n+3) (i) 34"+2n%) - 40’

5.2 Arithmetico-Geometric series

Since we are already familiar with the arithmetic arid geometric sequences
and their related series. Now, we discuss here another important sequence and its
related series, which we obtain from arithmetic and geometric sequences.
£2.1 A series which is obtained by multiplying the corresponding terms of an
arithmetic series and a geometric series is called Arithmetico-Geometric series.

For example,

[a+@+d)+a+2d)+ + @+ =] [14r+ 7+ 7"

TR ]

=at{atd)r+(@+2d)r’ +.t @+ (n=1)d) r
which is arithmetico-geometric series.

Mathematics-X15/2

P \-1iseclla:;l_cuus_5¢ri£;s
pnit 517 o

pth term of Arithme_ticq-{}mmetriésmes
A series which is formed by multiplying the corresponding terms of an

1 G. P. is called an arithmetico.- A
A P.anda Ico-geometric series, Th erin
series has the form [a +(n=1)d| x p! . Jume nth n of such

5.2.2 Sum of n terms of Arithmetico-Geometric Series
Let S, =a+(a+d)r+(a+2d)r’ +..t|a+(n ~Dd] 7~ m
then rS" = ar+ (a'l-d]r'l +...+[ﬂ'+ {H—z)d] r! + [ﬂ'+(i‘| —])d] " (2)
subtracting (2) from (1) we obtain
(1-r)8, =q+ (dr+dr® +..+dr"™) ‘—[a+(n—l)d] o
a 1 [dr(ﬁ—r"'l)
+

~8, =
I-r

p— 1 n
1-r 1-r r_':[dﬂ"_l)d] 5

a dr dr”- ; [a + [u -1) ,j] r @

I=r A=r® a-rf  (1-7)

which is the required sum of the n terms of arithmetico-geometric series.

e ——

Ty ; ; 4 7
Lxdmplc 0: Sum the series l+§+-5—2+5—+ ..... to n terms. i

Solution: Let S=1+i+__7_+ﬂ+ _____ +3nt2 ( Note Q

o R L =
o SR R RS 3n-5_3n-2 A
"§S=§+7+‘T _____ R Arithmetico-Geometric
55715 ) 2 Series
R - 3 3\ -2 Lt [IS]
5 +(3—+-_—;+—3+ ......... 'STT]_ 5 Then lﬁ—iﬂ as n—reoa -
- Equation (3) reduces to
e B 1 1 | 3n-2
~l+§ bt = e fiins =l
55 5 b Ee e
oA which is the required sum
=143 8 [ 3m-2 to infinity of arithmetico—
ol T geometric serics :
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& Serics

i,.-._-ll.:m'lrn

- X =2 .~1._,.1-_T[3 3:15 2)

: .-2. 514";1"':1""5_;—-'__ 5" 4 5

. " 7 ¢35 12n+7
7 1 15+12nﬂ3]5'-’;lr2_{i§%_ #EE To5
’i A :

Example 7: Sum the senes. _

a 3 2.1+4-316° 9+8-27+10- .81+...to nterms. .
.: =2 i
i' Solution: Let §=2-1+4' 346-9+...+(2n— ~2)-3" +2n 3"
| mmon ratio of the geometric series, We gct

(ii)

/ Multiplying by 3, the co
3-S=2-3+4-9+6-2‘?+...+
Subtracting (ii) from (i), we get

{1-3)s=2-1+[3(4-z}+9(6r4
f‘zj-s=2-1+{2(3+9+ 2?+...'Eo(n-l]icrms)}—-2n- 3".

3 -1
=2+2'j3.{____]_ij[—2{"$

(2:1-—2}-3“'1 +2n-3"

]+27{8—-6}+...+3"" (2n ~2n-2)}-2n-3"

3_.
=243"-3-213" =-1-3 (2n-1).

——[1+3 (2n-1)]

Example 8: If x<I, sum the series
14+2x+3x% +4x° +.....to infinity

@
(i)

§ =1+2x+3%" +4x° +.....
x8= x+232 432 +......
Subtracting (ii) from (i), we get
~8(1-x)= I+ x+ 242+
The RH-S is an inﬁnite geometric series with a; =1 and r=x<1

S(1-x) =

Solution: Let

=X
1

= z
(1-x)

— "
Mathematics-XL/ 166
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1 1
Let x=24% 48 1

Solution:
' 1 1

1 1
log x =—lo: + = 1

Example 92 Show that 2°x 48 x S it s
ve 00 =

L 1
816 3 lﬁﬁx

log x =log2* +log4® +lng8‘“5+loglﬁﬁ HTr

1 .00
Y ogle+..

1 1
log x=—log 2+~ log 2 + log2* +
4 g g +16[0g2 +£]Ugf-i:___m

8

1 2
|c.g_r-_—;}0g2+—-10g2+—3—10g2+i]og2+ o0
32

8

logx[ Ll

. Now, l+ -2—+i+-4—+,“
: 4 8 :

Let S=_+§+—+—+...m

1 | G S O
+—+—+
: 2 8 16 32 64
On subtracting Eq(iii) from Eq(ii), we get
1 1 l 1
_S —
2 4 8 16 32
1 1 | A K |
=—S8S=—+—
2 21 4 23 24 =8 s 25 +e

ls='l
2.2

S=1
s () =logx=1xlog2
logx=1log2

Sx=2

L -
—— k. .0

16

~°°] log2 (i)

(i)

—+ ... (i1i)
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'\lnscellan eous Scrlcs

L [2 6+(n—2)-4]

= a, -, =
| 2 a,— % - P] [I2+4n—8]=
. L L n=1
& e following 57 Sy 54 [4n+4] (n-1)(2
85 1. Sumtnntenﬂs s 24102+ e
o 0 1242 232 +4 2+ . (i) 1+Zx+;x- g | aﬂ=l+2{n-l)(n.+1] i =+ (n-1)(2n-2)
! i -—--i'--'+'-"'+ e o 1
(i) 1425438 HAE @) 1+3%47 8 | a2 I
v) 1- Tx+13x 1195+ | na=2r -;I
: um to infinity 0“‘"’ follpwing sevics BT “ n(n+1)(2
e 9,18, 2 ‘z.:ﬂ _Z‘, Z“z' }; ntl)  _ n(n+))@2n+1) 2
() P+3x+5x 2L PP+ X <1 (i) 1 §+§2'+ ; 34 e 3 f
tric series _n(+D@n+)=3n_n(n+2)@n-1)
3 Find the nth term of the following anthmehco—gcﬂme ric series ] : o
o iz, 3.04.3 : ey _ 3
. T+;+—J+§+I—g+a—2-+... . ~.therequired sum - _n(n+2)2n-1)
f the followin Arithmetico-geumetric series . R, 3
Cageren SL]IT sepeii= - Example 11: flnd the nth term and the sum to n te; g
; 5+3+1+—-4+ S 34+ 549417531+ rnnrnns rms of the series
44 olution: S :
5 J’.fthe sum to infinity of the series 3 +5r+ TP 4o @ 18— ,—ay =2
2 ; —dy =4
We have a,-a,=8 .

find the value ofr.
terms form an c
1, —a,_,=(n-1)th termof thesequence2.4,8,..

53 TheMethod of Differences -
In the case of some series in which the difference of successive
AP, or G.P,, the following method can be employed to find the nth term. The sum Which i )
then be obtained. s a G.P. Adding column-wise, we get
a—g =
=@ =24+4+8+...... to(n—1)rerms,

of such a series to n terms may
Example 10: Find the ath term and the sum to n terms of the series
17+ 17431 +4%% e ; 2 22" 1

Sulutiqn: a,-a,=6 ; ,—a, = 5 )=2"-2

a,-a,=10 | 0, =2-2+3 [+ a,=3]
We have a,—a, =14 a4,=2"+1 I

a,=2+1

ﬂu—a,._1={n-1)thtennuf the sequence 6,10,14,... : 22" _ | TR bl ]"'Zl

== ‘n
3oy tA=2+n-2

Adding column-wise, we get
\‘t me -
fequiredsum=2"" +n-2.

a —a =6+_10+l4+18+ ...... to(n—1)terms,

Mathematics-XI /
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£ 349421+ s ;
E?* ) emesaHIszeERte : |
e '.‘. e = - 3 ﬁﬂns I
ummation b, the method of partial Frac .
?fm ‘::nz:lal irm of a series consists of the products of the rccthcal:s of
mori%:nnsccmive terms. of an AP., then the term can _be split up into
;t:-‘:r[:i:]rfractions and the series ¢an be summed. The method 18 illustrated in the ,
: |
following examples. 1 i 2 |
SR o o A T L4 ..tonterms
ExampIeIZ:Sumthesenes 3"?-'!' -:r,“+ 11.15+ 15-19 . {
ors are the products of two successive

_ Solution: Here, the factors in the denominat

terms of an A P37, 1L 1_5* 19, :
" 3 1 - -___________-—-—"
- rth term of the given series, d, (4r_1](4r+3}

Expressing @, 38 the difference of jts partial fractions, we have
1 [ 1 :
a == e e e—
: r=4|4r-1 4r+3
By putting 7= 1,2,3,...(n=1),n in succession, we g€t

170

Mathematics-X1 7
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aﬂ_1=-]—|: 1 o 1
.4 4n-5 4n-1

a .—_~_1-1: 1 1
" 4l 4n-1 4_,1_'_3:1

Adding column-wise, we get

iﬂ :l[.!.._ ] _ n
i 413 4n+3 __3[4n+3]

- The required SI:lITI =

£ el o
3(4n+3)

Example 13: Find the sum of the series:
1

L
1-4 4.?+m+...t0inﬁnit)'.

1

Here T, = —————
(3n-2)3n+1)

Solution:

Breaking it into Partial Fractions, we have
1 ks A B
(Bn-2)(3n+1) 3n-2 g 3n+1

Multiplying both sides by (3n-2)(3n+1) , we have
1=A@3r+1)+B(3n-2)

C 3 :
omparing the coefficient of n and the constants both sides, we get

0=3A+3B Q)
w2l (i)
Solving (i) and (ii) we get ,-1:1 : Bzﬁl
3 3
o R rl[ 11 }




1. Find the
1
wo
(® 1.2+1-3 34

Jlowing:
('1] .l-+_-l—-+-—!—-+.,. to n terms. .
i) 13735 57

sum of the fo
1, tonterms:
; : o A L infinity.
1-. 1 ;.10 infinity. (iv) d-]3+ 13-2‘2+ 22-31

A A
(i) 7.5*55 Bl i
5. Find sum of the series: :Z: o+ %k T3k-2
L] 1
- e P
3. Find sum of the series: 2 {k’-k}
4. Find sum aof the seres: : .--*--"'kz PCTHTT)
RWIE%FE?EE.E.!’-L'_§E‘-:. :

1. Choose the correct 0

)

© (i)

(iii)

(iv)

v)

(vi)

(vii)

@n+2™ @@+t ©@n*

ption

(d) 6n-5

Ift, =6n+3, then tas1 =

(a) 60-1 m)6n+1l  (©) 6n +6

The sum to infinity of the series 1 +%~+ 5’?‘;‘*‘ %"Q+ laﬂ

(a) 6 (b) 2 @3 . (d) 4

Sum the peries: 1 #22+ 32 # o ¥ 1002

@ 992'° () 1002'° (¢ 992" %+ 1 (@) 10002'°

The nth term of the series 12+2:3+34+..108

(@) (@*-n) (b (@*+n) () o2 (d)None of these
term is 1+ 5

The sum of n terms of the series whose nth
these

2 (2P-1) (d) None of
10

(d) 1052
What is the nth term of the series 1+(H22)+£1—T%—t§-)-+---?

n(n+1) (n+1)(2ﬂ.+ 3)
2

Evaluate Y(3 +2°), where r = 123, s
(a) 2051 (b) 2049 (c) 2076

() n® - (n+1) (d)

n+l
(a) 2 (b) 5

Uit 5, | Miscellaneous Series

L

10.

(\?iii) sum of n terms of the series 1°
e series | +34'+53+.?3+ ,

18

R P
(a) n°(2n"-1) (b) 20" +3n? (o) n?
n(n-)  (d)n’+8n+ 4

Sum the series to n terms 1.24.2.343
: 3434400

Sum the series 1-3.5+
2-4.6+3.5.

| g A +S ?;'tﬁ.n.tf:n_ns,
‘ : 710... 1043 &
Sum the series 5+12x+19x2 +26x} +- to
: -+ t0 n terms.
Sum the series: L~|._l_+_]_

| ].2 73 3.4"'"‘ to n terms.

Find the sum of n terms of the series

Sum the series

(i) Sum the series: 122+3:32+5:42 4+ ¢

(ii) Sum the series: 3'124+5:2247-32+-. tz::erms.

\ : erms.
Find the sum of n terms of the series whose nth term i

o L o= 5

{_1) n’ +3 (i) 2n243n (i) n(n+l)(n+4) (iv) (2nd)?
Find the sum of the first n terms of the series <
F(.L} HTHB2ABL () 245HI4HAI

ind t!uz n® term and the sum to n terms of the series

1+(1+ -2—} +(1+L+L}+(l+l+ 1,1

2 el B P

Ma’ hematics-X1



3 Ullit 6 | Permutation, C“mhinatl.nn

Prove the "C, =(”1=__n_!__:’an
r riin=ry!

Define the following:
statistical experiment,

M= ZmocC—wm

sample space and an event,
mutually exclusive events,
equally likely events,

dents will be abletos

After reading this unit; the st

¢ Know Kramp's factorial notation to express the product of first n natural

s Explain the meaning of permutation of n different obj

and know the notation °P,,
® vacthm’P,:n(n—l](n-l)...
n!
(n—r)! A8

(n- r+1) and hence deduce that A Sl AT

Define the conditional probability

L
E
A
R
N
I
N
G
0
u
T
C
0
M
E
.5

HR =
P(AUB)= P(A) +P(B)-P(ANB),
Events.,

r of arrangements Recognize multiplication theor

o Apply "P; to solve relevant problems of finding the numbe
nt and when some

of n objects taken r.at a time (when all n objects are differe
of them are alike).
» Find the arrangement of different objects around a circle.
e Define combination of n different objects taken r at a time.

are conditional probabilities.

Use theorem of addition and multip
problems

Recognize the addition theorem ( or law) of probabi
where A and B are mutually exclusive

em (or law) of probability

P(ANB) = P(A) P(BIA) or P(ANB) = P(B) P(AIB) where P(

Deduce that P(ANB) = P(A) P(B) where A and B

d deduce that

Solve problems involving combination,

dependent and independent events,
simple and compound events.
Recognize the formula for probability of occurrence of an event E, that

numbers by nl. : R

inci i te this principle ; _

0 Recagn.'m‘-[h-eﬁ.lndamenlal pnnc1plc of counting and illustrate this P p s PE)= n(E) e
_ using tree diagram. : X —”(S)

ects taken r at a tilme " Apply the formula for finding probability in simple cases.

Use Venn diagrams and tree diagrams 0 find the probability for the

ility

BlA) and P(AIB)

are independent events.

lication of probability t© solve related




art to count

tal skills. People st
count

amen
most fund ! ven earlier. But how to

arten OF

in kind
on their fingers when ey &€ 1% .o o lifelong course-
cally i9 8 ifeloS ut combinatorics, the

quickly, correctly: and s%.rs'ten'{at! :
1n order to study probability, 1t 15 1
theory of counting. ! e
is uni i clop techniques a0 or .
© numbe! 1;1:: Sgclismli‘n\? 5\::]] '?‘;:s:?onnulae are used 10 t_:{_)rrnpulcr Sli:lenj::e to
:naiyz:; igorifhms. They are also used to determine P the likelihood
that a certain outcome of 8 random experiment will occur.
6.1.1 Kramp’s Factorial notation to express the product of first n natural
pumbers by n! :

Factorial Notation
If n is a positive integer, the notation

m n down through 1.

counting the

n!(read “n factorial”) is the product of all

positive integers fro
! =n(n—1) (n-2)—(3) @ D)

- 0!(zero factorial), by definition, 0l'=1

Technology q1)

Most calculators have factorial

keys. To find 5!, most calculators
- use one of the following:

Many Scientific Calculators

Many Graphing Calculators
5@

( Note The Difference !=! )

1231 =2(32) =12
: Qﬁ)l=6]=6:5'4'3'2'1=720

prample 1: Simplify the following exprez-asfon
. B

{6 | Permutation, Combination And pro

! |
ﬂ-% ;— o A S L
| 2131 2041 313 Py e
3187 = e
solution: ¢ TI=T=B
51 _543! 54

" 2131 2131 21 0

ol s
20417 3130 21413 31313 32141 31431
L
3141 341 341 14
(n+1)! _ (n+1).n! i
. _— =n

n! n! 32
n! n.(n=1.(n-2).(n=3)!
€. = - } H
TS TR S— )
. = n(n=1).(n-2)=n’-3n*+2 Evaluate each factorial
Example 2: Write the following in factorial fnrmf P
®1317_ G (n=3)(n-2)(n-1) oo 1l i
9-8-75 n(n—4) 212! (n-1)!

317 _17:16:1514:13:12!  136:4!
875 9-8-7-6-54!  16-15-14-13-12!
_171 6514113121 _ 1711346!4!
) , 91" 16150120 1611219151
(ii) n—=3)(n-2)(n-1) 2 (n=D(n-2)(n-3) _ (n=1)(n—2)n-3)n-4)!
n(n—4) n(n—4) n(n—4)(n—4)!
; (n=1)(n-1)(n—2)n=3)n-5)"
n(n—1)n-2)n-3) -4 (-5 n-4)"
_ (=Di=5)! (@=Din-2n=3n=d
T -4 (n=4)!
_ (@=DY (n=3)"

_ (=Din=5)! (-2
nl(n—4)! (n—4)! n!({n_“m]z

Solution: (-]
(i) 5




| 5 v, H 1
41 Evaluate the follo¥in6 - - (i) EI':Q-I @) '15%
PO B g:'t:'- U8 (D! 3
I,  — = H
313141 g -
O RO, terms of factol‘lali; 2.4_' 68:10-12
S 19.18-17-16:15:14 A a(n+(n+2)
" s -3 -
(iii) ﬂ{”?'ll
3  Prove the following. .
3 75 {1} M=n1+9n+20
a ¥ 3!

(i) E-!+.':T!+-3_E-r 3!

4. Find the value of n, when
~ nn) _ 12(n!) .
W =5 (-9

5.  Show that (i).@= 2" (1:3-5-(2n -1)

n!

1 (D .
(ii) ___n__--——:——|=91
(n—4)! (n—9!

‘the

(ii) E:_’[l—]!= 2" (1-3-5-+(2n— 1)(2n+1))

6.2 Permutation

As we know that counting plays a vital role in many areas, -such as
probability, statistics and computer science. In this section and in the next, ‘fv‘“i
shall look at special types of counting problems and develop general formulae 10

solving them.
The following principle of cou

6.2.1 Fundamental Principle of Counting

Let Ey, Ey, . . . ,Ex be a sequence of k events. If for each i,
different ways, then the total number of ways the events may
product mymz. . . M.
This principle is also known as the multiplication principle.

nting will be helpful and basic to all our work.

E, can occur in
take place is the

| p&.ﬁﬁmﬁnn, Com_hlh;ﬂén_An'd»p ' h!l'lif':t B
pata e i o5 males ol S
. B
ple % How many dlfferlent 6-place vehicle numper plates are &
first 3 places are 10 be occupied by letters and the final 3 by “Umbe::s&ble if
golution: Since the first three places are to be oceupied by the letters A B ElaZ
g he final 3 places by the numbers 0,1,2, g P

Hence each event B, i=1,2,3 occurs in m; = 26, i=1, 2, 3 gi
nd cach Bi, = 4, 5, 6 oceurs in m; = 10, i= 4, 5, 6 different éaysl;iﬁlwﬁs
fun Jamental counting principle the total number of vehicle number piates is s |
f i

g MM = 26:26:26-10:10-10 = 17576000
grample 4 How many functions defined on n points is possible if each /
value is either 0 or 17 £ )

Solution: Letthe pointsbe 1,2,3,...,n.

gincef (i) = 0 or 1 foreach i=1, 2, 3, . ..,n. Hence each event E,i=1,2,3,...,n
hasm; =2,i=1,2,3,...,npossibilities. Thus by the fundamental counting

principle the total numbers of possible functions is

rnl;nzndlg. n1}|:= 2:.2.2...2 =30
Example 5: There are 5 roads joining A to B and 3 roads joining B to C. Find
how many different routes there are from A to C via B.

fnctional

Solution:  There are two operations to be performed in succession.
AtoB
BtoC

5 ways
3 ways
B Number of routes from A to C =5x3=15
Xample 6: How many 3-letter code symbols can be formed with the letters A, B,

C "
Without repetition? [ | ]
Solutigy. i
iom: Consider placing the letters in these boxes.




e i bol. Once

the first letter In the sym On
cted from the 2 remaining

o possibility is

d, since only 1p
the first box, either of the
letter in the third

hown below.

Jetters for
econd must D€
... already determine
ers 1n
left. That is, we ¢an place any g ]51“ only remaining
eft. 11 ‘nthesemﬂdbﬂxrand e . .
remaining 2 letters 1 e amrived at using a tree diagram, a5

box. The possihilities can
' OUTCOMES
B— [&] ﬁcBC

A<C.._-—-B ACDH Each putcome
np:tseﬁls one

B <“'°‘ c BAC permutation of the
c—A BCA - [etters A,B,C.
A—B CAB

C<B—'—A CBA

We see that there are 6 possibilities. The set of all the possibilities is

[ABC, ACB, BAC, BCA, CAB, CBA}.
Example 7: How many 3-letter code symbols can be formed with the letters A, B,
C, D, and E with repetition (that is, allowing letters to be repeated)?

Solution: Since repetition is allowed, there are 5 choices for the first letter, 5
choices for the second, and 5 for the third. Thus . there are 5-5-5, or 125 code

symbols.
Example 8: How many 5-letter code symbols can be formed with the letters A, B,

C, and D if we allow a letter to occur more than once?
Solution: We can select each of the 5 letters in 4 ways. That is, we can select the
first letter in 4 ways, the second in 4 ways, and so on. Thus there are 4°, or 1024

arrangements.
6.2.2 Explaining the meaning of permutation

An ordered arrangement of a finite number of elements taken some Orf all’

at a time is called a permutation of these elements.
:;r’e use the notation ."J“r or P(n,r) to denote the number of permutations of n
exqen; taken r at a time, where r is a positive integer such thatr <n .
ow, we develop general formula for th i I
' e solut s of
counting problems. . R

623 ‘7,
Theor€ |
f,;,]]owingi 0]

proof:
ordered art angement of n elements in which only r<p of them 3

epetitions, requires making 1 selections. Therefore, for the f; are usefi without
are n choices; for the second selection, there are (- 1) zh 5t anXoton, tiére
there are (n — 2) choices; and so on. Hence the events: oices; for the third

=n(n-1(n- 2)"'(""?"?1_3 |

m:Prove that - "F, =n(n=1)(n-2)..(n~r41)

and hence deduce the

(i) 01=1

NPr —_
(n—r)!

To find a formula for "p | we
. note that the task of o
obtaining an

@ "P=m

" 1
E; occurs in m; = n ways
E; occurs in my = (n—1) ways

Es occurs in ms3 = (n—2) ways

-
.

and E; occurs in m; = {n—(r—l)) =(n-r+1) ways
Thus by the Fundamental Counting Principle
"P. = mmyemy-m, =n(n=1)(n=2)-(n-r+1)

(i) Since "P. =n(n-1)(n-2)-(n—-r+1)

"R = -'1("-1)(n—2}.++{n_r+1)_(n—'r)!
{n—r)!
= n(n=1)(n=2)-(n—r+Dn-r)! _ n! )

(n—r)! _(n—r)!

(i)  Since "P.=n(n-1)(n-2)-(n—r+l)
Now, putting r'= n in the above, we obtain:
"P, = n(n-1)(n-2)-(n—n+1) =a@-Hn=2r"1
=n(n-1)(n-2)+3-2:1 =n! :
n: 1

—_—=fl

(i) Since "P =n! then by using (i), We obtain: )

1
ora-!=1 =0!=1




=

o

ed from the integers

fo

each number We have to

g, this is a problem

;
find, consists of six digit
of permufation. ., ’
. The required number of six digit pumbers = Fe

9-3-'?-6-5-4-3! 9.8-7-6:543!
e =———
T - 31
=0.87654 =60480 l
made out of the letters of the

i t words can be
GHASE nd with e?

Example 10: How many n be
13 »9 How many of these will begin with t and e

word “triangle
Solution:
(i) There are g different lett

ers in the word “triangle”. Therefore, the number of

8! _ 8! _g =40320

. =t l = .
different words.= "R= -—-—-(8_ YT |
(ii) If ‘t’ and ‘e’ occupy the first and last places, then we are left only with 6 I

different letters. Thus the number of different wcr_ds in this ca:

p=6!=720
11: How many different arrangements of 10 objects taken 4 at a time |

can be made with one particular object (i) never occurs (i) always?
Solution:  There are 10 different objects and we are taking 4 at a time. Then
10!

(0

p=——=135
|

¥ . 10
e possible arrangements aré £, = ")
(i)  Since one of the objects never occurs, so we are left with 9 objects. Thus
a1 |
= 3024 @

the possible arrangements taking 4 at a time = *P; =
(9-4)!

s 18

rs is

(ii}‘ The possib]re arrangements that the particular object always occu
obtained by subtracting (2) from (1), i.e. 5040 — 3024 = 2016

6.2.4. P_ermutaﬂons with Repeated Elements
Consider the example of findin i igi
: g the number of different 9 digit numerals
that can be formed from the digits: 6, 6, 6, 6, 5, 5, 5, 4, 3 and consider one such

numeral: 665566543 (i)

Not For Sale
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permutation; Combination And P

-
= e

with this ordering of the 9 digits, there are 41 5 .t
; = ’ 1p i

| Permutations -::f Ehe digits 5 which have no eff:g:l:;at;:ns of the digits 6

thete e 4!-31 arrangements of digits in the numcratl # abﬂ?t numeral,

Jtina fi|§tlngy15hable permutation of the given nin ﬁ!w_zn in (i) which

¢ number of distinguishable permutations of the given 9 dig.izts ltghlts. j{'e;ce if X

» then 41:31-X=91,

is i
1 is the number of permutations isti
ohere 9 ; of 9 distinct elements taken 9 at a time
s w500 '
41-3!
The above example shows that in case of re
he ab ated el
jons is reduced. Hencc‘we have the fo]low!::g resulte ARG, Ve themghen bl
The number of distinguishable it
' \ permutations of n elem
n which my are alike, m; are alike, . . . and my aree:ltisk;aii(: :

and =
Therefl]fe:

utat
Theorem:
gl at a time, 1
n!
L
Ly Lty !
proof: Let X b; the required number of distinguishable permutations. Now, if we
replace My alike cle_mf:nts by my different elements, then the numl:llei- of
permutations of m, distinct elements taken all at a time is m;!. Similarly the
replacement of Tnz, ... .my alike elements by different elements give rise to m;!
.. mg! permutations respectively. et
\ Thus the simultaneous replacement of alike elements by different elements
increases the number of permutations to X, my!. mal. . .omy!
3 i 2 !
ince n = m; + my + . . . + my, then the number of permutations of n

distinct elements is n!
n!
g ey o Remember
my Ly Ly | ;

SKalmlm l=n! =X =
{ n } We usually omit those digits.

Whi .
ere X is generally denoted by, which AT '

My My ey Py

Thus [ n n!
m.; o
pily, ity |y iy Lamy |

Exam b
e lelgl:sg: Find the number of different arrangements that can
the word “assassination” taken all together.

be made out of

Soluti.
¥ 0mn; ) =
iand 2 :rc The total number of letters is 13, out of which 4 are s, 3 are & 2 are
Th i n130n=13,m|:4,m2=37m3=27n =2
1S the requi 13 13!
quired number of per i A3 n = 3 ] I 1
mutations = =
3 P P 1 4322 4v3r2r2!

=10810800




fi num;aers are possible using all of
ifferen

= > _ digit @
. How many eight
Example 13: How 47 3 ’ 1§ and two are 2%.
g 2ol 3|;-c ulaf digit is 8 out of which four are
r i
Solutlon; The total num ,
Sohsren:s.m:=4-m2"‘2' i b 8 5 8! _ 840
oht digit number = =|42) 42!

thus the total eight digi s :

: le i
ents Round A cire 4el "
ments of Distinct Eleni¢ d have seen that 4 elements
6.2.5 Arrange s 1 a row an Suppose We arrange these

arranging elements ;

We ave been in 41 = 24 different WayS: SWR R amange A, B,
can be arranged etric circular pattern. For e Eaure 6.1 and others
same 4 EIB[TMS 'Tclisyé?-nr: <uch arrangement is shown. if FIgnrD:

C, D asound a Gircle

in Figl.ll‘c 6.2, A B
D G
Figure 6.1.
Bg~ @t
A ?L___J.x' D

Figure 6.2

low to check, whether these four arrangements

are different or not. Let us ignore

the positions of A, B, C, D and consider only their relative order as we go around

the circle in a specific direction. We see that these four arrangements are the
same. For example if we begin at A and move clockwise around any of the circles
we get the same arrangement, ABCD and then back to A again. Thus the four
different arrangements ABCD, BCDA, CDAB and DABC are not distinguishable
in a circular arrangement.

In general, if there are X distinct circular arrangements o
there would be 4-X amangements of these elements along a row. But since the

number of arrangements along a row is 4!,
then we have 4-X =4! = X'?['_'j!

f four elements,

s, we have the following: %

o of disi ingoishable circular perm .
The num?;g keys on a ring or differemFbeadslgl,:lgtﬁ;;i'i‘a:fniiﬂ:u I (n=1)1,
ements are t!.::c same if one arrangement can be Ublair:ed ﬁ;gret;d that two
ing over the ring (or the necklace) is reflection of one another The other by
nple 15 of four elements A, B, C, D, the following two 'am“S in case
under such conditions (reflection of one another), ngements

of the ExaI
qre the same

/_—__—'“‘1.:.3 B

A S i e A

Figure 6.3

" Consequently, there are three different arrangements of four different keys on a

ring {or four different beads on a necklace), that is, the number of different
4-n! 3N
( ) :i=3
2
More generally, the number of different arrangements of keys on a ring (or

ndifferent beads on a necklace) is (n_D! ’
2

arrangements is

Example 14: In how many ways can six people be se‘atcd around a circular table?

g‘ ':,:.I“ 1,“"" In this case n = 6, so that six people can be seated around a circular

: le in 6-D1=351=120 ways.

h:lllnple 15: How many different necklaces can be forme
ads of djf ferent colors?

d .hy stringing eight

n=1)!

Sol i
Wtlon:  The number of different necklaces is 2

§
Oforn=g we haiié (B8-D!_T7! _5520 different necklaces.




b

W

10.

1.

12.

13.

14.

15.

i) "Ps

o WP .
5 Evatene R O e —o-ipy (i) =600
Solve for n ). "B, =36C"R) () B=%"% _
ndamental Principle of counting

Prove the following bY Fu
(.=
In how many ways can a police department arrange eight suspect :
In how many ways can letters of the word «Fasting’ be z.u'fange.d !

How many 4 digit numhers- can be formed with the digits qz, 4:5,7, 9.
(Repetitions not being allowed). How many of these are even’

How many three digit numbers can be formed from the digits 1,2,3,4and
5 if repetitions (i) are allowed (ii) are not allowed. |

How many different arrangements can be formed of the word “equation”

if all the vowels are to be kept together?
How many signals can be given by six
number of them are used at a time?
In how many ways can five students be seated in a row
certain two students (i) insist on sitting next to each other?

(ii) refuse to sit next 1o each other?
How many numbers each lying between 10 and 1000 can be formed with
digits 2, 3, 4, 0, 8, 9 using only once?
How many different words can be formed from the letters of the following
words if the letters are taken all at a time?
(i) Bookworm (i) Bookkeeper- (ii1) Abbottabad  (iv) Letter
Find the number of permutations of the word ‘EXCELLENCE'.
many of these permutations (i) begin with E (ii) begin with E and end with
C (iii) begin with E and end with E (iv) do not begin with E. (v) contain
two 2L’s together (vi) do not contain 2L’s together.

+1p 4 r(*™'P.)

@)", =n(""F) .
s inaline up?

flags of different colors when any

of eight seats if a

How

If five distinct keys are placed on a key ring, how many different orders .

are possible?
In h_nw many ways can 7 people be arranged at a round table sO that 2
particular persons always sit together?

% mt 6 | Permutation, Combination And pry,

“ 3 Combination

So for, we have been concermeq v
arrangements O.f elements of a set. N wit
in which order is not important that is, S:ubsct
6.3.1 Let S be a set containing n elemen s of a set,
such that r=n .Then any subset of S c:n?:-d‘s
combination of n elements takeri r at 3 iy ini

i ; :
: p;pcz]s.e I'15 a positive integer
BT distinct elements js called a

tation: The notation,
No we use for the number of combinations ¢
of n elements

. & ] " n
taken r at a time is "C, or .
r "

Example 16: Suppose S =
3 [etters at a time.

Solution:  The subsets of S taken three elements at a ti
{a,b,c}),{a,b,d),{acd}bec d} i
Therefore,  °C, =4 '
The distinction between permutations and combinations i
i L s 1 i
;:]cii p;l:;tps]:tisft Elﬁ:{ri%cnts gives a different permutation but thcssat.lhni:: E:]:u]l;l‘:pgi::ﬁiie
o r ey ove example there are four subsets of {a.b,c.d), taken three
2 ammgéd s ;:f'c? =4, But_ the elements of each one of the four subsets can
e ey ll]lt? order in 3! or 6 different ways. Thus the total number of
_ ngements in a definite order in all four subsets is

{a, b, i
¢, d}.Find the number of combinations by taking

64="P or 3LC,="B,

or'c. =B ot i -
) 31 { 2-3)! and we have the following important formula.
6.3.2 Theare | '
2 Theorem; Prove that "= L And hence deduce that
rliin—r)!

. n
(@) [n]'_—:l J (i) [E]:l , (i) [?]q V) [”n-l]:,;,m (’:]{n’_’_ r]

Proof:
oof: To find"c_, we must find the total number of subsets of r elements each
ements. Since each of these

0

cf th‘}l can be obtained from a set of n el

tomb‘“‘“mns (subsets) contains r elements, which can be permuted among
I'lEH'ISel\fes in r! ways. Thus "C, such combinations will give ..l
Permutations, But we know that the number of permutations of n elements




: y O rl="0 =)
::akenraialllmls'-pr (n—r) rli(n—py
gl - Al - 0l=1
PRI, | -
@ Hr=mten G ogon O

3 : - A :ﬁ:l

i ] (i) I r=0,then "Co=0!("-g.)[ !
| i D!

i) Hr=l.then "CERETH (n-D)!
n! _ n(n-=1! -
- n e 2 e S
i () 1f r=n-1,then C"'r(n-l)!(u—m-l)! (n-DL1!
. o) Poting - forr,wehave s

Cor = (,..-r_]_!fn-n+r).’ = (n-r)fr! i

Example 17: Prove that °C, 0. =

Solutlon:
n! n!

T rlin—r)! +-(r—l)!(n—r+1)]

n! n!

Taking LHS="C,+'C,

* (Did You Know 12)
e ;
The number of combinations

n!, {1 1 ]
= -+
(r=DYn-r)!lr n-r+1] -

o n! n=r+l+r
(r=DYn=n!| rin=r+1)

¥ (n+1)n!

' Fr=Dn=r+1)(n-r)!

DL (e

rir=1)l(n-r)! A (r=Dn-r+1){n-r)!

rl=r D! e s C=RHS

of n things r at a time is cqpal
to the number of combinations
of n things n — r at a time i.€.
"C' :" Cn—:

Such combinations are called
complementary.

Put r=n, then "Co="Ca =1

Not For Sale
Mathematics-X1 1%_
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Un
18: From 12 books in how many ways can a selection of 5 be made,
(i) when one specified book is always included, (ii) when one specified book -
s always excluded? ;
golution: (i) Since the specified book is to be included in every selection, we
have only to choose 4 out of the remaining 11.
Hence the number of ways =''C,
11x10x9x8
T 1x2x3x4 b
(i1) Since the specified book is always to be excluded, we have to
choose the 5 books out of the remaining 11.
11x10x9x8x7 _
1X2x3x4x5
Example 19: Out of 14 men in how many ways can an eleven be chosen?

The required number = I-lcnz HCJ-= 141312 =364,

Hence the number of ways="'C, = 462.

Solution:

1. Solve the following for n.

(i) "C, =36 (i ™c, =6"C, iy ", =30."C,
2. Findnandrif "F, =840 and "C, =35
3. Find nwhen *'C; : "C, =36 :3
4 Provethat(i) “'C +™'C_="C iy v"C. =a."C_,
5. How many (1) straight lines (1i) triangles are determined by 12 points,
no three of which lie on the same straight line.
6. Find the total number of diagonals of a hexagon.
7. Consider a group of 20 people. If everyone shakes hands with everyone
: else, how many handshakes take place?
+ A student is to answer 7 out of 10 questions in an examination. How many
: choices has he, if he must answer the first 3 questions?

An 8-person committee is to be formed from a group of 6 women and .7
men. In how many ways can the committee be chosen if (i’ the committee
‘ﬂllst contain four men and four women? (11! there must be at least two men?
(iid) there must be at least two women? (i) there must be more women than men?

Mathematics-XI gk
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. ory is very wide and ;
OB on of Y I e
racﬁcallizcz\'ery one.isfppl-wzil likely to come” and s0 on are all probabiisy,
P, “He s a lia”™ FE B B T pability theory. Basically, - probabg,
reliable”s i by 4 Pgames of chance and was develope
623 - 1662) and Fermat (1601 — 1665), Today,
he area of games of chance and
ysics, social sciences, engineering and

of mhﬂbil

jcation S
pKY jt without

. le ¥
OEES - y Pasc :
cown far beyond
elics, insurance ph

we define and explain certain terms which gy,

probability has &
applications 11 gen

medicit™ - ve defining probebilty,

used in its definition.
6410 Statistical Experiment

Intuitively by an experiment one pictures a procedure being carried gy
ntuitive

e an be repeated any numbers of
i onditions. The procedure C _
gnderac;r;amj’;;;iﬂm of conditions and upon completion of the procedure
es un :
ul::nnain'msull.s are observed. The experiments are of two types

: iment An experiment is deterministic if, given the
Deterministic experimen ; ;
gidilions under which the experiment is carried out, the outcome is completely

(4]
determined. For examiple if pure water is brought to a temperature gf IU_() C and
760 mm Hg of atmospheric pressure the outcome is that the water will boil.

(b) Random experiment An experiment for which tl}e outcome cannot be
predicied except that it is known to be one of a set of possible outcomes. 15 called

arandom experiment.

For example (i) Tossing a coin (ii) Rolling a die.

Since our interest lies in the random experiment, so in this text by experiment ¥¢
mean random experiment.

(i)  Sample space and an event

The set of all possible outcomes of a random experiment is Ca—"cdu;:
sample space and is donated by S. The elements of S are called sample point®
outcomes.

For example (3)  Tossing a coin once, then.
S={H,T)  where Hand T are the possible outcomes-

(b)  Tossing a coin twice, then (he possible outcomes in the sample space i
& "HHF [{Tq TH, 'IT_

it 6 | Permutation, Combination And Probability

Rolling a pair of dice, then we have the following sample space

s= {Gi:i.J = 1,2,3,4,556)

(L) (L2) (1,3) (1,4) L5 ,6))

(2D (22) 23) (24 @5 2,6
_JBD G2 (B3 (34 (35 (36)
“l@D @2 @3 @a) @45 @e|

G 52 53 59 (55 (5.6

(6,1) (6,2) (6,3) (6,4) (6,5 (6,6)

Event: Let S be the sample space of an experiment. Any subset E of S is called
an event associated with the experiment. For example E = {HH, TT} is an event
associated with the experiment of tossing a coin twice.

(i) Mutually Exclusive events
Two events are said to be mutually exclusive if they cannot both occur at
the same time. Mathematically, it is expressed as:
If AnB=¢,then A andB are mutually exclusive events,
_ For example rolling a die, let A be the event that even number has shown up
while B be the event that odd number has shown up and C be the event that a
number less than 4 has occurred.

Here §={(1,2,3,4,5,6}

Let A = {even number has shown up } = {2, 4, 6)
B = {odd number has shown up } =11, 3,5}

and  C = {a number less than 4 has occurred}= {1, 2, 3)

5 Now ANB=¢=A and B are mutually exclusive while AnC={2} and
AC={13 } showing that A, C and B, C are not mutually exclusive.

(iv) Equally likely events

- Two events are said to be equally likely if they have equal chances of
exam I;mg- In other words, each event is as likely to occur as the other. For
j={p,ff rolling a die we have S=1{1,2,3.4,5, 6} and each simple event
“fquall; lIijk:| ;sci;::;:, 5,6} is as likely to appear as the other. Hence they are




. relative to 8y fads fozoccur.

e

simple events, while an event containing

Eveats of the for™ I::a;}-zllsd sompound event. For example E; = (HH) i
at least two SamPle Pom:rs;{H T }isa comPO'-‘“d wneih Amsoclfiec wiih e
a simple event 419 ks 1 twice.

ing a col gse A, we say that the event A occurs or

experiment of toss ;

random experiment gl e f { i j )
If the - uA oceurs if at least one of ('Did You Know ?

ns. The

i all Aj occur. Favorable or f{ucceas[‘u]

m:tcomes '

Tt R [complemﬂﬂt of A The outcomes which entail
the happening of an event are
said to be favorable (successful)
to the event.
For example rolling a die, the
number of outcomes
favorable (successful) to the

If the event ﬁDDc"Is

be the sample space of a random
an event. The probability

cur, denoted by P(E) is

642 Let 8
expcnmﬂl'll-aﬂd E be
that an event E will o¢

iven b
g happening of event of even
E - -
P(E) = 1[__:' 1ntcgers are three, ie 2.4 and 6._
n(§)
the number of favorable (successful) outcome

the total number of outcomes
_ o of elements in the event E
no.of elementsinthe sample space S

Since E is a subset of S, then obviously
0 n(E)<n(S) Dividing by n (S), we obtain

N . B . nE)
n(s) n(s) n(s)
Hence the probability of an event is always a number between 0 an

‘ B:!’ the above definition, it is quite clear that P (¢) = 0 and P (§)=1t
= :;hy ¢is called an impossible event while S is called sure or certain event I B
and F are two events such that P(E)< P(F) , then we say that F is more

t i '
0 occur than E and if P (E) = P (F), the events E and F are equally likely-

Or0 < P(E) < 1

dl mcluswe

likely

Solution:

E“mple 20' (a) If a coin is ﬂ'PPEd find the Pl'obahﬂlt}' that a head will I:IJP

(b) If a fair die s tossed, fi
has shown up. ind the probability that an even number

(a) HereS={H,T)
Let A = { head has shownup } = { H }
gince, the outcomes are equally likely, then using the formula:

pay=222 1
n(S) 2
() Here §=(1,2,3,4,56)
Let B ={ even number has shownup }={ 2,4, 6 )
Since, the outcomes are equally likely, then we have P (B)=2-2) (B 3 17
= n(8) 6 3

In a three child family what is the ili

1 probability of havin
(1) three boys? (ii) at most one boy ? o
(iii) at least one boy (iv) exactly one boy ?

Example 21:

Solution: Sometimes a tree dia i ; .
oy - gram is very helpful in constructing a sample
Fu:st Second Third OQutcomes

child child child _
< B BBB
G BBG
< B BGB
BGG
< B GBB
G GBG
- B GGB

G {:::;

G GGG

Hence g =
{ BBB, BBG, BGB, BGG, GBB,
Ouicomes gare equally likely. s aii ol St
@ LetA= { having three boys } = { BBB } then P(A):M =_
n(s) 8




: boy |}
-  having 3 55 6G,GBB, GBG, GGB )

1 g Let D:{BBB. BBG.

i} Bt @)y _1

g then P{ =5S) 8 i o
i v Let E = { having exactly one boy )= BAG. OBE,
;} ; o 5 n(E) s_%
[ & then P( “n(s) 8

3 4,5, 6} be the sample space of rolling a die. What is the

59 (ii) Rolling 8 pumber less than one?

L LetS=(L2

probability of (i)Rolling 2 : |
(iii) Rolling 2 number greater than 0?7 (iv) Rolling a multiple of 37

) Rolling a number greater than of equal to 47
6 green balls. 3 balls are drawn at

) All are green (ii) All are white.

v
A bag contains 4 white, 5 red and

random, What is the probability that (i
A true or false test contains eight questions. If a student guesses the

answer for each question, find the probability:
(i) 8 answers are correct. (i) 7 answers are correct and 1 is incorrect.

(iii) 6 answers are correct and 2 are incorrect.

(iv) at least 6 answers are correct.

Three unbiased coins are tossed. What is the probability of obtaining
(ii) two heads (iii) one head

(i) all heads
(v) at least two heads

{iv) at least one head
A committee of 5 person is to be selected at random from 6 men and 4 wometl.
Find the probability that the committee will consist of
.[’jj .3 men and 2 women (ii} 2 men and 3 women.

(viy All tails.

~ Mathematics-XI

P

7]

~ . If one card is drawn at random froi & iR
shu

Then find the probability of each of the followi
ng.

0] Drawing an ace card, (i) Drawing e
i Do : ppei 5 ing either spade or hearts,
(v) Not drawing an ace of hearts, s wd |

o dice are thrown si :
7 ;:]l';.-.r doublet of even :usr::E::;a];;?L;S;iﬁizgsﬂtragrg?z?;liL:,r of getting:
(ixil a sum greater than 10 (V) a sum at least 10 n—nzis::lfm than 7
(?m] an cve:sn number as the sum i a: 1ircu:lw:t
(ix) a multiple of 3 as lhe.sum ) i num;::lm |
643 Laws of Probability o |
.I.l : is easiér to compute the probability of an event from known P18
probabilities of other events. This is true if the event can be expressed as the ' A
ullill'.'ll or intersection of two other events or as the Sk S ot S '
basic elementary laws of probability are given below in the form of theorcrr;s
644 Use Venn diagrams to find the probability for the occurrence of an e:unt

If4 and B If 4 and B
are disjoint are overlapping IfBcA
4 A

£ & ¢

We know that i

: at if A and . :
%l:gra;n i ot B are two sets, then the shaded parts in the following

e above dige skl ,
Probabiliies grams help us in understanding the formulae about the sum of two
f"’ know that:

(E) is o

s am;f;:.pmhabﬂny of the occurrence of an event E. |
PUymcs are two events, then i
: ¢ probability of the occurrence of event A; i




<1 of the pecurre
£ probabilitics s

4 and Bare disjoint.

on 0
+ P{B}. when

i) P(AUB)=P&)
: +P(®)-P(ANB)

ii) P(AUB)=PA)

when A and B ar¢ overlapping of BcA

F’a s n
A a.tld B are any two B'.FGIIIS ma SalllPiE space S the

Theorem: If
P[Auﬂ)=P(A)+P[B}"P[”‘”B}‘

Proof: From the Venn diagram, it is clear that

—

> ;

s B

n[AuB)=n[A]+n(B)-ﬂ{AmB]
andn( AnB ) has been subtracted simply because it has been considered twice.
Now, by definition we have i

n(AuBJ_n[:AJ-i-n{B)—ﬂ(Ar‘\B]
n(8) n(S)

_n(4) 3 n(B) n(AnB)

n(s)  n(S) n(S)

=P(A) + P(B) - P(AnB)
This law is generally called, addition law of probability.

P(AUB)=

~ Mathematics-XI

o m-utﬂﬂﬁll,:(fomﬁi;dnﬁﬂﬁ-im

—— . i!!!s_‘ , 2

Haﬂ'l: e

Pl'ﬂ'“f: gince A and B are mutually exclusive events, then

AnB=¢ and P{AﬁB)=P(¢]=0
Hence P(AUB)=P(A)+P(B)-P(ANB)reduces to
P(AUB)=P(A)+P(B)
Nows generalizing the above, we have the following;

Corollary 2:1f Ay, Az, ..., Aq are mutually exclusive events, then

P(A1UA2U"'UA,,J=P( A=)+P(A1)+"‘+P(A,,]

Example 22: One integer is chosen at random from the numbers 1, 2, 3, ..., 50.

What is the probability that the chosen number is divisible by 6 or 8 ?
Solution: Here §={1,2,3,---,50} and n(§)=50
Let A = { number is divisible by 6 }={ 6, 12, 18, 24, 30, 36,42, 48 }

and B = { number is divisible by 8 }

= {8, 16,24, 32,40, 48 } then Aha={34.4é}

Now, substitutin PlA)= —8 P(B ——6 d P(ANB :
inthe following, we obtain

P(AUB)=P( A +P. B)-P(AnB =-8—+—6—41=E=£
RALAHPLE)E( )=55%50 "% 50 2
Example 23: If two dice are rolled, find the probability of obtaining a total

of 7or 11,
Solution:  Here S= {(i,j):i,j = 123456} and n(5)=36
Let A = { atotal of 7 occurs }
= { (6,1, (5,2), (4.3), (3,4). (2.5). (1.6 }
and B = { atotal of 11 occurs 1

and B a
are  mutvally  exclusive events, then

— PR, B P




2
and P(B)=35

50 WE have

¢ clusive,
Since A and B are mutually eX Fi +
P[AUBJ=P(A}+P(B] T T

Complementary events
vide a sample space S into two

@ EnE=¢and

subsets (events) E and E’ such that

di r
Suppose We i FUE =S

Then E’ is called the compl

complementary events. .
' Theorem: IfE and E’ are complementary events, then P(E')=1-P(E)
/ Proof: Since EUE'=S Then P (EL.JE’]:P(S}

y or P(E)+P(E)=1, = EnE'=¢
| o P(E)=1-P(E)

Example 24: A coin is tossed 6 times in succession. What is the probability that
at least one head occurs?
Solution: Tossing a coin 6 times in succession, we have n $)= 2°=64

Let E={atleast]Hoccurs) then E = { noH occurs }

= 1
and P(E')= 7k “"there is only one outcome event , where all tails ocCur.

ement of E relative to S and E and E’ are called

it 6 | Permutation, Combination And Bropangyyy

.urrence of another event is given, Fg g

dom from certain population, the pmbahl: example, if an adult is selected at
would not be too high. However, if information that the i
smoker is provided, then one would certainly want to ;:zrvs_on S8k hearey
upwal'd. c 15¢ the probabﬁ]ly

Let A= { An adult hag lung cancer )
and B ={ An adult is a heavy smoker }

Then the probability of an event A given the ocey
st b5 J rrence of :
called a conditional probability and is denoted by P( AIB ) another event B, is

For events A and B in an arbitrary sample space S, we define the conditional

probability of A given Bby P( AIB) =.P_(_‘4_rlﬂ P(B)>0

P(B)

P{Bm}:‘“(PfE";f[

Similarly,

A)>0.

Example 25: What is the probability of rolli i in tossing
given that an odd number has turned zp?? o Gie. ks
Solution:  Here S={1,2,3,4,5,6)

Let A= { a prime number has rolled }={2,3,5}

and B= { an odd number has turned wp }={1,35})

then AﬁB:{g,,s}

We have P(B}:E and P(Aﬁﬂ):g—
6 6

Now, yei

OW, using the formula P[AIB)=P(—Ar%qs P(B)#0
Pl B
2

p(,qm):%:% Since P(BIA)=%% :

6
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For exauple v ol
P AN W)
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Exnmple 201 At
athor b i, il fhe Tolloing

ot opluved md an

[} ) \ it
1 vl ol ) 14 el grven

(i

(n
Solutlom Totitl number ol Dl = 10
o A=l e 1 Dl i Bl |
= t e .."'"I|'HI||I[III'.‘.'II.1H1I'|| |

il
S0 el e luiplicative thecrem,
f‘l peed o ovid )= 1A W= .“t A e

A : o
Subsstituting 1{.-H=.-m ad PLDIA) 5
o

.

Weoltan, — P( red and red )=~
Y 15

(i) Let  C=( the 1" ball drawn is red |

and D = [ the 2" ball drawn is preen |

So using the multiplicative theorem again.
P( red and green )= P( CnD)=P(C)P(DIC)

Tnit 6 | vermutation, Combinniion Ang pro

Substitnting - P (") = i : .
(') m il "{““':I-":

!.'F |

PCoed omdd yroe J= -
v a9

Wi oliinin,
pl 6 Depondent il Bdbepenilent Byonty

I pesmerad P ALY '
| i (A}l PLAY e opinl, Flowaver, (hera |
' O DT
fpontnt el ol event Tor whioh )y
W, 11 Allt) T
=PCA) then the
hanow Beelpes o TEocemmetigg does nol climge (e Probibility of A il |
: . . ’ i wee may thin A
b fdeensehent of T8 Sttty 40 2CHTA )< P 1), wo sy that 1 in il I
L epepilent

al A Phas twi evendy
Al T e tinldl fo b ||||l4\|]4\|"!|,|"| i e oeonien
2 [ [

(o o veceene sl o ome dosi oot atleot e probability of the o
LR TR TR

ol Dt -
(i e ek of e otbe, oforwise ey we caled iependont
dnilont,

Ilstawtboas By D (hie i
. i o ! '
ol e cotin, pettog w head® o st

(Rl NS |
Dl et ot on e secoid cotn e Idepesndent evonis
e b i B i pack o well shintiled cads il

Mhostentlon d Wlhien o o
peplieed bl (e e
e secomd e b drwn, B sl of secoml diaw i tnlepusnilen

Ol et il
The tullewh
e thoorens grbves the pobiabilities of alinillaneons neonrrence of

e Indlopenidont eyonts
Thomem 1 ;

WOrene A w1 e independent events, then P{ Ayl J=P(A)P(H)
II A i

YOO Since inltiplicative theorem gives hal

POAAB)=P(A)P(BIA) (i)

=P(B)P(AIB) (i)
Further, A and B are independent, then we have P(B1A )=P(B) and

P(AIg)=
( IB)=P(A) substituting in (i) and (i ) we get the required result:




The above theorem can
events. If A1 » TV

Example 27
the probability ©
failure of all four systems 7

Solution: Let

following.
P(EinE,nEjr‘nE.

- Suppo

of n_mlually independent
dent events, then

p(anm A0 ﬂe)f’[“s)"'f’(&,}

A space shuttle
f failure of any one §

inde 1 systems. If
¢ independent computer contro en
ephios yswmp is 0.001, what 18 the probability of

ure of system £, = 1,2,3.4}

E; = [ fail
12,3,4 are given (0 be independent, s0 using the

Since the events E;. i=,

):pw,)p(s,)p{mp(m, i=1,2,3,4
=(0001)’ ~0.000000000001

- EAERCISE B
se events A and B are such that _p[:;q ]___

and P(Au3)=l2.1=ind P(ANB).

_ If A and B are 2 events in a sample space S such that

p(4)=L P(B)=3 P(40B) =5 Fin ()P(arB) ) P(An)

. Given P(A)=0.5and P( AUB)=0.6, find P(B) if A and B are

mutually exclusive.

. A bag contains 30 tickets numbered from 1 to 30. One ticket is selected at
random. Find the probability that its number is cither odd or the square of
an integer.

. A student finds that the probability of passing an algebra test is 5 what
is the probability of failing the test? T

. In the two dice experiment, given that the first dic shows 4, w
probability that the second die shows a number greater than 4 7

. One card is Fra.wn from a pack of 52 cards, what is the probabilit
card drawn is neither red nor king.

hat is the

y that the

i

e 11
200

Mathcmatics-xl

- Unit

8.

9.

. T
- Sl SR~ 5
6. | Permutation, Combination And i’fﬁbahmgy

If a pair of dice is thrown, find th o
neither 7 nor 11. e probability that the sum of digits is

Ajmal and Bushra appear in an interview fi
or 2 vacancies. The ili
: 2 probability

of their selection being 1 and 1 s :
T 5 pectively. Find the probability that

(i) both will be selected (i) only one is selected

(iii) none will be selected {iv) at least one of them will be selected
ected.

10. A basket contains 20 apples and 10 oranges out of which 5 apples and 3
es an

oranges are defective. If a person tak
probability that akes out 2 at random what is the

either both are apples or both are good?

e S e TS T e

1.. Choose the correct option y
(1)

{ii)

(iii)

(iv)

)

(vi)

In how many ways can we name th i
- : e vert i

five of the letters O, P, Q, R, S, T, Uin an;c::dg:-‘?a P ag
(1) 2520 (k) 9040 (c) 5140 (d) 4880

How many two-digit odd numbers
: can be formed from the digi
{ 172_, 3,4,5,6,7) if repeated digits are allowed? Z
{a) 14 (h)42 (c)28 (d)21

:";“:; r:ﬂgy six-digit numbers can be formed from the digits
, 3, 4,6,7, 8} without repetition if the digits 3 and 7 must be together?

{a) 120 (b) 180 (c) 144 (d) 96
Evaluate (”_"M
(n+1)(n=1)! ;
(a) (n=3) (B) (n-1) (c]% (d) %l—t%

I ;
n how many different ways can 5 couples be seated around a circular

tab]c‘if the couples must not be separated?
(a) 768 () 724 (c) 844 () 696

A - :

ch:’;zm]r-muec of 4 people will be selected from 8 girls an

by Tow many different selections are possible if at
ust be selected?

(a) 2865

d 12 boysina
least one boy

(b) 3755 (c) 4225 (d) 4775

Mathematics-X1 g8




f order 3x3 with each entry 0 and

rof all possible matrices !
@1 ( ) 81
. (c) 512 (¢
- o many b i figure of 8 sides?
i diagonals can be drawn In a plane figw <0
m"} (50;{ ag[h) 20 ) 35 (d) 81

ix) IfP(A) 2

(x) IfAandB

10.

11.

-1 p(B)=0,then P(AIB) is
(a) 0 (b) A {c) not defined (4 1
' 2 5
are events such that P(AIB)= P(B1A) then
(@) Ac BbutA#B () A=B ©AnB=p ©@ P(A)=P(B)
1 MGG, fdr | (DIFSCR "Gt B0’
gp it TR S ; s 5 B ;
Pr+6:_ Pr+3-l3l].300.]. find 7. 5

In how many distinct ways can x‘y’zs be expressed without exponents?

In how many different ways can be six children seated at a round table if a
certain two children (i) refuse to sit next to each other? (i) insist on sitting
next to each other?

Six people including Fais
table. Find the probability
other. i

i P(A) =0.8,P(B)=05,P(B14)=04,

find ()P(ANB) @)P(aIB)  (GiP(AUB).
How many 6-digited telephone numbers can be constructed with the digits
0, 1,2 345,67 8,09, if each number starts with 35 and no digits

appears more than once.
How many numbers greater than a million can
2,3,0,3,4,2,3?

A party of n men is to be seated round a circu
that two particular men sit together.

Given the following spinner, determine the probability:
P (Orange) -

P (Red or Green)

P (Not Red)

P (Pink)

al and Saima are to be seated around a circular
that Faisal and Saima are seated next to each

be formed with the digits

lar table. Find the probability

w—ZmocC v

‘Use Pascal’s triangle to find the expansion of (x+7y)* where mis a small

_ rational values of n.

MATHEMATI T l-
% \T'ICAL INDU
AND BINOMIAL THEOCI:{FIIHT}I?’IN

Part 1

TR BARE iE y
tun-ﬁ';_-;‘h&-_g]udiﬂ_ﬂs will beable to:

]

Describe the principle of mathematical induction.
Apply the principle to prove the statements, identities or formulae.

positive integer,
F;tmc and prove binomial theorem for positive integral index
l"-pﬂud (x+ y)" using binomial theorem and find its general term.
Find the specified term in the expansion of (x+y)"
E QY . i
xpand (1 + x)* where n is a positive integer and extend this result for all

Expand (1 + x)" in ascending powers of x and explain its validity/
convergence for |x| < 1 where n is a rational number.

gt‘:m}i“c the approximate values of the binomial expansion
-ve integers or fractions. _

s having indices




of mathematical induction, suppose ,

b m the basmpggﬁfig:e:hown in the following Figure (7.1),
iles arc
in rectangular &
set of thin rec

“Figure 7.1

.
I 4] m a.h.s(] u ¥

ile falls, and _
E:; E&Efﬁ:n: that any tile falls its successor necessarily falls.

i inci ical induction.
isi lying principle of mathematica _ g
TJ:S!clzouu.lre 1:1111: Z.;:’ ofgnzi::mlpnumbcm Nisa spa;nalfolliderft:ligs;l:{:;: r?yf the
' i owl .
N is the smallest subset of R with the fo i
numbel‘i ?stfasﬂi's s;id to be an inductive set if 1€S and x +1€ S wheneverx

Since N is the smallest subset of R which is an ir“ductive set, it follows that
any subset of R that is an inductive set must contain N. e of in the
Mathematical induction is one of the developed techniques of P tcomes of
history of mathematics. It is used to checkconjectures about the ou
processes that occur repeatedly and according to definite patterns.

For example:
Toh T reisruniansi +(2n-1) =n? (1)
dF2F 3+ i +n ='-“_"2’ﬂ (2)

42743 4o 4 n? = MOHDQ20AD)

are all propositions, statements which involve the natural number n. Equation (1)

above asserts that the sum of first n positive odq integers is
n. We see that the L.H.S. of (1) reduces simply to: 8Ers 15 equal to the square of

I=1 if n=}
l1+3=4 =2? if n=2
J43+5=2=3" if na3amdsmen,

It is impossible t_c verify (1) for each n e N, because it involves infinitely many -
calculations which never end. To avoid such: situations, the principle of
mathematical induction is applied. .

7.1.1. The Principle of Mathematical Induction
The principle of mathematical induction is stated as follows,
Let P(n) be a property that is defined for integers n, and let a be a fixed integer.
Suppose the following two statements are true.
1. P(a) is true.
2. For all integers k> a, if P(k) is true then P(k+1) is true.
Then the statement for all integers n> a; P(n)is true.

The principle of mathematical induction is explained through the following
examples.

Example 1:  Prove that for everyneN, I+2+3+...+n= ﬂ(n;l)

Solution: Step 1. For n=1, the statement becomes

- basis (p(1))

Thus the statement is true for n=1
Step2.  Letus assume that the statement be true for n=k€ N, that is, we assume

142+, 4= %ﬂ — inductive hypothesis (P(k))

Step3.  Letn=kel and consider

(U+2+. 4+ B+ (k+1) =___-m‘;”+(k+1}
(adding k+1 to both sides of P(k))




g

Lt PR E(."‘.f—l—) Fﬁi-!i}_;_?ﬁ‘_ﬂ Step 3. ]e“":k"'laﬂdmnsider
+
ot o kD) 2243 et KDY (Adding (k+1) to
¥ &M g A 6 both sides of (i))
= T hen n = k+1. So the aboy k{k+1)(2k 2
by the proposition ¥ e o = SEPEEHD 464 4y
{ Which is just the :Om_;:ff!;njmus by the principle of mathematical induction, | 5 = k+ Hk(%;l):‘-ﬁ(“lﬂ
Bl : jtion is true for 1= ' 2
bl B e for all positive integers : = LLDEE+k+6k+6)} | (k+ D22+ Tk+6)
i : e Find 2+4.|..5+ ...... +500 6 L 6
i) Example 2: (1) - g, 2 _ (k+D(k+2)(2k +3)
| (i) Find 5464 T+8+uenne WA _ _____6______
ciood >2, find 1+2+3+....+(h— T | _
(iif) Find an integer h=2 Which is just the form taken by the proposition for n = k + 1. So the above
ol _ .propos‘mmr _IS true for n = k+1 and hence by the principle of mathematical
(i) 24446+-+500= 2. (14243+-+250) induction, it is true for all positive integer n.
1 e - i .
250251 (by applying the formula It I'IJI._ISl‘bﬁ noted that the application of the principle of mathematical i ion i
B [__2_—] for the S‘;?U‘;f the firstn ot l].m;",e'd only to IP':“] stated by means of an eqfation. The :l:ﬂci‘:pallelzsr:l?lls?l;:
with n =2 applied 1n cases where no equation is involved i s
=62.750 examples, q volved as we shall see in the following

Example 4: Show that a-b is a factor of a" - b" f, .311 itivei
e = e 450) = (14243+4) ; ing the formula X : — @ lorall positive integer n.
(ii) 5+6+T+8+-:- +50 = (14243+--+50) “. (by applying Solution:  To show that a — b is a factor of a” — b”

for the sum of the firstn » we will use induction on n.

=50'§51~10 with n =50) Step 1. Letn=1,thena"-b"=g—band since a — b divides a- b, so a- b
(b'y applying the formula ; is a factor of a—b. Therefore the above statement is true forn = |
=1265 f the firstn . Step2,  .Letth : E s
£ Bl sl ¢ P 2. et the above statement is true for n = k then a—b is a factor of a*~b*
| withn=h— 1) I| = a-bdivides a*-b* and as such we can write
PO W_IL (h=1).h 1 3 a*-b*=(a-b)Q.......(1) whereQis the quotient.
: 2 : il)(z,w 4 -‘_ Step 3. Let n =k + 1 and consider a**'— b**'. We can write
n(n ! + i
Example 3: Prove that 12422 43% ... 4n? = s a*™ _pM= gt g _prp (Adding and subtracting the term ab')
Solution: Step 1.  Forn = 1, the proposition becomes ' SEah e = % .
12212 MADQ@I+D) 123 | o citis true forn=! : =a(a"-b*) +b" (a-b)=ala-b) Q + b* (a~b) (Using 1)
_ - e =(a-b)[aQ +b"]
Step 2. Suppose the proposition is true for n = k, then 0 = a - b divides a*"'-b**" with quatient.aQ +b"
12422432 4 ... 4 g2 = KEHD2K+T) =  a-bisafactorof a**'-b*"

6

= i g
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H S0 We can write
.';wen to be a positive odd '"“’EBT;&'_H_ % .
i L]
Solution: Since n 18 gt re x"+y =X ¥
R ; jtive integer. There : 3
2m-] where m is 8 POS method of induction on m,
n= 1

=1

ill use the
To prove the above statem::’: ""e:;'_, e 2H g y?f-f = x + y and since x 4+ y
& =
= n P
Step 1. Letm = 1, ﬂ“’ « factor of x + y. Therefore the above statement s true for
s +yis
divides x +Y, S0 %
= k then x + ¥ is a factor of
Ill‘—'l- ie true fm m= k
tatement is .
Step 2. Let the above S
ep xu_l+yn-| B
=  x+ydividesx™ +y"

Snwet:anm'ite.r”"+yu" =(x+y)Q
Step 3. Now let m=k+1 and consider L.
- 2-1_ .2k -l¥ +y
11 Dl Gy yzu _
i +ym* 4 2k-1,,2

-1 2
Ll e v e e

= xz{xzm__l_yn-l} +yn-| {yzrxtJ

=x? (x4y)Q + y ™ (y-x)(y+x)

2
=2 (x4)Q + Y2 (yx)(xty)= (x+y) [X* Q +Y

or X2HHIH 4 2RI - (eiy) O; where Q) = x* Q@ +y ™ (yx)
= x+y is a factor of P _ keI

4 s e true
So the above statement is true for m = k+1 and hence by induction 1t 15

positive integral values of m.
Therefore x+y is factor of x" +y" where n is a positive odd integer.

(1) where Q is the quotient.

k-1 2

k-142 _ xzr—: ¢ _xz +y B

(Using 1)

kL )]

forall

on
7.1.2  General (extended) form of principle of Mathematical lnfiucﬂ i*
Sometimes it happens that a given statement and proposition do€s

for first few positive integral values of n but after those values of 1 1
true;  For example let us consider the statement n’>n+3

t beco™

; hich is false,
Whenn=2 then 225243an44 > 5 which is again false.

5 s
When n = 3 then 3 >3 + 3 0r 9 > 6 which is trye, That is, the above statement is
false for n = 1mdzbutlsn'ucfora]lvaluesofngxeamrmanz.

gimilarly if we consider the statement >4 pne]

then this statement is not true for n = J, 2,3,4 but it becomes true i a5 s
higher values. '

In such situations the principle of mathematical induction is defined as under:
Let P(n) is a given statement or proposition such that.
@ P(n) is true for n = m, where m is the least positive integer,
(ii) If P(n) is true for n = k where & > m then p(n) is also true for n = k+1 -
We then say that P(n) is true for all integral values of n > m,
This is called general (extended) form of the principle of mathematical induction.
Example 6: Prove that n’> dn’+n 4+ Ilforn=5
We are to prove that n’>4n* +n+l  forns
Solution: In this case our induction will start from n=5
Stepl. Let n=5, thenn® =5 = 125 and
'+l =4(5)° + 54+ 1=100+5+ 1 =106
Clearly 125 > 106 so the above statement is true for n = 5
Step 2. Let us assume that the above statement is true for n = k> 5 then,
Bdkz+k+1 . (1)

.Step 3.Now let n = k+1, then n? = (k+1)®

andso (k+1)* = k> 43k +3k+ 1> 4k 2 4kt 143k +3k+1

= (k+1)°> 4k* +3k? +4k+2 (using (1))

SOED™> 42 4 3kkedir2 = (41)°> 47 43k5+4k62 ask2S

= (k+1)*> dk? 41 5kadka2 = (k+1)'> 4k + ke Gkedke2
= (k+1)*> 4k + k4 10k+2 = (k+1)*> 4k* + %k+6k+dk+2
= (k+1)°> 4k2 4 9k+6 (as 6k+4k+2>6)

= (k+1)°> gk 4 Bkv kv de2 = (k+1)°> 4k* +8k+4+k+2
= (k1) > 4 4204 1) 4kt 41 = (k+1)°> 4(k+1)? +(k+1)+1

ich is of the form (1) for n = k + 1, so the given proposition is true for p=k+1,

thus by induction it i true fopall n > 5.




T T ——_ L

Prove that 2 4( ] forn>1

Example 7 aid 2"' forn>l... M
Solution: We are to prove that 2°< : |

L A S
Sm}hz mcn2"+2’=4"*“d[2ﬂ]=[2]#[2] de=al A
Letn 3

is true forn =2

Therefore <6 and once 2" <[ }
he above assemon is true for n=k*

Step 2. Let us suppose foat tzk Py 8
2<[] o o %S k1(2k—k)!

for k>1, then

k
2! @)

Step 3. Letn = k+1 and consrder 2! we can write
2k!-2 3)

...................

_2“'=2"-2<
(2k+2)(2k+1) _ Ak +D(k+k+D _
D = v D k+l

= 2[_k_+1:|: _z.k—+ 2>2ask> 1
- LE+] k+1

Now

=12< QRN+ ' From (3), we have

Tk
Q2 2k (k+2k+D) zu.{(zn:z)mu)zm

NI k+1)* . ’ ENk+1) k(K +1)

i (2k+2)! w2k
KWk +1) k'k+1) (k+1)! (k +1)!

k+l ‘.’.fc+2 . 4
2 ‘:[ E§1 ] which is of the form (1) when n is replaced by k+1.

So the given statement is true for n =k+1 and hence it is true for all n > 1.

Thus 2" <[2") forn>1.
n

Ak+k+D) [ k +k'+l].
k+1 k+l

Establish the ]_‘gnnulas given below by mathematical induction.

1. 2+4+6+-+2n=n(n+1)

2 1+5+9+..... +4n-3) = n@2n-1)
3 8+6+9 4 30 = NOE])

2
4, 3+47+11+--+(@n-1)=n@2n+1)

5. P+2+3 +4n® = [—-___n(" L DT
2
6. 10D + 22D + 3BD +-4n(nl) = (n +1)1
7. 12+23+434+.......+0(n+]) = HtDn+2)
3

8. 1+242%42%4.......42= 201

1 1 1 1
=t =t iiiib— = = 1
9" 27 AT ["‘3?]

11.

EJ SRR

3 1 g i PR

"
12. Show by mathematical induction that -

O ol (SR 1 _gp-

(i) T34 1saninteger. (ii) w is an integer.
13_ 1 n A

() 2">n VneN. (i) n!>n® forevery integern 4

4. : 1
(i) Show that 5 is a factor of 32*'+2*'where n is any positive integer.

i (i) Prove that 2 ~1 is a multiple of 3 for all positive integers.
+ Show thata + b is a factor of a"b" for all even positive integer n.




called a binomial. The binopy;,;

Binomial mﬁm is
m S'llch as a + h! hinomial (a i b)l'l., fDr

72
In ﬂ:,lg{!bil'ﬂ 4 sum Df tw:mste-;:ol:' e Powersd I;]f a
jves an €X] bers a and D

:Z;mp?sigi integern and all :Emwl theorem

7.2.1 Statement and Pro" of ﬂ]’:i[ corm is stated as under.

The binomial theorem in 1S e:‘g real numbers and 1 is a positive integer, thep

Theorem: If a and b are any : nY gergr n 3
- .bp 3 n a"'lbl +[ﬂ] an-ibi +..00t i a b +...+ : a“b .

(a+b)= [ ]a I 2

- ; ' .o in summation form as:
which more compactly can be written 10

{a+b)"=§ [:] 54

Proof: Mathematical in
validity of the binomial theorem. .
)
a
n

: n R=rpr
{a+h)" =[z] a"b"+[r] "' +[:] P +...+[r] a” e+t
Stép 1.Ifn=1, then frﬁm (i), we obtain

(a+b)'= [:J a‘b°+[:] ad=a+b

which is true. Thus the statement is true for n = 1
Step 2.Suppose that the statement is true for n=4k, then

(a+b)* =[:] %% + [f] a* ! +[;] a2 ++..+(k] T [:] faPBE et (i)
r ’

Step 3. We now prove that the Lheofem is true for n = k + 1. Multiplying both
sides of equation (ii) by (a +b), we have

(;1+b:l(d +b)t=(a+b) [[;]n"b%[k]a"lbl-l-[i]a*"zbz + ____+[‘-']axnrbr. St [i},ﬂm]

1 r

= (a+ b)™ = |[¥] grorp0 . [* k k|
et (e () ) oat) o (P

2
k k
+[[u] a'b +[1] a2 +[:] AN

k)o
[k] ak—rbr+l ok (k)a b
¢ :

duction provides us the best way for confirming the

+

o o (e +[[+;=]] e

[RS8 T

We know that [;J={k:]=l and (*]= k) (& k) _[k+1
k) \k+1)(r=t) ¥ )7, |for 0s sk,

therefore:

ket _ [R+D) puno  (R+D) k+1
fa+b) —[ 0 Ja b+ ; ]a b+[ 5 ]ak-lbz+‘..+[k+l] ahl"b"+.--+{k+1] a0t
r +1 v

which is of the form (i) forn =k + 1

So the given statement is true for n = f + 1 and : A

ko rie ok all posifive Sty . nd thus by the method of induction it
7.2.2 Properties of the Binomial Expansion

The expansion of (a + b)" has the following properties,

(i) The number of terms in the e i .
] Xpansion of {a+b)" are n+1 i
terms are one more than the exponent n. } PN o ek

Thus the expansion of (@ + b)® will contain 8+1 =9 terms;
(i) In the expansion of (q + b)" the first term is 4"5° . the second term is
n g™p! . - nn-1) ,_ '
;e and the third term is=—a ** and'so on . In each term the exponent of
@ decreases progressively by 1 and the ex i i
ponent of b increases progress
but the sum of the exponents of @ and b in each terms is alwayf eqﬁ;st::ly i

(i)  In the expansion of (a + b)" the terms [:] a"’b" and [ ]a’b"" are
n

-F
equidistant from the_beg'mning and the end. For [:) a""'b" is preceeded by r terms

n

a
nd followed by n - r terms while ( J a"b""is preceded by n — r terms and

n=r r

g 5 (n=r)tr!  rlin—r)!
ot :
he coefficients of terms equidistant from the beginning and end are equal.

(iv A
thez-e wI]n the expansion of (a + )", if n is even, the number of terms are odd and
Ul be only one middle term. If n is odd, the number of terms are even and

ere will be two middle terms.

Not For Sale .




H*z]th term is the only one middle tery, ang
+b)", the [T
m ] rms are the two middle terms.

th te

() Fornevenin 3
+
Oddme[_'lﬂ]ﬂ?a“d (nz n expansion Oftﬁcf
forn 2 il _bthen (a—b)" has exp orm
: b)" if b is replac )" "] a%"
(vi) In(a+b)"ifb +H-1)" | o

n a0 R] an-lb + [;] a”'i_bzvf .........
fa=b)" = [IJ'J a '

nl a-l "]a
or(a-5b)" = a‘“—{]]a b +[?.
We note that in the expansion of (a -

-

b)" the terms are alternately positive g

negative. e
ii the expansion
{:JIIIZd l.h[: genemlp term and is denoted by Tr1.

C

ﬁn—rlb"

n
r

(a +.b)" the (r+1)th term which is [ ] a""b"is usually
a-,

n B I
‘ﬂmsT@F[]" s r(n-r)!

r

for using binomial formula for given value of n, in the expansion of
. Z()m ﬂ:hlsatm(:mu;mpgnrtam tﬁsk is to find the binomial coefficients
{a+b)",

()2t

o Con:ide:r the f:Ilowing expanded powers of (a + b)’, where a + b is any
. binomial and n is a whole number. Look for patterns.
' (@a+b)=1
@a+b)=a+b
(a+ by = a® + 2ab + p?
(@+ By =& + 3% + 3ab? + b
(a+b) =a*+ 4a°b + 6a%? + dab® + p*
(@+bY = a® + 5a% + 100%? + 10a%? + 5q° + b®
Each expansion is a polynomial, There are some patterns to be H_OIEd-' %
(i) There is one more term than the power of the exponent, n. That is, there @
n+ 1 terms in the expansion of (a+b). ) . amial
(ii) In each term, the sum of the eXponents is n, the power to which the bino
is raised. A
(iif) The exponents of a start with 1, the power of the binomial, and decrease g;sﬂ.
The last term has no factor of 4, The first term has no factor of b, 50 pOW
b start with 0 angd increase to n,

|

(iv)The coefficients start at 1 and increase through certain values about “half-way
and then decrease (hiough these same values back to 1. -

The above binomial expansions can pe written in the following triangular form

farl (_Did You Know EEI
ca+h

a’ + 2ab + p? Pascal’s triangle is most
93 + 3a%h 4+ Jab? + b3 Wﬂweﬂtwohﬁn the
5 ;,4: dab : fazbz +24253 + b: ﬁg‘;ﬁ"::ﬁ; .
a’ + 5a"h + 10a°b® + 1042 + Sab* + 35 (a+B)"when nisa -
For each of the above expansions, we write down the small number.
binomial coefficients in the following fashion

n Values of binomial coefficients
0 1

1 1 1

2 1 2 1

3 L 33 3

4 I 6 4

5 1: 5 10 10 5 1
The above configuration of numbers is called Pascal’s Triangle.

Example 8: Find the expansion of (x+y)°.
Solution: By the formula, -
(x+y)°=x+ ‘Cx’y+°Cox'y + Cy +5C,x% + ‘Coy’ +°C,5°
=x° 462"y +15x'y? +202°y’ +15x%y* +62° :FJ’S-
On calculating the value of § i o

Example 9: Find the 6¢h term in the expansion of (3x +2y)",
Solution; Let Tyth term be the sixth term of the expansion (3x+2y)"’. We

: s el " I " A=y
Tmember that the Tesith term for the expansion of (a + b)"is Tﬁl-(r] a"'h
So, for the given expansion (3x +2y)" '

M I . s
TI+I‘-‘~[’_2](3.‘I:)12-’ (2y)". Here we have n =12 ,a=3xand b=2y




the 6th term i.e. Ts' so choosing r = 5 i!nd

are interested in finding

ult , we have, 121
= 5

== Ts 5'7' x?z J’j

= Tg = 11-9-82187-32¢)3

Since we
puumg in the last res
T,, =T¢= [12][,31}1:-5 (2’

=T, = ___———‘2"2‘;:'::;“ %2187 x32x"y*
=T,= 55427328 oy’ : :
* Example 10: Find the coefficient of x* in the expansion of (2x*— = )

Let Ty of (2.r L )m be the pmcula; terms containing 37

1]

Now for the given expansion (2.1:’ = 25
i

m.:[:"}(zr’;-"“ 2= [i"]z“” T 1
: (10 e & Ay
& (-1}'[1“]2’“" L3 T = () [r Jz’““ .37, x 202
To= (—n'ﬂ"]z‘“ 3 )

But this term contains x° and this s only possible if x**~*"= x* and thus 20-3r =5
=3r=20-5  or3r=15 = r=5 Putting this value of r=5 in (1) we get.

TM=T6={-I)’(;UJ honlle Lo ST, =D’ (;0] 2% 385"
So the required coefficient is (-n’{“’jz’. 3 =-1% 3503

Reaui it 10987651
equired cﬂﬂfﬁﬂeﬂl_ T 32: 243 that is the requlred coefficient of
x* =- 1959552

Example 11: :Fmd the term mdependent of ¥ in {-xe__]_]y
i 2

———— e S——

o =~
BT, Il B B i
T (-1 {’IE] e R A (-1)'[31_3 ;lr_ 82
PR L i s |
= (=D (rIE] 7 (1)

But T, thterm is free of x and this is 18
; possible if x183r_ Lo _. .
=3r=18andsor=6 T =x"giving 18-3r=0

Thus Tev1 =Teur =T i.e. 7th term of the given expansion is independent of x

6 e o 3
=] 2 L T I 3 1
e )[6] [2] g 61312 361

9876/ 1 1 _ 987 1 | 7

e

" Thus the 7" term of ion [25a- L Vi
the expansion > x!-;x- 1s independent of x and its value is% :

Example 12: Find the middle term in the expansion of (3+5)w.

X a

10
Solution: Since ip (4. * = ich i
Since in x+a .n—I[]thchzsevcn so that total number of terms in

the above ExPaﬂsmn = 10+1 = 11. Thus it has only one middle term which is

[”‘"’2 thiﬁ 1042 th
m = 5 ]thlenn = 6th term.i.e. 6 term is the middle term

Now T _ for ( L ) " is given by

THI‘[ ]{ )m'{ )". Putting r=S5

We get Tg = [10) (aY(x)_ 10! (a%)(*) _ 1098768 _ .., .
d = ol S| EEECOS: & 50y
5)\x)\a) " 51517 [F)F) T Sr23as

S th :
© the 6" term of (£+2)" js the middle term and it is 252.




.1+z)=f. ﬁﬁ)l [‘[;+7L;Js

4
- i : I iﬁns.
1 the indicated term in the €xpans 10 .
& : . (x_3) ()3 term i TP
e e DRt enn, | o ) VS R | g
(i)4® term in (2+2) (V2 \2 _ Jx
B T i ki dent of x in the following expansions.
3; ; z ; 10 32
: 9 il = 3 [ _-l_
- owd el ol

‘4. Find ﬁmﬂicient of - A >
L G 1 - 1 &3 - |" ’
(i) x”in(xi-x}mll (ii) Fm(z—;) (iii) a°b in kz”'gj

5. . Find the middle term in the expansion uf:

21 5f 8 ; 2y ( A 16
(i) [‘Eﬁb.t) " (i) [31—%) (iii) _kf{l—" ,..3_.]
. 1 ’ " 3 ~ 23
-6.  Find the constant term in the expansion of [24'_ ——J :
7, Find

8. Find the numerically greatest term in (3-20)"°, when x = -f; .

9. Find the numerically greatest term in the expansion of (x—)"’
when x=12 andy =4,

10. Prove that su.m of Binomial coefﬁéients of order n = 2". Also prove the
sum of odd binomial coefficients = sum of even Binomial coefficients=

11. Consider (1+x)" and take (’:]z C.

 Show et C,42€, x 43¢ 50 400

0 {2+48) +(2-+B)' @)(1+v2)' -(1-v2)" Giid)(a+5)° +(a=b)

7.3

Binomial Series

7.3.1 Expansion of (1 + x)" where n is a positive integer

By Binomial theorem, for any two real numbers g and b and for a PtlJSEIt.ivc

. integer n o
+b)" =a" +na" b+ mn=1) ..., nn=1n-2y .
(a+b) 51 9 b +___‘_3TL—EH ... +b" (i)
 and this expansion contains (n + 1) terms, Now in particular if g = 1 and b=x
then the above expansion becomes
B An=D) o n(n=1)n-2
(]+x} 1+ nx + 21 X +'___37!—-‘—:::3 +oreiin x® {11)

Thes we'obecrvo that whenis & positivs integer then the binomial expansion
(a+b)"or (1+x)" terminates after (n + Dth term, .

7.3.2 Expansion of (1 + x)" wh B 13

fraction _p )" Where n, the €xXponent, is a negative integer or a

If n is a negative integer or a fraetion, then the expansion (ii) never ends and thus
in such a case the expansion becomes

Wiyt (iif)

When n is a negative integer or a fraction then the series as. given in (iif) is
convergent if — l<x<l or Ixl<1 and it is divergent if lxl>1.

Since at.t!us level we will be interested only in those series which are convergent
so we will say that if n is a negative integer or a fraction then the series

(14+x) "= 1+ nx + iuz_:.ﬂx2+’=(ﬂ—l)(!r—2)x3
¥ k]l

(1+%)" = 14 nx + B%T—le%ﬂ_l%’illx’t..... is vlaﬁdonlyiflxld.

1)(n-2)
.

The series of the type 1+ nx + "(”r'nz%”(”‘ s is called the
2! .

binomial serjes. .
The general term of the binomial series is

T __ nn—1)n-2)...n-r+l) 'cr

r+l =

r!

Nt For Sale




1 1 31 S
- —|x* 71
: +x) 2 51 [ 2]
A, 2,
! A x x 6
a0 =137 2 1
135 i
1 (313 12— e
a+n’ =1"';"’E'E"§x 2226
- 3 a2+
(1+I)"-'1"+sxz 1 :

i 4112 4
in the expansion of (9+-) for Ixl>=. .
o i first four terms in p: :
Example 14: Find the

2 2 3 64
=3 14+4—= + s ST TR
{ 9x 81x* 8x6 ?29x3+ ]

icuamaphe 13 Compmre ’\E t0 an accuracy of at least four decimal places using
pinomial expansion \

Splution:

[z]%=[.+1)%=1+§.§+%[%2!“]&T+%[%-‘}%-2]GT+13[%-11-;:1;-3_)[1].+

: 5 i R
By 1(2J 1[_3 ot 1{_31_21_5]
N P N P L T I G R
ar [E] —i+12+ ) |ﬁ+ 3 54+ Y] 2SE+
SO 0 e LR U R
12 916 33 3 664 33 3 32
5 5
]+_i.“_.l_ et

=1 + 0.08333-0.00694 + 0.00096 — 0.0000164.......cccevnven
Taking only these five terms and neglecting the other we can write

-

ﬁ =1.00000 + 0.08333 — 0.00694 +0.00096 —0.000016.

Where= stands for ‘approximately equal to’. We have used here the symbol =
because we have omittcd all the terms after the first five terms. So we cannot
expect even think for exactness.
ﬁ = 1.07719=1.0772

Example 16; Evaluate 35 by Binomial theorem
Solution:

55 = (3617 = [36{!—%}]1 =60 {l'ﬂﬁ
! 11 %[é")( 1]2,,_12(_%:1]_[_;;?]_[--1—]2;&1@%—-1(-52 '''''




r.' :
5

ST T ey B T e, w2

-

T —

L

LT 1[1+.5£]

— —
o W
-

= 6[ -%-ﬁlﬁ_';éﬁ "21;9?;‘:239]

‘6[1-0013888-0 5 i
755 ~6l0s860142 : &
{35 = 59160852
J35 = 5.9161 onall that its square and higher powers may be “?Elﬁcted
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Solution: i
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=3 U+E+E+ Ignoring terms containing . ey

=l[1+2x+3x] = 1 l+i£
. 2 24 2 2%

4% 2
K]

an

24

.whe:-exris s0 small such that x2 ang higher powers are neglected.

1 1 l
= 1 = 1 5 \;
{1'!'-")1(16—‘53]’1 (1+x}1(16)2_[1_ﬁx)

" Now taking = _
(i) 3 1 1 .
(9+2x) 92(“__25]: S
1 1 9 ' :
-4(1+x}5!1-ix)’ : i ; 7
16 4 = 3 ) X
= —— = S+ e 1+ Y7 '¥
2 0 3 16 9 5 o
£ ;
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l[l_l]
ol gl 15 1 2
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3l 20, 2 ][ 216" ]x[l 279 ]
- = = l+—+ ][l-—ﬂ ] [1—£+..,.....,...]
4. x x 5 51
= = e 2 [ ) B o el TR
bl ][ 9 R 29 ]
4 X 32x+45x i o 4
= 2l1+Z]|1- Ignoring terms containing X, X°, x*,...
3{ 2][ 9%32 } e & D _
4[ x][ m,]_ 4[ T7x x] Again ignoring term  °
= Rl s P L ] o
3 T2 0 Tox32) T 3 T2 2 containing x2
! 1 s 5
_ A+0206-597 _4(, x_ Tz \_ 4(,. 9x16;—m}= j[HI"ﬁﬂ]
s ’ _3[”2 9:«32] 3\t oxaz 3 288

(9+2x)2
1 1
= . (+02(16-592 _ 4[1 ﬁ?x}

288

[
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74 Application of the Binomial Theorem '
Approximations: We have seen in the particular cases of the expansion of
(1+x)" that the power of x go on increasing in each expansion. Since Jd<1,s0

i <|x| for 2,3,4...

This fact shows that terms in each expansion go on
if |:|:I <].

decreasing numerically

gh for determini

Thus some initial terms of the binomial series aré er}uu
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apsios having indices as negative integerg fie
p

mial series are conveniently ugeq oY

s bino : : ;
fractiome o of infinite smﬁ} 56;35 (whose sum 5 required) is compared wiy,
Summ& . coite i
summation of infint n(n"mn—l) o huss

Then the sum ié calculated by putting the Values

21,231 298 1
1+§,:_£+3'6 22 3~6-g 23.-......;,_,,

Solution:

2}_+?’:.5--1 25.8+13+ ........ (ii)
g = 1.+ 3373622 3692
Comparing (i) and (i)We &¢ )
21 n(n-l)x,_g‘f___l_
w=33 ad =31 36 2
P e so that
Squaring n‘xf:;mf = = .
n(n=1) 5
2! ﬂ_;@ an-1) 1 _5 9 :_3:_1=§:1—_=§_
w1 2 m 36 1 n 4 ® 2
9

= 5n=2-2 = Sn-2n=-2

Putting this value of nin nx = -i-%

i T e | 1
We get L P SO = e
€ EC L 3 = =2x=1=x 5
S 12 T 1 T
°*S=(1+I~= 1-=)?% = il - = = E: 3
) l-3) [2] ;== =4
1 [l)" 5
ie. S = 4and sofrom (ii) 2 23

21 251 2581 1
ppaid 25 1 s
32736 7 3gg gt =43

e

3,35, 357,
atas T aay e ; Show that y? +2y — 7=0

Solution: Giventhaty ==+22 4

328 4—3—]—2-'1-..

3. 35 5357

+Il=]+-+—=4—

=y & + 28 + 3512 +..(1}

et the series on the R.H.S. of (1) be identical with the expansion (1 + x)".
Wwe have» |

n(n=1) o n(n—l)fn—Z) 3.

”-:-x}":f'*"x* = X T (2)
Comparing right hand sides of (1) and (2), we have ,
. 8 n(n=1) , 35 : ; :
PX= e (3) and == ¥ =@ Squaring equation (3)
9 Lol :
iyt = T ....(5)  Dividing equation (4) by equation (5)
n(n—1)x* 5
= ; 2 ;
R T, | PERN ) . P
nx 9 2 n’x 48 9
16

:n(n-l) =£ g, n—1 =_5_

n* 6 n 3 :
or n-1)=5n=3n-3=5n=>-3=5n-3n=2=-3

3 . S 3 L T . |
—n=-2 Puttinen=-= innx= =, we get |-= |x=—=—7=—
2 g a el [ z]I el

x=-—zor x= 1
4 a7 :
So + = L 3 3_'5'.+_3i'7_+ oot esen e DECOIMES
ks | {1+ x) 1+4+4-B e T

y+1._112 1 2 12___1_—3
={ —5)2 or y+l=(-2-:.1 =({y+1) —l’z)

or (y+1)=—— =

y? 42y + jufim0=sy w27 =0
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to3 decimal places.
to four s1gmﬂcant figures.
£ 126 correct to five decimal places,

(11) E\'ﬂlﬂm r[ 508)

SO
CSETRC B T theny® +2y-1=0

= 13- 1 135 1
Ifz _i. 2! 2‘+ a -Eé--l'..,..........‘...ﬂ'leﬂ4}'!4'4)"'1=ﬂ

If x is s0 small that x’ and highgr powers of x can be 'lg;lmred. Show that

the nth root of 1 + x is equal to 22+ (1+Dx
n+(n-Dx

i) Find the U0 o

If x is nearly equal to unity then show that px? - q.x" =(p- q) P

S REVIEW EXERCISE 7

Sis ol 2 owers may be neglected, then show ﬂm_
If x i such that x” aad BIgher P

If x is s0 small that its square and higher powers can be neglected, then
X 15

- i valte |

If x is large and if -:? may be neglected, then find the approximate !
1

|

If x* and higher pow&s are neglected such that

(1+x}"'+(1 -x) ! : =a-bx?. 'F'md'aandb :
If x is of such a size that ns values are conmdered up

Show that: “*f‘ as39 i

Find the co-efficients of x” in [1—

Find the sum of the follomng

5
8 31?. 31216

(i) ‘What is the middle term in the expansion of {2x+5y]‘?
(a) 600 ¥y*  (5)120xy*  (c)5000 xy’ (d) 6 Xy*

(' What is the coefficient of the term containing x'*y° in the
expansion of (x* -2y A =
(a) 84 (b) -280 (c) 560 (d) 448
(iiiy  The expansion of {x-bm]s +[.vc—~!'.1c’——1]5 is a polynomial of
degree
(a) 5 (b 6 ()7 (@8
(iv;  Number of terms in expansion of [q'_ x+y ] (J_ -I )
(a) 6 (b 11 . ()20 (d)5
w (E4) (B = "
(a) 58 ®) 582 (©-58 - (@-582
(vi) LHIIJ+(R;1)+ ............ + (n:i = n>1
il e P — e g =l
Wr-1 mT (©2" -1 (@27
(vii) Sum of coefficients of last 15 terms in expansion of (1"'-*)3 15
(a) 2° ®2* O 2° @2"
piey 10 10 10 4 100y = e Y
i (a(): ;1-2 = (f,; 1024 (c)2048 (d)1023




(z€+3y)

T
urth term in the expansion of (2x—4y)"?

;;ﬁqcim:_ofdw fo
(ax+ 2y)*. Find a.

2 1]
—_
5. What is the constant term in the expansion of [x = )

]

5 sing the first three terms of its
W of [(}.99} using
6. Find an approximation

expansion.
= _3"is divisible by 4.

7. For every positive integer 1, prove that 7

8. Prove that (1+x)" 2(1+nx), for all natural number n where x>—1
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function as a rule of correspondence,
domain, co-domain and range of a function,
one to one and onto functions.
Know linear, quadratic and square root functions.
Define inverse functions and demcnstrale their domain and range with
examples.
Sketch graphs of
linear functions (e.g. y=ax+h),
non-linear functions (e.g. y = 2°).
Sketch the graph of the function y = xi' where n is
a + ve integer,
a —ve integer (x ),
a rational number for x>0.
Sketch graph of quadratic function of the form y = ax*+bx+¢, a#0), b, ¢
are integers.
Sketch graph using factors.
Predict funetions from their graphs(use the factor form to predict the equation
of a function of the type f (x) = ax® + hx + ¢ , if two points where the graph
crosses x-axis and third point on the curve, are given). :

Find the intersecting point graphically when intersection occurs between
a linear function and coordinate axes,

two linear functions,

a linear and a quadratic function.

Solve, graphically, appropriate problems from daily life.




: ¢ value of one quantity depends o,
_ I mady pmucglty such dependence of one quantity on amﬂ_l':n_th.Je

value of 0 u:?] s function. FOf example, one of the indicatorg o * -

mathematically 2 0T gmount of petrol in gallons in the the

hindicﬂmf shows that the distance travelled in kilnm"lsrs Is

decreasing 20 e, we opserve hat there are two variable quantities 5,

i this exampie: em. The variable quantities are the number of
o kilometers travelled. Thus, the L,
e umbers of gallon of petrol in the ti"::ce

in kilom i
ravelled I the temperature of air( Remember
p instant of tme, B —
throughout - noerature Of aif 1S 2 function A eupiinii 18.a symbol theg | |
eral, if a variable denoted |always represents the same, \
ociated in 2 definite way with 2  number, on the other hand,

aidtobea function of x. -A ss4rix 1z is a symbol that
: | may represents different

es Df y depend on 'yalues in the same problem
of x determines .
fy, theny isa

of instant ©
by y (say) is 3550
variable x, then 15 §
To be more specj_ﬁc:‘lf the valu

x in such a way that each value
d only one value 0

1
i

exacily one an
function of X"
Symbnlically, wewrite y=f (x). n
function of x or simply yis equal to f of x". In equation (1)

Which reads as“yisa
the, variable x is called the independent variable

called the dependent variable.
811 Function as a rule or correspondence
In this section, we give formal definition of a function.
A function from a set X to a set Y is a rule or correspondence
- element x in X a-unique element y in Y. Symbolically, we write it as
read as “f is a function from X to Y”.

The elements of X are called pre-images and the corre
g Y o called the images, If ye Y is an image of xe X under
write it 2s y= /(2). Equivalently, we say that y is the value of the functio
see (Figure 8.1). f ;

(or argumcnt]'wht:reas yis

hat assigns 0 gach
f K=Y and |

lgml',l'lls |

spondiﬂg e
the functions f,
nfa b i

L| I'Iit 3 I Functions and Grapls

[llustration: The fIOHDWin i
temperature. § 1% & function, which

a. 5 e - . s
Replacing x with 2 in g (x)

Figure (8.1)

relates the time of day to the

Time of day (P.M.) Temperature (in °C)
n

Figure (8.2)

Examplei: Let X={a,b,c}and ¥=(1,2,3}.State whether o the dicated b
A AR, [1l :3}- te no rales 1n a ; )l
the following figures are functions from X to¥ = e

Solution:

(1) The figure (a) does n
ot define a function, b
Egt)a set }14: l:ms not been assigned any element of ?’ R AR Y
e figure (b) does not define a functio :
n,
?g has been assigned two elements of Y. b
g{ )h The ﬁgl._lre, (c) does define a function, because every element of
2 fa§ !3een assigned a unique element of ¥. It may be noted that
efinition of _function does not require that each element of Y
should be an image of some element of X.

Example 2: Evaluating a function

Let g(x) =—x"+4x+l1.

Find each function value. 2.8 (2) b.g(r) c.g(x+2)
Solution:

— _y* +4x+1 yields the following.

g(2)=—(2) +4(2)+1="4 +8 +1=5
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For You Information m

b

| Allough s often used g

b. Replacing x with ¢ yields the following.
g(1) =—(r)2 +4(r)+1= -t +4t+1
c. Replacing x with x +2 yields the following.
g(x+2)=—(x+2) +4(x+2)+]

=—(2" +4x+ 4)+4x+8+1

convenient functionname and
xis often used as the ]
independent variable, other
fetiers'can'also be used. Foy j
ExXample, { (x) =x"— Ll
=—,¥2—¢I—4+4I+8+1 ff{f:;:l;z‘{f(‘i-)u—:tan‘;x +121 )
=—x'+5 '8(s) =5"7s +12 all define

| ;
{the same function.

8.1.2 Domain and Range of a Function . : 4
Let f:X - ¥be a function from a set X to a set Y. Then set X'is called domain ang
the set ¥ is called codomain of the function £ The set of all those elements of Y
which f is assuming is called range of the function f.

If the domain is not specified,then it is assumed to be the set of all real numbers,
If f is a function of X into ¥, the range is a subset of ¥ but need not be all of ¥. This

has been shown in (Figure 8.4).
( Did You Know ! : )

' Funetion Notation |
{¥= f(x):f is the name of the |
' function. =
[ vis the dependent variable. |
| xis the independent variable. |
| yis the value of the furiction atx|

Domain Figure (8.4) Range < codomain

8.13 One-to-one and onto Function

(a) A function f:X - Yis said to be one-to-one (or injective) if distinct
elements of X have distinct imagesin Y i.e. if x; and x> are distinct elements of X,
then f(x)# f(x,)inY. Equivalently, if f(x)= f( et x
Sometimes we write 1-1 function for one -to-one function, :

= Xa.

‘ h) A function f:x ¥ is said to be onto (or surjective) if each element
of Y is the image of some element in X ie. the range of f is the whole setY.

Not For Sale
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A function f which is both one — to — one and onto is called bijective function.
Consider the functions f and g as shown in [Figure (8.5) (i) and (ii)].

Figure (8.5) (if)

Figure (i) represents a function f which is one ~to — one but not onto (why?)
Figure (ii) represents a function g which is onto but not one-to-one (why?)
Example 3: - Show that the function f: [R— IR defined by f(x)=3-5x is both
one-to-one and onto i.e. bijective.

Solution: For any two elements x; and x,of X, we have
flx)=3-5x and f(x,)=3-5x,
If f(x)=f(x,).then3-5x =3-5x, = x =x,.
Thus f is one-to-one.
Now the range of f(x)=3-35xis the whole set [R so it is onto.
Hence f'is both one-to-one and onto i.e bijective.
Example4: Show that the function g : IR— IR defined by g(x)=2x"+1is
neither one-to-one nor onto.
Solution: The function g(x)=2x"+1is not one-to-one, because
8(=2)=2(-2)* +1=9=2(2)* +1=g(2), that is — 2 and 2 both have the same
image 9. '
Now the range of & (x) = 2x" +1is the set of real numbers greater than or equal to
I, thatis, Range g=[1,=) # IR, so g is not onto function. Thus g is neither
one-to-one nor onto.
8.14 Linear, Quadratic and Square Root Functions
We begin with the definition of:
(a) Linear Functions

A function fis a linear function if it can be written as f{x) = mx + b,

Where m and b are constants.

- Mathematics-XI =~ 235
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_ (1f m =0, the function is 8 constant function fix) = b ifm=1 and b= 0, the

function is the identity function f(x) = x)
For example,

. fx)=x+18()

{ . Thedomainofa linear function

- (b) Quadratic Functions

A quadratic function f 158

f(x)=af + bx+c, a#0 whered

For example, f(x)= 3¢ +4x+1,and g

The domain of quadratic function is the set of all real numbers.

(c) Square Root Function
A function of the form f(z) =z
i The domain of square root function

82 Inverse Function
Let f:x =Y beaone-
to-one and onto function.
* "Then for each element in
the domain of f, there is a
unique element in the
range of f and for each
element in the range of f,
there is a unigue element
in the domain of f. In this case the correspondence f -1,y - x is also a function,
which is called an inverse function of £, Thus the inverse function f* of fis
defined by

AR

=3y +4,h(x)=3x= g are linear functions.
is the set of all real numbers.

function that can be written in the form

b and c are real numbers.
(x)=5x" —x—Tare quadratic functions.

where x20, is called a square root function.
is the set of all non-negative real numbers. -

@]

“ Figure (8.6)

x=f7(y),Vye Yifand onlyif y= f(x),Vxe &

Remember /

i (i) Not every function has an |
\inverse "
(i) A function has an inverse |

Domain off*  |ifand onlyifitis 1-1 andontg

Range of /! S0
' Figure (8.7)

It is evident that (f~'y'=f. Thus
- - e fand £~/ are inverse: -
The above figure illustrates the concept of inverse functi 0; e G
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pomain and Range of Inverse Functions

2.1
It is clear from the definition of inverse function
£~ that domain ' =range f and range §~' = domain f
gxample 5: If r:x — ¥ is given by
.-‘I-’ '—F___...-—-L—-...___‘}: : f.'
Gy o |

!

Figure (8.9)

Figm'c (8.8)

Find f~.
Saluiianl: Since [ is both one-to-one and onto, so it’s inverse exists, shown :
in the (Figure 8.9). We note that f ™ is also bijective.
Algebraic method for finding the inverse of a function
If the function f is given by a simple formula, then the inverse function f™'can
be found by an algebraic method which involves the following steps
Step-I Write y= f(x) -
Step-I1 Solve the equation in step-I for x in terms of Y.
gtep-lll In the resulting equation in step-1I, replace x by (). -
s;':’rl-l‘v’ Replace each  in the result of step-III by x to get f~'(%)
ep-V Check the answer by verifying that /'(f(x) )=x

Example 6: Let f = IR —IR be the function.. 3
defined by *f (x) = 2x 1, find £ ‘
Solution: We have flx)=2x-1

Step-l  Write flx)=2x-1=y 17
Step-II  Then 2x-1=y 5 i

y=fix)=2x -1
y=x

= =y+l> ;=J_2_

Mathematics-X1
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Step-IV. To

phs

Step-I1I. Replace * by F'(»)s0 that
& y+i
=
find f'(x),replace y by x, we have
s kA
f (x:l_- 2 2r=1+1 2x "
e

" Step-V. Verification: F2

b?

flx)=x*+x-1,

If f(x)=5,then find the values of x

L images —2.0,2,5 '
] e Fing LG+N=1)
h

(iii) Find f(x+1)

2x . _xt K =x2+1 1h
) s -2, 1 (2) =g D)= 25— ) = 41,

: 1 . f()-f(2)
determine '-f{ﬁ),g(-l).h(tt),k[i-) p L8

Find all real values of x such that f(x)=0.
i fx)=15x-3 f(x)=x =Bx+15

iy  f)=x-x f)=x-x"=5x"+3
Find the domain and range of the function f(x).
i fO)=52"+2x-1 fx)=Vx*-16

Find the inverse function of the following functions

X b
i fl)=2x-3 f{z}=—;-x-—5 f(x):-z—s— (1v)f(x):4+~ﬁ;

Hf':x}=xl-—2.find ffl(x) f-l(3]
If f(x) =;‘E‘%
Domain and range of ¢

Find i;Domain and range of f.

Unit 8 | Functions and Graphs

Graphical Representation of Functions

This section is devoted to the representation of functions by graph. The
f;ianpght ;]J: gu;‘;::“ 15 a pictorial representation of function that is fbrtal;ned by
Let fbe a function defined by y= f(x). The set of all points (x,y)such that
xis in the domain of f is called the graph of f and we say that the ;;uint (xpis
on the graph of f.To be more specific, if G denotes the graph of s, then k
G ={(x.y): y = f(x) Where xis in the domain of £} .
Equivalently, the graph of f is the graph of the equation y= f(x).
The graph of a function may be obtained by constructing a table of corresponding
values xof f. Each of these points may be plotted by placing a dot at appropriate
Jocation in the xy- plane. Then joining them together by means of a smooth curve
gives the required graph of the function.

8.3

8.3.1(a) Graphs of Linear Functions

We sketch the graph of linear functions of the form y = ax+b where a,b € IR anda=0.

Exampie 7: Sketch the graph of the function
flxy=2x+1, x{0,1,2,3 4}

Solution: For graph of this function, we assign

values to x from its domain and find the
corresponding values of y in the range of f
as shown in the table:

y=fix)=2x+1

s A L

| = g =l 00D

|1234567

Plotting the points (x,y) in Cartesian plane and ( Note
Joining them with curve, we get graph of the given

| x S0 1 [ 3 i. Figure 8.11
B 75 5 Bl o

function as shown in the (Figure 8.11). }__: is de;: ﬁthom the 1}’2}"‘;
Example 8:  Draw the graph of the function igure, that the grapn ot
Y=f(x)=2x+1,xe IR, }:g:ar function is a straight

Solution: The domain of the function is the set
of all real numbers IR. For the graph of y=f(x)=2x+1,we assign some values to

xfrom its domain and find corresponding values y in the range of fasshownin
the table:

Mathematics-X1- 239
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own in figure (8.1 ?}.
the line is infinite 10
the real numbers
near function

"The graph of th function is sh
‘As x can be any real number,
poth the directions representing all the
in the line. The domain and range of li
are the set of all real numbers.

b Graph of Non-linear functions
e In rhri,s section, we will sketch the graph of

non-linear functions, that is functions of the form
f(x)=#*,f(x) = x and 5O O1-

i b

corresponding values of x an

Example 9: Sketch the graph of the function .
=7 el
J"=f':‘r)"x (1-4:1! |_ ¢ (24)
_ Solution: In the following table some of the T
d y are given R T
R Sy

Figure 8,13

o o RS 1
The graph of the function f(x)=x" is shown in figure (8.13).The function f(x)=x
is called a squaring function. The graph of squaring function is called a parabola.
Its domain is the set of all real numbers and its range is the set of non-negative

real numbers.
=i =

inctions and Graphs

Unit 8IS
Example 10: Let f(x)= x*. Sketch the graph ff

solution: We construct a table of values for t 1
flx)= x* as follows: o jean |
3 H
/ ) i
N L) il
(2 27 . A ;
plotting the corresponding points and ”'L“i-'t'ij{'f EREXE b
joining them by a smooth .curve, we i : :
obtain the graph of the function in figure Figure 8.14
(8.14). The function f (x) = x’is called a 3]
; el

cubing function.
The domain and range of the cubing function a

re the set of
Example 11: Sketch the graph of the function f (x) = JID o
Solution: The given function fis a square root functi ‘ i i
some values of y corresponding to values of x. i T?ﬁ G e

y=f)=+x i

gix S |
ER 0 e 2 ‘ |

The graph the function is shown in F AT
figure 8.15. - - Y

8.3.2 Graph of the function of the form y=x"
: Sometimes we group tngelherdiffe.r;:nt

l'uncno_ns and write them in a single form while

obser‘\ung the definition and properties of the

functl.ons. For example, consider the power

function y = x" where m is any constant.

Now, if

Figure 8.15

(a i L gt ;
@ m=n i.e. a positive integer, we have another function of the form y=x"

b ). oy :
(b) m=-ni.e. a negative integer, we have another function of the form

y=x"= 1
——M,IFG
X

I : -
© m=— i.e.arational number, we have yet another function of the form

Not For Sale .
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We see that all these functions are rcprﬂSGnt&d by a single function of the form
= 1} 5) When n= :
y=x" ( 5,we have v=1° The f
where 1 is any constant. The single function in (1) representing different functigng gives some values of the funm:u:urlr D ; R Iable
is called a family of function. 1 - =
the graph of the family of functions y = x"_ Tpe

In this section, we will sketch
fractional and jrrational exponents. However, the {

The graph of the function is shown j
wn in fig

‘Remember that PR
(i) \J:?:;er: iht; values of na%'e even, the function == 1 Figure (8.20)

: ,‘m;cn.i re Even functions and the graphs of the function Fx)==x"are

y ¢ about the y - axis. In this case, all the graphs have th

general shape as the parabola y = x* o

(ii) When the values of nare odd, the functions f(x)=x" are odd function

: = ions

and the graphs of the function f(x)=x" are symmetric about the origin

power function can also have
discussion of such power functions s beyond the scope of this book.
— y"wherenisa positive integer 4

b

(a) Graphof y=
* Clearly the damam of y=
(1) When n=1,we have y=x. The followmg
table gwes the values of the function y = f(x) =

i
_ 1" is the set of real numbers. | T

y

2 L L
The graph is shown in figure (8.16) which is : = _
: : ! n this case, all the hs h o
a straight line passing throu h the origin. R : graphs have the same gene ooud i
g p 4 g £ . gk _‘.-u.:: ol préaies By, general shape as y=x* for :

(iii) By increasing nthe graphs in both cases become flatter over the

ph of 1
interval —1<x <1 and steeper over the interval x>1 and x<-1as shown

(2) Whenn =2, we have y=x 2, The gra

the squaring function y = x* was sketched @ | fea
;_n B::ﬂ;?i#; 9 :I'.'hhwh is ;ep;oduced in & e LAY, : in figure(8.21) and figure (8.22).
sg“ (h I) 2 graph of =2 Figure 8.17 - *
is a parabola. y
y=x |
(3) When n=3, we have y =2 which is called 28) =f
cubing function. The following table gives
some values of the cubing function y=x". B T S
- (-1,-1)/% (0.0) |
: Figure 8.18 i =
The graph of the function is shown in fi gmc @8.18) ol ! RS 0]
4 When n=4, wehave y=x*, : { p=x II .Fiuure 8.’”
The Eﬂllowmg table gives some values of the function “'* ko ok : (b) Graph of y = x"where n is a negative intege: i
y=x 1 [ ] The 3 : .
—— — |/ the domain of the function y=% is the set of all real numbers except x #0.
- - h —le ; (1) when n=—1we have y —-; Some of the values of the function are
e grap is shown in ﬁ | wigure 8.1 | fida
gure (3.19) | Figure given in the following table.

Mathematics-X1. 243
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g Figure § »
h of the function is shown 1n figure (8.23) i

The grap e
1 . -
: -1 In the following tablé*some of the vg),
(2) . When n=-2,W¢ have y 5 A
o ¥
of the function are given. ;[
] 4
- 2 _ N _ [

|

-4 3 2 10

|

f

1

]

. | Figure 8.24
Figure (8.24) represents graph of the function. '

(3)  When n=-3, we have y=$- The following tables gives some values

of the function.
i
1 [\
y==3 (1
1\
= | N~ 5
_—.___\ 0:
|
: |
Figure (8.25) shows the graph of the function. | Figure 8.25

= i ' !
) When n=-4, we have 'r=-x_“ The following

table gives some values of the function
% l E 3 :

The graph of the function is shown in figure (8.26) Figure 8.26

Remember that

(i)~ When the values of n are even, the functions f(x)=—are even, and
o I . 3 o L
.. . their gra:uphs are symp_'ietric about y—axis. In this case, all the graphs
““have the same general shape as }-=_12_ :
" A ! X
(i) When the values of n are odd, the functions f(x)=-- are odd, and
. x"

thcil’ grapihsl are symmetric about the origin. In this case, all the graphs
~have the same general shape as y=2.
7 X
(ii) By increasing n, the graphs in both cases become steeper over the

intervals ~1<x<0and 0<x<1, and flatter over the intervals x>1and
x<-las shown in figure (8.27) and figure (8.28) respectively.

f’. ¥
| estr= | TS
il a|_, - afiy= L
| tar= L rip= L
{_1“; 1'-3{1_1:. :
B i ey e B B M PSSR \

4 -3 4] 7 2 3 4

B @ KN o=
rel

Figure 8.27 Figure 8.28

(€ Graphof y =x"(x >0) whenn isa Rutiénul Number

: 1
Generally the domain of the function y=x" is the set of all real numbers.

Mathematics-x1 = 243
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1
sider y=x" * with x>0.

ill con
However, at present we will 7 which is the identity function. Tt s

(1) When n=1, we have y= /()

ts domain and range are the set of all real numhem

special linear function. AR

" in general. Some of the values of the function are °

given in the following table.

y=x

The graph of the function is shown in figure (8.29) whichis a a straight line,

(2)  Whenn=2, we obtain y=x —J_ that is , the square root function. The

following table gives the values of the function y =x

The graph of the function is shown in fi figure(8.30)

(3)  When n=3, we have y= © =3x. Some of the va]ues of the function are
given in the following table. T -

y= if_

- 3 : 11 -t 111
The graph of the function is shown in figure(8,31), F :pmc 8.3

-4 _ When x=4, we have y=x* =4/3 The values ofthe function are given
in the following table

Figure 8.29

f'1_rlm, 5\ 3{]

Uni'[‘ 8 | Functions and Graphs

The graph is given in figure(g. 32)
Remember that

(i) When the values of n are even, the graphs of the function y=x" have

the same general shape as the square root function y= v"_

(ii) When the values of n are odd, the graphs of the funct:ons y=x" have

the same general shapes as y=y’ =35

(iiiy  The graph of y= Py extends over the entire .:
is defined for all real values of x
has a cube root,

. 3
—axis, because f(x)=
- The reason is that every real number

1
(iv)  The graph of y=x’ only extends over the non-negative x—axis . The
reason is that negative numbers have i Imaginary roots.

.1l

i 4
=3 a
.o yua L yui
—t—e | b oy } 4
A .3 .2 o O 1 2 3 4.) 4 3 2 AU 1 2 3 -;7'
-t S
24
j" HU = —— .18
T X H
igure 8,33 s .| Figure 8.34

8.3.3  The Graph of Quadratic Functions
In this section we want to look at the graph of a quadmtlc function. The most
general form of a quadratic functionis,  flx) =ax™ bx+c
© graphs of quadratic functions are called parabolas.
CIe are some examples of parabolas
Not For Sale
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is called -
'fhe lowest or highest point of a pa:raboﬂ!i{:Z EC; .
its vertex. The vertical lin pam‘ngnfsymmetry'
vertex of a parabola is called the axis

Dt Ia
or more brefly xis of B DL LC ygugh the

i S5 . |
fi (8.35), the dashed line pa el s
:.:wcil:ﬁ highest point i.e. verteX of the parabola 15 ™ X

e G ral Quadratic Function

Graph of a Gene _ : . |
gf (x) f ax +bx+c,a#0bean arbitrary quadratic : |

te
function. In order fo sketch graph, we co.mplc
the square in f(x)= ax? +bx+c as follows:
[ x) Saxé+bx+c .

= (axl +b.¥)+€

Figure 8.35

(Separaling €}

=a(x* +£x) +c {Taking a as comman)
a

(Adding and subtracting the square

Y :
3 ol 9
=alx +E’“+4ﬂz)+c 4(4;_;1} of half of the co - efficient of x).

B g
—G(I+2—a') +(l’.‘ 4a)

2 2 - 3
f(x)=ﬂ(x+—z%J +[c-%l—).aat{] (1)  Tosimplify (1), we let

2
f*=_—b and k=c-b— (2)  Then (1) becomes
2a 4a .
f(:]=a(x-k)2+k | 3)

"he graph of f is a Parabola with vertex at the point (i ,k)

he parabola opens upward if e >0 and downwards if a<0 .

e axis is the vertical line x = h. With the help of formula (3), we can draw 2
:asonably accurate graph of the quadratic function in x by plotting the vertex
1d at least two points in each side of it '

Mathematics-X1
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Example 12: Sketch the graphs of the quadrati
functions fand g defined by quadratic

@ f@=x" (b) gn=-2

Solution:(a) The graph of the quadratic function
fy=x" with a=1, b=0, c=0was sketched in
Example 9 and is reproduced in figure (8.36).
The vertex of the graph is the lowest point (0,0).

(b) In the following table some of the valye
y of the quadratic equation y=g(x)=—x* with

| Figure 8.36
s of x and corresponding values of
a=1,b=0, c=0are given:

y=gx)=-2" ¥
: |0.0)
_ —— [ X

The graph of the function is shown in figure (8.37) il i| Pt

The graph of f(x)=x" opens upward and the ' 1

graph of y=g(x)=-x" opens downward. {24y i L(24)

In general if, f(x)=ax*,a#0, then the graph of f(x) 1 Figure 8.37
opens upward if « >0and opens downward ifa <0 2z

Example 13: Sketch the graph of the function :

T f@)=xt=2x41 @,k s
Solution: We construct a table of values of the :;: Jﬂ
function as follows: y = x*—2x4] nl 07 Jum

At P
— S,
; Figure 8.38

The graph of the function is shown in figure (8.38) with vertex at (1,0)
Example 14:Without graphing, find the vertex and axis of the graph of the function

f)==x+4x-5 . Also determine whether the graph opens upward or downward.

Solution: Here a=-1, b=4, ¢c=-5.

2
<. vertex of the graph of f =(.':,A—)=(_i. (__f_,l
2a 4a

d oA

S y=12-1)

=1 =]
H--1) 4i-h

Axis = y= 20 =9
. 2a
Sincea=-1<0, so the graph opens downward.

Mathematics-XI
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Example 15: Sketch the graph of the fu
Solution: - Here a=1 el EEE
b -(._i,_p__
vertex of the graph r.:-ff=(-—-2-a‘- Cﬂ;i-c;)'_ 20)
T 1
2a
Since a=1>0,s0 the graph opens upward. ;

‘vertex are given in following

2

The two additional values on eac

:,'.-=.1"2 -2.1'—2

table.

Sketch the graph of the given function

h side of the

(i) f=2x43 (ii) f(x) = 4x-35
Sketch the graphs of the following functions
(i) f=2+1 (i) f(:r]z—x2+1

Without graphing, find the vertex, all
graph of the following function. Also de

‘upward or downward.
M sw=i
(iii) f()=-x+6x-5

(i)
(iv)

Match the quadratic function with its graph.

_(b),(c), (d), (e), and ().]

i. f(x) =(x-2)
iv. £ =@+D)*-2
61

nction f(x)=

¥ =2x-2.

_—

l| J]
T R L -]
\L /

i .nl

- /

[
B

0.3

Figure 8.39

(i)  f)=x+2x+1

intercepts if any and axis of the |
termine whether the graphs open

flx)=-2x"+8

fx)=x>+2x-3

[The graphs are labeled (a),

i f () =(x+d)? il
vf @) =4-G-F i £ @) =—0=Y

\

f @) =52

|6T

e,

Mathematies
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()
8.3.4 Using Factors to Sketch Graphs

In th secti
n the above section we sketched the graphs of quadratic functions by

plotting many points. In this section too 7
functions but using their factors. » We will sketch the graphs of quadratic

We know from our previo

us class knowled ;
. e that :
written as a product of factors. For exampl f P c;?;';?;mw expression can be

x2+3.1:+2=(x+]} (x+2)
where (x+1) and (x+2) are the facto '
= : actors of the quadratic -
Similarly, some quadratic functions of the form f(x)= :;‘p:;ff: (f: §)I+ 5 h
can be

factored and their graphs can be draw -
= n by using the factors. Thi -

fac.tnrs to sketch the graph of quadratic function is explain dth:s method of using

examples. plained through the following

Example 16: Sketch the graph of the function f(x) = x* +2x-3
Solution: Wehave f(x)=2x"+2x-3=(x+ I(x-1 S
To find the points which lie on the graph of the functionf (]x]
we put (x+3)(x—1)=0. The equation is satisfied if x = -3 m: x=1
Now f(=3)=0 and f(1)=0, Thus the points lying on the ura;h ;)f f(x)
(=3,0) and (1,0) that is, the graph cuts the x—axis at (=3,0) :nd (L,0) i
To find the point where the graph cuts the y— axis we , S
put x=0in the function so that f(0)=-3. Therefore
the required points is (0,—3). All that remains to be done I

i i e :
:Ul':]?bta“'! few additional points on the graphs in order IN
etch it. Some of these are given in the table below. 1

Y=(x+3) (x-1)
X i e L] -0
8 5 [l -4 5
z:ﬁ graph of the function is shown in figure (8.40),
ich opens u_pwnrd, since a=1>0.

/ = (x+3lx-1)

Figure 8.40

Mathematics-X1
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Example 17: Sketch the graph of the function x
Fx)=—4x" +12x. o .
= X 15
st Ve
To find the points where the graph cuts the : o 8
we put—4x{x—3) —(0. On solving we get o M 2\:
x=0or x=3. AT T R R
g =0 | \
- f©)=0and f©) . e
; ts (0,0) and f \
the graph cuts x—axis at the poin =
23; Alsf f]::m=0, sothe point where the geaph $ tas \i
cuts y—axis is (0.0)- PP —— it it

To draw the graph,we nee .
which are given in the table below:

y:-—4x (I‘_B‘)

The graph of the function is given in figure (8.41) which opens downward, since

a=-4<0.
Remember {

We may draw ihe'graph of any quadratic function f (x) which can be factorized as
“y=f=a(x-p)(x—9) by keeping the following points in mind.

(i)  Note the points (p,0)and (g,0)where the graph of the function cuts the x-axii.
: (ii) By taking x=0 in the function f(x), note the point (0. ) where the graph cuts the
' y—axis ; :
" (iii) The sign of the constant a tells whether the graph opens upwards or downwards.
' (iv) To draw the graph, obtain some additional points on the graph.

(v)  The shape of graphs of all quadratic functions is a parabola.

8.3.5 Predicting Functions from their Graphs

In this section, we are concerned with the use of factor form to predict the equation
of a function of the typef(x)=ar* +bx+c, (a=0)if two points where the graph
cuts the x —axis and third point on the curve are given.

The method employed in doing sois explained through the following exampi®

[nit 8 [ Eunctions and Grn.pls_i:

Example 18: Find the equation of the grap

y=ax’ +bx+6 (a=0)which cuts the »

passes through the point (1,-¢)"

Solution:  The equation of the curve which passes through x -axis at the points

(p,0) and (4,0) has the form y =a (x - p) (x =-q) (1) ¥

The curve which passes through the points (-2.0) and +

(2,0)is shown in figure (8.42),

Here p=-2, g=2,50by (1), we have
y=a(x+2)(x-2) (2)

h of the function of the type
—axis at the point (-2,0) and (2,0) and also

L point (1-6) lies on the curve, so it must satisf}'“h_
equation (2) and s0 ~6=a(1+2) (1-2)

= -6=-3a= g=2

Therefore equation (2) of the curve becomes Figure 8.42

y=2(x+2) (x-2) ory=2x* -8, which is the required equation.
Example 19: Find the equation in the form x* +bx+¢ =0 of the parabola which
crosses the x—axis at the point (-5,0)and (3,0

Solution: The form of the parabola is given by
4+brte=0 o m
The general form of the parabola is given by
G ax* +bx+e=0 (2
Comparing (1) and (2), we have
: a=1>0

so the parabola opens upward. The equation of the curve which cuts the x—axis at
the points (p,0) and (g,0) has the form

y=a(x-p)x—gq) (3)
but @ =1,s0 (3) becomes.
y=(x=p)(x-q) @ |
The curve which cuts the x—axis at the points i‘
=5.0and (3,0)is shown in figure (8.43).
We have p——;—iandq=3 \ /
Using (4), we obtain = s

Y =(x+5)(x-3)
ory=x*4+2x-15
Which is the required equation.

|
I
g
|
i
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8.4 Intersecting Graphs : find the int ersecting points graphically,when
In this section we aim at 10“ sar function and coordinate axis, two linear
a hin

: i hi
the intersection 0ccurs b?ﬁﬁf&mﬁc function. we will also solve graphically
functions.and a linear an i Tife
appropriate problems from e nd coordinate axes

values to x, wé find the t

f a linear function a
number a is called the x- intercept of the liné l.if aline [
Since the graph of a linear fanction f(x)=axth,. 7 2
~ - inrersects the coordinate axes i.
Example 20: Find the points of intersec
corresponding values of y in the following table. i

i i tion 0 ;
(2) Point of intersec : " :
i int (@, 0),
If a line [ intersects the x-axis at a po m}
i b is \
intersects the y-axis atapolnt)“(o,b} the ?l:Trt;e; by
zﬂed the y-intercept of the linel. se¢ (fig
R i et
a.be IR is a straight line,s0 it will intersect th_::l:cs ::vx;ls;c |
ﬂ;c point (a,0),and y-axis at (0,b) thus, the pot :
of a linear function 1 Figure 8.44
g tercept and y-intercept of the graph. : : -
Eaaonple 26 tion of the linear function f(x)=x-4 with
coordinate axes
Solution: By giving some
T S S a— _ v
£ -2 =2 : o | .\

The h of the function is shown in (figure 8.45).

. g - = . [ /-
The graph intersects x-axis at x=4 and y-axis al ok
y=—4. The answer may be easily verified by finding /./ B - 2
the x- intercept and y-intercept of the graph. # Figure 8.4
i secti 0 li rtions
(b) Point of Intersection of two linear fun-;. S
We draw the graph of two linear functions on the same gr_aph paper 31"01 ise
determine where the two graphs of these two linear functions intersect by
the graph.
iy 3and

" . Example 21: Find the point of intersection of the functions f(x)=**

g(x)=-2x+9. ;
Solution: For f(x)=x+3, we have the following table of values: y =¥+

Lo

" functions f(x)=x*-dx+6and g(x)=2x+1

The graphs of both functions are shown in
find that the point of intersection is (2,5)

Although this seems to be a very simple method of
finding the coordinates of the point of intersection =
of two linear functions, it may not always be very

accurate in cases when the coordinates of the point -
are fractional numbers. In that case, to find where =
exactly the graphs cross, we must use algebraic =
rather than graphic method. We can find a value of =
yand value of ¥ that satisfy both the equations of =
linear functions simultaneously. For this purpose =

several methods are available. For example, we “Figure 246

may use the method of elimination or method of substitution with whom we are
already familiar.
(¢) Point of intersection of a linear function and a quadratic function

The method for finding the point of intersection of graphs of a linear function
and a quadratic function is the same as that for finding the point of intersection of
two graphs of linear functions. The method will be clarified by the following
example. T
Example 22: Find the point of intersection of the —=

Solution: The following table gives the values of =
the function y= f(x)=x"—4x+6
y=x"—4x+6

s B B S
%13 i S
The table for values of the function g(x)=2x+1 is =
given below: y = g(x) =2x+1

o R
B

The graphs of these two functions are shown in figore (8.47).
he points of intersection of the two graphs are (1,3) and (5,11).

AMathenal
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Lnit B
$.4.2 Graphical Solutions mfd :ﬁ;hlz'::aﬂ be solved by means of graphs. Here ar,

Many problems from
some examples. . . 1o swim 24m downstream in a river ang
mmer 2 min : e
Example 23; It e ed of flow of water and the speed at which he ¢y,
4 min to swim back. Find the sPe
i1l water and Y= speed of flow of water

swim in still water.
peed ypstream =X~y

Solution: Let x = speed of swimmer in st

tream = X+Y and s

downs
‘th:r;:g;e tshpaetet?me x speed = distance
& 2(x+y) =24
4(x—y)=24
o) psml
x-y=6
or y==x+12 (1)
y=x+6 (2)

e equations of linear functions and they are
s. We find the point of intersection of their

T

we see that equations (1) and (?) are th
represented graphically by straight line

graphs. ’ o
The values of functions (1) and (2) are given In the

following tables:y =x+12 ___m .
Bl om: @R
TR o i o B 2|

]

i 2 B 6 [E
The graphs of both functions are shown is [Et

(figure 8.48).
We find that their point of intersection is (3,9), that is x=3and y =9

Thus the speed of swimmer in still water = x =3m/min and the speed of f
water = y=9m/min. Use algebraic methods to verify the answer.
Example 24: A group of 45 school children visited a zoo and paid Rs.60.00
altogether as entry ticket. The entry ticket of class 1 was Rs.2.00 per child W
as that of class KG Rs.1.00 per child. Find how many children were in the group
from each class.
Solution: Let x =the number of children from class 1

and y =the number of children from Class KG.

¥ --i;i_a;{tll'c 8.48

ow of

Mat‘imm iC!

TR —

According to the conditi : !
E+y=45n ition of the question, we have amat)
2x+y=60 "3
or y=45—x (1) ,___:‘
: y=60-2x ) T
- HH
T
was!

Unit 8 { Funetlons and Ciraphs

Equation (1) and (2) represent the equatio ;
i m of
functions whose graph are straight line. We ﬁ:gear =
that point of intersection of their graphs. The values s
of the functions (1) and (2) are given in the ;

following tables.

1T
R

y=45-x SEismEes
: ; T Figure 8.4
. @:.19_% 10 [B1571 30 |03 50 [E00 s
| 65 5] 45 [BEAl 25 BE 5 |l -
and y=060-2x

x |E] o [0
80 | 40 |5 o [EA]
The graphs of both functions are sw in
. i ; y .
of the graphs is (15,30), that is x=15and y ;g;g:{s.zw;. M e
Thus the number of children from class 1 = x=15
and the number of children from c¢lass KG. = ¥y=30

1. Skelch graphs of the following functions
: (1) flx)y=(x=1)(x-3) (i) Fx)==2(x+Dx=1)
2. Usmg factors to sketch the graphs of the following functions
(sf fl)=x?-2x-3 (iiy f)=—(x"-x-2)
3. Fln‘cl the equation of the graph of the function of the type y=x+bx+c
. which crosses the x—axis at the point (3,0) and (4,0)
4. Fl}t:.d the equation of the graph of the function of the type y=ax*+bx+c
which (i)cross the x—axis at the point (=5,0) and
through (~1,8) e T
E:Jlir)oss the x-axis at the point (-7,0) and (10,0) and also passes through
5. Find the point of intersection graphically of the following linear functions
with the coordinate axes. (i) f)=x=3 (i) flx)=2x+l

7 1z
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;cally of the following functions.

3 . :5n graphi
6. Find the point of intersection g;(agﬂ;-rl
L ey glxy==x+6 ing functi

i fm' =11:f- ijl.tersection graphically of the following functions.

7. Find the pomn G)= ]
(i f@= _fe +4.3 f.-(ﬂ Vo _
(i) F)=x -.-::.~ . ekilB in the plane are_dﬁlE;!ml'lt?d::w]:he

8. The paths of tWo all‘Pﬁ e A ,.=4respecﬁ"313'- Find the point where the
straight lines 2x-y= ] |

other. it : _

two paths cross each \ flight in an air. Going directly into the wind, he

9, A pilot makesa "h‘;fl F k; in 6 minutes. Going with ::]!e wind, he covers
GOVZL:S a m:?:ien{:in Jtes. Find his air speed and velocity of the wind in
the distanc ! :

1.

ii.

iii.

km/min.

|, Choose the correct option. :
’ -Xx
i o o
i What is the domain of f(x)= .

m B2 o 02-1] © (=2,2) (=2,2] -

A=(-1,0,1,2},B=(0,1,4} and f: A — B defined by f(x)= %,

then f is
(a)- Only one-oné function (b) Only onto function
(c) bijective (d} not a function

If: R — R defined by f(x) = 3x — 5, then £ ({— 1, =2, 1,2D) =

4 1) 4 4 ".'} oy 12-1-2)
g AN o {122 @tz o @ {6270
(a) {1,3.31‘ (b) { 1 3} u{ o=

If f(2x + 3) = 4x* +12x + 15, then find the value of f(31+2) i
(a) 9x2—12x 436 (b) 9x% +12x +10 :
(c) 9x—~12x +24 (d) 9x*-12x-5

If f(x) = x° ..,__13_ Jien f(x) + f(l y=
* >

(d) None of these

@0 = (=1- (g

Vil If ﬁ:x)=.t2_-3x+4rth-ej1ﬁnd the al i 3 =
f(x) = f(2x+1) values of x satisfying the equation

(a) 5/3 (b)2/3 (c)l
vii.  The domainof y = A
. Ao 3x+2
(@) (o0, 1) (b) (2, 00) (c)(en, 1)U (2, @) (d)(-o0, 23T (2, 0)
(viii) Guess the quadratic function for the curve given in the figure,

() None of these

() gX)=x*-2x-5 1
(b) 2(x)=x*+2x45

g(x)==x"~2x+5

g(x)=—x>+2x+5

AR
2. Find domain of f(x) = NES

3. Finda polynomial function f{ x) of the sec:mdi degreé whenf(Q) =5
f(=1) = 10,£(1) = 6. el (D)= 3.
4. Find the range of each of the following functions:
) f@)=2*4+2. xeR
' f(x)=x,x€R

. The function ‘t" which maps temperature in Celsius into temperature in
degree Fahrenheit is defined by t(c) = %.+32

Find (1) t(0)

G H28) (1) 1(=10) (iv) the value of ¢, when t(c) =212
{11)

'rx If ft.'(j = 8.".' - ?l ﬁ“d i ._f—l (9} !.'.j'l:l _f-'] L—'
3)

~}

Given that flx)=x"- ax*bx+1. ¥ 72) = -3 and fi~1)=0, find the value of a and b.
Graph the following.

[+5]

:z_%ﬂg ) oy==32 (iiy=2-Tx+3

o=

Sketch the graph of the following.
(i) y=x"+2x-3 y=3(x+1)(x-1)
10. Find the point of intersection graphically of the following functions.
f(x)=x+4, g(x)=-2x+3
F)=xtx, gln)=b3
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ng (LP) as planning of allocation

Define linear programming v/ -
resources t0 obtain an opum:.ll resl% egualities in one variable and represent
Find algebraic solutions of linear inegq

them on number Line.
Interpret graphically t
Determine graphically t
inequalities of non-ncga
Define

o * linear programming problem,

e objective function,

s problem constraints,

s decision variables.

Define and show graphically the feasible region (of
LP problem.

Identify the feasible region of simple LP problems.
Define optimal solution of an LP problem.

Find optimal solution (graphical) through the following s
establish the mathematical formulation of LP problem,

construct the graph,

identify the feasible region,

locate the solution points,

evaluate the objective function,

select the optimal solution,

verify the optimal solution by actually substituting values of va
from the feasible region.
Solve real life simple LP problems.

he linear inequalities in tWo variables.
by up 10 3 simultaneous linear

region bounded .
h:ve %m‘inblcs and shade the region bounded by them.

solution space) of an

riables
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91 Introduetion

- = o

resources in a best possible manner with the:view to minimize. cost of production -

- _and maximize profit, The limited resources may be in the form of capital, labour, .

..m.nnw.‘:fyf, u_rn.::1 .m"-'“if_’o"‘.‘"-". n'i‘uch,ine_;__Fﬂpﬁc'll}'{ctc. The linear programming is - the
mathematical method used in decision making in business to maximize the profit

or minimize the éxpenditure subject to certai icti i
T min : s in restrictions which are a res
limitations on resources. ) oot

.Tpe term ;_Jrogramming means planning and refers to a process of
determining a pa_rucular program. The term linear means that all relationships
involved in a particular program which can be solved by this method are linear.

Thus_linear programming is a method for solving problems in which a linear
function (representing, cost, profit, distance, weight etc.) is to be maximized or

minimized. Such problems are usually referred to as optimization problems or
more commonly known as linear programming problems.

The theory of linear programming is a fairly recent advancement in mathematics.
It was .dcvelopcd over the past four decades to deal with the increasingly more
complicated problems of our technological society.

Linr:ar programming (LP) is planning of allocation of limited resources to
obtain an optimal result.

0.2 Linear Inequalities

Recall that an inequality is a statement that one mathematical quantity is less than
(or greater than) or less than or equal to (or greater than or equal to) another
quantity. Thus, if @ and b are real numbers, we can compare their positions on the
real line by using the relations of less than, greater than, less than or equal to, and
greater. than or equal to, denoted by inequality symbols <,>.< and = respectively.

TilB fnl}owiﬂg table describes both algebraic and geometric interpretations of the
inequality symbols,

i i“l;r State
a<b a is less than b
a>b a is greater than b a lies to the right of b.
ash a is less than or equal to b a coincides with b or lies to the left of b.
azb a s greater than or equal to b | a coincides with b or lies to the right of b.

Mathemaﬂcsdﬂ
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Unit 9 | Linear Programming

shall consider 1 .
se inequalit

In this section, We inear inequalities in l{mc variable ang
g ' i aphically.
ables. We hall also interpret the ies grap y

two vari
9,2.1, Linear inequalities in one variable St
ﬁlequalities of the form ax < b, ax = b ax > borax - W 31’; .ﬂ:t 0, b are
“constants are called Jinear inequalities 11 one variable or first degree
{nequalities in oné yariable. . ‘
For example, X < 22 2 s6,4 - 3x>-1-%2x+ 5 > x -3 are linear inequalities in
one variable. .
one variable x are the values of x

ar inequality in

set consisting of all solutions of the linear

The solutions of a line3
the linear inequality. The

which satisfy
inequality is called the solution set.
For example, the solution set of the linear inequality x > 5 consists of all
values of x that are greater than 5. _
me way as we solve a linear equa'nun_

near inequality in the sam!
Following are the steps involved in solving a linear
Step I Shift all terms containing x on one side of the incquality.
Step IT Shift all other terms on the other side of the inequality.

Step IT1 Simplify the resulting inequality t© find the values of x.

Example 1: Solve the linear inequality x— 3 > 0.
Solution: Since the only term containing x is on the left side, we need to shift the
constant term to the other side. To do this, we add 5 10 both sides and then
simplify. x-5>0
x-5+5>0+ 5
x5

Thus, the solution of the inequality are al
The solution set = { x: x€lR and x> 5}
The solution set can also.be written alternativ
Example 2: Solve the inequality 3x -2 =8 + 5x

obtain the

Solution: To solve the given linear inequality, we use step (D—(1D) to
following equivalent inequalities. o B
G 0% 4 58 Did You I{nu

(3x—2) - 5x 2 (8 + 5x) - 5x When both sides of an inequality are multiplied
Ix-228 by a negative number, the order (0r sense) of
(-2x-2) +228+2 the inequality is reversed, that is from
<to>, from <to >, from >to < or from zto%

We solve ali : g
inequality in one variable.

1 values of x that are greater than 5.

ely in the form of interval (5, %)-

Mathematics-XI
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-2x=10
1
— (=2 - !
[2}( ]z[ 2}“0],
-
x<-5 Thus, lhesolutionsct:{x:inRandx‘:—S} (
. = = (—oa, —5]

(Hlﬂ‘e ! !:)

In the aboveé graphical
; representati i :
the real line, the o ion of linear inequalities i i
S belong 10 SDluEf:i i‘;fzsg?‘dcgilcwclc at the Poir?tui‘:mlgil::t:; ‘ljl:t ::nabte ¥
: - The filled i ; :
the point belongs to the solution s::l in (shaded) circle at the point iﬁdﬁg:tl;: ;e:t

The solutions of linear i
508 r inequalities j i
on the real line in‘the following eXalrIl}np?:; variable are graphically represented

(i) 3 o I e |
e —t—t—t—}—b—}—0—>
G) » B 13
S B e s !

TR S o R T T
T o o G S
= = e =
B & 2 70 l1 T
T TR T . o l“""*—~4-—v+—t—-—>4
: I

< R O S [

9 2.2. Ll]leal e n two var |D|E',5
.
1 qua]ltles 1 t 0 1a

A linear i i
inequality in tw :
h k WO var : .
following forms. ables x and y is an expression of one of th
e

i  ax+
i by<ec (i) ax+by>c
v.}lle 120+ B0 (iv) ax+byz

here a ; e

= U/ 1n the above i iti < e
P vm bove inequalities, the ing i it
For em:p;’ _“?'ng linear inequalities in one v'l?i:};(l:cresmmg s G
: ple, (i) 3x<2 (i) 4 i) x— 2y = .
mmequalities, In e “,) x+320 (i) x-2y>1 ()5 i
85 Vi s&x;lgles}l (Il') and (ii) are in one variables wlzjl;('i}ii?yaidl(?‘r; .
it s 3. ach linear inequality in twi i e
B g 3 o variables x i i

St quation in two variables x and y called th o e
F ok e associated or corresponding

or exam . ;

ample, the associated equation of ax + by 2cisax + by =c¢ (
y2eisax+ by = Covvvecrennnne 1)

To fir
d the as i 1 arl 1My
ssociated equation of a linear ine Uﬂ.lﬂy in two v iables, si pl
q q s ¥
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Unit9 | Linesr Programiming : .
: I our-later work we wi]|

45 L o Sy Iofineq—u‘ality' b el
substitute an “equals” Sign for the s}'mb“’_;bles represents straight line. .~ .~

. . ars iy in fivo vard
see that the 1lljcqr equation UL‘;‘ g bets,-which when substitued:
set of an inequa '

The solution :« the set of all num
i P e

fore the variable- (or variable.@ in. mcl:in:cttslusolufian px

" gtatement. To solve an inequality 15 to find 1 lut

' ' i Variableés

Two

Graphing Inequnlltiesin . _ % |
9:12'1. P alities are closely related to linear equations, graphing them is
Since lLinear inequ hing linear equations. The graph of a linear equation of the
Vfoer:r' s:nl_l:a;JIO g::s a line which divides the plane into disjoint regions as stated

max + by = |

below.
(1)  Theset of ordered pairs (%, y) su

set of ordered pairs (x, y) su

chthatax + by < ¢

tax + by >c.
@ The ch that ax y =

The regions (1) and (2) are called half-planes. ?
The liI:E ar + by =¢ that divides the p]EII'lC 15 Boundary axv+in=c
called the boundary of both half planes. :

(See figure 9.1). If the ’noun{?ar?‘ line is jlthal?; ™ A ;:;! F; £y
included in either plane then it 18 called |above the line ket 4
closed half plane. Since & plane has axtby =¢ ; acby=c |
infinite length and breadth, it cannot be / 0

completely shown by a figure. Only a

segment of the plane has been shown in I —

the figure. ; Figure 9.1

into left and right half-plancs while a
into upper and lower half-planes.
dered pair of real

A vertical line divides the plane
non-— vertical line divides the plane

A Solution of a linear inequality in two variables x and y 1s an or

numbers (a, b) such that the inequality is satisfied when we substitute x = 4@ an

y=b. :
¥ < 5r

F"or example, the ordered pair (-1, 2) is a solution of the inequality 3x +
since 3(-1)+2=-3+2=-1<35 which is true.

The graph of a linear inequality in two variables x and y is th
pairs that satisfy the inequality. _ D

The graph of a single inequality, in more than two vaﬁableé, is a half-plane-

Mathematics-}ﬂ

- makﬁ the ll'\l'.'-’!l]ll.l.all[}‘I a triue
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9,2.2.2 Procedure for G ' .
: _ raphin lear
To graph a linear inequality, we fgllllc.l:nﬁr e
* Step-1: . Replace the ine
Make the line solid if the ineq

in Two variabl
[}
quali the following procedure :
uality si’gn Wiﬂ’; 56 Ll o
ST equal si raw .l
: R quality in qual sign and draw the line.
inequality involves < or >, Y Involves <or'> , make the line dashed if the -

i

S b~ Sl

the test point into the original

Step-2: Choos . )
. _ ~hoose any point that i ;
is not on the line, it is the most appropriate chy the line as a test point. If the origin
—3: Z oice. |
Step-3: Substitute the coordinates of |
|
|

inequality. If the test poi =

; sl point satisfies the i i

includes the test poi ; the inequalit

line. point, otherwise, shade the hzlf—;ll):i‘n:h;f ihtheu:mlf—p]ane foat
¢ other sides of the

Example 3:  Graph the inequality 2x — 5y > 10 (Did Fou nas E

Solution: The associ e
5 St-:yaq;nriﬁled Lqualéf))n of the inequality i If a line intersects x—axis
¥ : at (a,0), ;

¥=cbs i (i) b tsoales

Graph the line (ii) b ; If a i ept of the line.
e e OAR) Dy Aieling de and. piutercspis TG R e

€ x— intercept, let y=0. - ( ,b), then b is called

To find y-intercept, let x=0. y-intercept of the line.

We have 2x-5(0) = 10
= x=5 =

and  2(0) -5y = 10 >

= y=-2 0

Therefi i
Th:l;nm-:’the' boundary line passes through (5 0) and (0, -2
v he|ssul1d because the inequality in:olve; 2 g
e choose O 3 i o
a5 ,;EU’O) as &'Iltest point, because it is not on the line (ii)
€ *=0,y=0into the original inequality . :
2x-5y 210 ‘
we get 2 (0) =5 (0) = 10
_ = 0210
which is not

Sillss i iI]lrue. '_I'hereforc the test point does not
half-p c({uahly, and so the solution is not the
The Ehdm: that includes the origin.
€ solution is the half-pl ini
s 4 8 alf-plane notc g
Orgin (see figure 9.2), p ontaining the
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Example4: Graph the inequality ¥ =¥ —4.

Solution: The associated equation O

)]
y =x-4 (1)

To find the x-intercept put y=0 in (i)
p=x-4=> *=

y>x—4

find the y—interccpl put x=0in (ii),

y=0- 4
= y=-4
Therefore the boundary line pa

Similarly to

sses through (4, 0) and

ause the inequality

(0, —4). The line is dashed bec
a test point, because

involves>.We choose QO (0,0) as

f the inequality is

it is not on the line (ii).
Substituting x = 0, y=0 into the onigin
=0>-4

al inequality
y >x—4 weget 0>0-4

which is true. Therefore the solution is the half-plane

that includes the origin (see figure 9.3).

9.2.3. Region bou
(i.e. System of Linear Inequalities in Two Variables)
Two or more linear inequalities together form a
system of linear inequalities. The graph of a system
of linear inequalities in two variables x and y is the

set of all ordered pairs (xr, y) that satisfy jérgpha

simultaneously each of the linear inequalities in the

system. Thus, the graph of a system of linear

inequalities can be obtained by graphing each
ineguality individually and then taking intersection

of all the graphs. The common region so obtained is

PR |
T

>
.(4.0)’..:};4

T L X
o .~

s
'

s
2 (0.~
ok 0-4) Figure 9.3

o+
s

nded by 2 or 3 simultaneous inequalities

e

s

i
it
o

A

L &
=
L
-
&
e
w0
i

called the solution region for the system of linear inequalities.

Not For Sale

_ The graph of the line x+ y=2is drawn by oktng, thie

Unit 9 I I_-'l_“-IT-II‘ ngrgmml“g

Example 5: Graph the s i
ystem of linear ipe iti
ual
S qualities.
x+y 2 2
Solution: Following the prok:cdure for

the line 2x — y= 4 is drawn by joining ¢ graphing linear inequalities, the graph of

(0,0) satisfies the inequality, so [h:f- Zc::;t; (2.{0) and (0, —4). The test point
inequality 2x — y < 4 is the upper half-plane inccl'ud'the {
the graph of the line 2x — y =4. The closed A |n'g
partially shown as a shaded region in Fisure 0.4 plane is

points (2,0) and (0, 2). The test pint (0, 0) does not

satisfy the original inequality, so the graph of the lml-"F‘ 9
inequality x + y = 2 is the closed half-plane not on the origin sid . “5
x+y=2. Tl.m closed half-plane is partially shown by shadin ingltr: Sti gl A
The solution region of the given system of linear ineqfalitie: i::g:?e ?j. i
figure 9.6 by the shaded overlapping region of the graphs y = aj:'Ed ¥
._shown in figure 9.4 and figure 9.5, The point (2, 0) is the B
fntersc-::non point of the graph of the system of
inequalities that can also be found by solving the
equations 2x -y =4 and x + y =2 )

Graph of
—{ Zr=ysd

Example 6: i i
I Graph the solution region of the following

system of linear inequalities in each case. Figure 9.6
2x-y = 4 x-2y < 6}
ﬂj x + y > 2 b} % + ¥ > 9
_,T+2J- < 4 x +2}‘ < 10‘1

i:l:ii;lt;:ti:; 'll'he graph of the inequalities 2x — y < 4 and x + y = 2 have already
. in .ﬁgurc 9.4 and figure 9.5 respectively and their solution region
P&ﬂlallly shown in figure 9.6 of example (5).
:::;2:::3 the prUccdu.rc fnr. graphing of linear inequalities, the graph of the
Y = x + 2y =4 is partially shown in figure 9.7.

The intersect: - 4
€ Intersection of the three graphs is the required solution region which is the

shaded triangular region ABC (including its sides) shown in figure 9.8.

Mathematies-XI
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¥

Figure 9.7 Figure 9.8

: ine x-2y=6 is
(b) . The graph of the line ¥-
the points (6,0 and (0,-3)- Since the b
satisfies the inequality X = 2y £ 6,. thusllhc grap F
x -2y 6 is the upper half-plane including the grap

drawn by joining
test point (0, 0)

T ey

%)
<y

e
Figure 9.9

of the line which is par‘r.ially shown by @ shaded region 1n }/
figure 9.9. ¥ e ’T
The graph of the lin¢ 2x +y = 2 is drawn by joining the :
points (1, 0) and (0, 2). Since the test Point (0, 0) does i ¢ -
not satisfy the inequality 2x +¥ >2, thus the graph of o \
is the closed half-plane which is shown ety :\ -
TN

2x+y=2 _
partially as shaded
The graph of the linex + 2y =
points (10,0) and (0,5). Since the
the inequality x+2y < 10, thus the graph
the lower half-plane including the graph of the line which

Y

is partially shown by shading in figure 9.11. g

The required graph of the solution region of the system is / 1?‘311

the shaded overlapping triangular region ABC (including __ 44 \ L i\x
1fiz%)

region in figure 9,10,

10 is drawn by joining the
test point (0,0) satisfies
ofx + 2y <10is

-,
Fy

Figure 9.10

r._.

R

./

its sides) termed by the three graphs as shown'in

figure 9.12.
In example (6), we see that the solution region of either

system is the shaded triangular region ABC as solution in

figures 9.8 and 9,12 respectively where A, B and C are
.the points of the solution regions, obtained by the
intersection of its boundary lines. Such points are

Figure 9,11

Not For Sale
Mathematics-XI
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termed as corner poi
Points or verti
ces of the s .
olution

region. i
g1 '].hl.ls, a point of a SO'],ItiD]] regi:)n whi
ere

tw i.t i
o] of IS bou"dalb llnf:S inletswl iS Ca"td a
e 1T .
cho[ﬂ pll t or a Vertex Df thE S(ﬂutiﬂn ]'cg-
|.::';:l ; 1011,
The mer pOlIllS of lhl: Sﬂlu!iﬂn IegiDI'I can hc

obtained b i
i : y solving the associated 5 d
linear inequalities in pairs, ed equations of f

/7]

F F i :
or example, in example 6 (a) the following three

corner points are obtained ; r
pairs. . ed by solving the associated equations of the i Figure 9.12
s e Ry

Associated Equations of Inequalities Kbk
2x-y=4, x+y=2 : Comer Points
21—}-’:4, __r+'2y___4 AI{Z‘O)
X+y=12, —X+2y=4 ggg,él}

,2)

The graph of a solutio i
n region of the sys i
ystem i iti
bounded or unbounded, The graph of the SOI:‘LJ:;“‘CH R ek
n

region is bounded if it ¢

some circle of ::?fi;:e;ttl;dlr:arz: E':::I?uoss':dh?mhin

f;?,l::,:i;, 1;h:: sclmlutinnlregion is unhnun:ec;}ci; hi?

= i ;::Ill?s::‘ In any circle how large its

is unbounded while di:]n]::ug),l;he g

?f;:p‘i ]?:t(l; systems (a) anr}j (b}(ig}t;c:zzdi?ll.umn

system of Ii'ne:::?l:i,h - S'Eﬂmion Bt e .

— lnequahucs and find théir ¢ in o

graph of the solution region is bounded G e
s e ed or not. *

x -3y <6

X 20 . -
2 : )
Solution: The associated : - . /{é
x

linear o equations
ar inequalities : of the B

e P = .
The gra;-:-l."(:sly =6 (1) and 2x- 3); =6 (Il)
ine (i) is drawn by joini .
(0, 0) satisfi y joining the points (3, 0)and (0,2 ;
~ - » 0)and (0, 2).Th
1es the inequality. Thus the graph of the inequality 2,1:; 3: Le;tiiotl]? :
= e

Figure 9.14

Mathematics-XI
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» nc
Jower half plane i
shown as 2 shaded region in fi

line (1
mph Df the
il

aoh of the line- 9.14. )
grap by a shaded region in Fgurﬂf - including
shown )’h Ofx'P 0 is the nghl hﬂl p ¢ the linear Yy
o gm:. fth; line x =0 (the y-axis) O {ly shown 1 '
0 s

the gmp. > (. The graph of x2 0 is partid : given cio. 2] ,
inequality x= - Jution region of the b : '.-!

15. The solull ofthe . V7, J[ S—

in figure 9.1 he intersection
alitiesis the

system of linear inequ figure 9.13. figure 9.14 A Mo 3 \

,/ i Figure 9.16

Figure ‘J.IS ﬁ

aph partially shown in
:Tﬂdp ﬁgpure 9,15. This region st s
shaded overlapping region in (Flgut63 o
The comer points are A(0,-2), B(
s clearly bounded.

(0,2). The graph of the solution

region i

in each case

ion set
1. Solve the following inequalities and graph the solution
. So
' @ ~x+3<T @ ~-3x-254
Gi) x+ys2 (iv) x-3y>6

2. Graph the follc-wmg systems of linear inequalities.

or x —:’f E 1
(i) 2x =3y €12 } (ii) x4y 24

3x +2y <6 I
iy ey 4] 0y 2+ ys8
x+y23 > o
x2 0 yz210

Unit 9 | Linear Programming

3. Graph the solution region of thé following
the corner points in each case. Also tell

" unbounded. whether the graph is bounded or
(i) 2x + y <6 )  2r 2y >6
X +2y £ 6 X oy
xz20 Fesag

4. Graph the solution region of the following system of linear inequalities and find

the corner points in each case. Also tell whether 1he graph is bounded or -
unbounded.

(i) 2x +3y =12 (ii) 2x+y23
x+ y=z2 2 ' x - y=22

9.3  Feasible region

9.3.1 Define linear programming problem, objective function, problem
constraints and decision variables

As mentioned earlier, linear programming consists of methods for finding the
maximum or minimum value of a linear function in two variables of the form
f(x,y) = ax + by;a, belR,

where the variables x and y are subject to the set of conditions or constraints given
in the form of linear inequalities. In order to maximize or minimize the linear
function f(x, y) = ax + by, called the objective function, we need to find points
(x, y) that make the function largest (or smallest) possible. Such points occur at

the corner of the feasible region as the following theorem asserts.

“The maximum (or minimum) value of the objective function is achieved at one
of the corner of the feasible region.”
Many practical problems arising in the field of business, economics, the sciences

and engineering involve systems of linear inequalities. In such problems the
choice of values of the variables is not entirely free but subject to some

 Testrictions or conditions given in the form of linear inequalities. The

linear inequalities involved in the problem are called problem constraints. The
variables used in the system of linear inequalities relating to the problem are
non-negative and called non-negative constraints or decision variables.

Mathematics-X1
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the system of linear

The graph of the solution region gf
inequalities

x=2y<6
2x+y22 ¢
x+2y<10 Jution ;
i serve that the sO y 1 u
is given in (Figure 9.17) We ob y Figure 9,17

i i ities i lways
region of the system of linear inequalities 15 n'ot a : :“
within the first quadrant. However, the solution regi

can be restricted 1O the first quadrflnl (Iifd llit:l:
non-negative constraints x2 0,y2 0 are include

the system of linear inequalities. In -:_:xa:‘unplc 6 (b),
ifx=20andy2 0 are included within the _systcrn
of linear inequalities, then the solution region can
be restricted to the first quadrant.It is the polygon_al
region ABCDE (including its sides) as shown in

Figure 9,18 ; - '
9 :f.z A region (which is restricted to the first quadrant) 1s referred to as a feasible
region, Each point of the feasible region is called feasible solulion of the sysiem

of linear inequalities (or for the set of given constraints). In other words any

ordered pair (x, y) that satisfies all the constraints is called a fensible salution of
the system of linear inequalities and the set of all feasible solutions is c;ﬂle(‘l a

feasible solution set, ' o
Example 8: Graph the feasible region of the following system of linear

inequalities.

x+5y =15
-x #3y £ 3
x 24
y 20

Solutlon: The associated equations for the inequalities
3x+5y<15 and -x+3y=3
are  3x+5y=15 - (i) and —x+3y =3 (i1)

The graph of line (i) is drawn by joining the points (5, 0) and (0, 3) by a solid liné-

Unit 9 | Linear Programming ; E e

Similarly, the graph of line (ii) is drawn by joining
the points (-3, 0) and (0,1) by*a solid line. \
:Sjnce 'fh.c test point (0, 0) satisfies both the w3

inequalities 3x+5y<15 and-x+3y<3, so both the jial

closed half-planes are on the origin sides of line T

(i) and (ii).
The intersection of these closed half— planes \
is the shaded overlapping region as shown in Figure 9.19 \\

Figure 9.20 Figure 9.21

?l'hr: graph of ¥ 20 is partially shown in Figure 9.20. The
Intersection of graphs shown in Figure 9.19 and Figure

.20 is partially displayed as a shaded region in Figure
021 N
a—— A

The graph of y = 0 is partially plotted in Figure 9.22. =0 X
T!w inlemcct.ion of. graphs shown in Figure 9.19 and
Figure 9.22 is partially displayed as shaded region in Ik
Figure 9,23, |

i3
-

Figure 9.22

The graph of the given
system of linear inequalities
is the intersection of the
graphs shown in Figure 9.21 =
and Figure 9.23 E-fhich i, B e Ia% g
indicated as shaded region in
Figure 9.24. This shaded Figure 9.23 Figure 9.24

region is the required feasible region of the given systém of linear inequalities.




iy 12, so th h
ine (i) is drawn 5 : — 4y < 12, so the graph of
Tho gl 0270 l:l}ilr?t (0, 0) satisfies the inequality 3x — %Y grap
line. Since the test pO 4 half-plane on the 0

rigin
i sel 1
::fk: o?;irfe ]33: 1—54?1(:113 . The graph of system __EH%
3¢ - dy £12 o i >
x20 Ly
=20
is partially shain as shaded re.gio." in Flgurl;s gji?r.aing e
Similarly, the graph of line (ii) is f:ia::c gmca =
the points (2, 0) and (0, 3) b)rl a solid line. s
test point does not satisfy the ifequality Ix + y]' AT NS
o the graph of 3x + 2y 26 is the closed half-plan
?iic 3x + 2y = 6. The graph of system :
3x + 2y 26 \\
xz0 x
y 2 0 is partially drawn as shaded . 03) ;
region in-Figure 9.26.
The graph of the system
3y — 4y 12

' E4 I'msﬁ“"“j“g - i ] ; the following constraints.

' = feasible region subject 10 :
Example 9: Graph the fe@ A s 512 Did You Baow 12D
@ i -4y 12 ax +2y 2 6 The feasible solution

3x +2y 2 6 42y 510 region in example 9(a)
xz0 x2z0 is unbounded while the
y 20 yz 0 feasible solution regiop
; i le 9(b) is
_ ns for the in examp
Solution: (a) The assﬂcmlczd qu:uo 3x+2y 26 bounded.
= — d4ys i =6 (i
inequalities 3% , oy =6 (ii)
i = 12 @) and 352 (4, 0) and (0, -3) by a solid

by joining the points

———tt A

Figure 9.25

{
o

5

Ix+2y26 [ {L
xz0 4 \
yz0 g

is the intersection of the graphs shown in (Figure 9.25) and :

figure 9.26 and it is partially displayed in (Figure 9.27) as shaded region.

This shaded region in the graph of the feasible region subject to the g

constraints.

[:iguru 925‘

iven

. called the Optimal Solution,

Unit 9 | Linear Programming

Corner Points: (2, 0), (4, 0), (0,3)
(b) The graph of the system

3x - dy €12
Ix+ 2y 26
xz= 0

y2 0is partially shown in Figure 9.27

The graph of the system

_x+2)-'§|0
xz0

¥'2 0is shown by shaded region in figure 9.28

The graph of the system

I - dy €12
x+2y <6 Figure 9.28
x+ 2y 210

xz0

¥ 2 0is the intersection of the graphs shown in figure 9.27 and figure
9.28 and it is indicated in figure 9.29 as shaded region.

Corner Points;

4 9
2- £l 41 (] e il ¥
(2,0), (4,0) [5 SJ (0,5) (0,3)

9.4, Optimal solution
9.4.1 There are infinitely many feasible solutions

in the feasible region. The feasible solution which
maximizes or minimizes the objective function is

i Figure 9.29
The procedure for finding the optimal solution (maximum or minimum value) of
the objective function f(x, y)= ax + by, subject to a set of linear constraints
(inequalities) in variables x and y is as following:

Mathematics-XI B
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- Jutlon
o tlmal 50
9.4.2 Procedure for deml[':’?:::b]:mgl on by graphing the linear inequalitieg
tep—1: Determine the %
Step- ™ that form the CDHSU:?[: of feasible region by solving two equations
Step-2: Find the corner Pﬂindaw lines of the feasible region.
ou .

: the b "
iR f the objective function fix,y) = ax+by at each
e 0

Step-3: Compute the va?u
of the comer points- Jution, select the largest value computed i
'I;l[lO
Step—4: To find the optimal s0 be maximized, and select the

step-3 if fixy) =4 x+by has 10

as to be minimized.
smallest value if fixy h

)=ax+by
ini alues of the function
mum and minimum v
Example 10: Find the maxi

+ 3y subject to the constraints

fix, y) =2x
3x- y2-l
x+ y<3
x‘-:[}
yz 0

S“lutln". e g IJ & u }' ?.2 = ] Il'\‘x [ilc C](}S(:d 12 —[)L'll‘lc on lh
y = :

i Th T4 h Uf th ITLEq. allt ]‘ dlf i e

0[1'81111 Sidc Df the Ii“e j-t y = l and Ihﬁ gl‘aph of thﬂ Il'quI.Iallty X+ ) 5 15

the closed half-plane also on the origin side of the linex+y=23.

The graph of the system
3x- y2-l
x+ y<£ 5
xz 0
y2 0
s shown as a shaded region in Figure 9.30. C(0.1) "_;::,\“ D _—
This shaded region is the feasible region. ——0—+-{—_1_ R
We see that the feasible region is bounded ! y -'5\3

and its comner points are O(0,0), A (5,0), B(1, 4)
and C (0,1). Evaluating the given function o
f(x, y) at the corner points, we get ;

Unit 9 | Linear Programming

f(0,0) = 2(0) + 3(0) = 0

[}
]

£(5,0) = 2(5 + 3(0) = 10
f(1,4) = 2(1) + 3(4) = 14
f(O, 1) =2(0) + 3(1) = 3
Thus the minimum value of f(x, ¥) is 0 at the corner point O(D 0) and the
maximum value of f{x, v} is 14 at the corner point (1, 4).
Exnmple 11t Find the maximum and minimum value
of the function f{x,y) = 4x+ 2y subject to the constraints
x+2y <8
X+ y=95
2x+ y =38
xz0 ;
_ yz20 Figure 9.31
Solution: The solution region of the system

x +2}" =8 : Hﬂ'ﬂ = — . cﬁ)

I

A 1A IA

1Y

<
ik yas In example 11, the function f(x, ¥) has maximum |
2x+ y<8 value at two comer points (4,0) and (3,2). It follows |
xz0 that f(xx, y) has maximum value at all the points of
y2 0 the line segment between the points (3,2) and (2,3).

is the shaded region OABCD shown in figure 9.31. We see that the feasible
region is bounded and its corner points are O(0, 0), A (4, 0). B (3, 2), C(2,3) and
D (0, 4). We compute the values of the function f(x, y) at the corner points to find
its maximum and minimum values. The value of f(x, y) at the corner points are
given in the following table.

Corner Points ok 'l':.x. y)=4x+ 2y
(0, 0) F(0, 0y =4 (0) +2(0) =
S )N [ (<. 0).=4.(d) +2(0)
(3,2) CE(E3.2)=4(3) +2(2) = 16
(2,3) F2.3y=4(2) + 2(3) = 14
(0, 4) 0. H=5+24) =8

From the above table, we see that the minimum value of the function f(x,y) is 0 at
the corner point (0, 0) and the maximum value of f(x, y) is 16 at the comer points
(4, 0) and (3,2).

Mathematics-X1
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9.4.3. Reallife wmm blem, first fonnuiatc;“n:athslr‘l‘rmt_i::a| model of
. o i i i A Lo S e 1t.
10& ;(:L\;;:;]:l:ncgrﬂf;ﬁgusc i iz Innif1{::::’: problem
rogra .
ulation of a linear P , ‘
'[Mha“:%ﬂ;:rr:t]i::lr;:nnﬁﬂ ation of a linear programming problem involves the
e ma |
following basic steps: ) . symbol xandy to i
i i . - yariable and assign G oAy _
2 Step 1 éde_'"_‘ﬁ"n :!:ig;iil::e those quantities whose values we wish to determine,
. dontif the set of constraints and express them as linear equations /
o I'dmh:{ions :n terms of the decision variables. These constraints are the
inequ :
given conditions.
Step 3 Identify the objective
decision variables. It :
i inimizing cost.
production of minimizing €os'- e ’ - \
Step4 Add the non-negativity restrictions on the decision var iables, as in the
physical problems, negative values of decision variables have no valid
interpretation.
Example 12: A furniture dea

pressitasa linear function of

function and ex NE 0
form of maximizing profit or

might take the

ler deals in only two items, viz., tables and chairs,

He has Rs. 10,000 to invest and a space to store at most 69 pieces. A table costs
him Rs. 500 and chair Rs. 200. He can sell a table at a profit of Rs. 50 and a chair
at a profit of Rs. 15. Assume that he can sell all the ilem:_s that he buys. Formulate
LPP, so that he can maximize the profit.

this problem as on : _
Solution: Let x and y denote the number of tables and chairs respecti vely (xand ¥
are decision variables).

The cost of x tables = Rs. 500x, The cost of y tables = Rs. 200 y

Therefore, the total cost of x tables and y chairs = Rs. (500 x + 200 ), which

cannot be more than 10000. Thus 500x + 200y < 10000 (Constraint)
Also, x + y < 60 (constraint) as the dealer has the space to store at the most 60
items. It is obvious that x > 0, y= 0 (non-negative restrictions) as the number of

tables and chairs cannot be negative.
Profit on x tables = 50x,  Profit on y chairs = 15y
Hence, the profit on x tables and y chairs = Rs. 50x + 15y (objective function).
Obviously, the dealer wishes to maximize the profit Z=50x + 15y
Thus, the mathematical formulation of the LPP is
: Maximize Z = 50x + 13y subject to the constraints
Sx+2y<100
X+ y<60
xz0, y20
Not For Sale
Mathematics-X1
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Example 13: A facto
! ry produces tw
two machines M, and M,, To producco

lyptesl of food containers A and B by using
hheragiieat container A, M; works 2 mi
ik ?;r:zla:lg. to pmduqc container B, ‘M, w]c)rks 8 mﬁigezzgd;;h’:
: profit for container A is Rs. 29 and for B is Rs. 45. Ho a
s. 45. How many

container of each type should be

achieved? produced so that a maximum profit can be

Solution: Let x = the number of container A per minute :md-
¥ = the number of container B per minute,

If per hour production of M i
plict 1 and M; is x container A i
profit per hour is given by the profit function P x,y) :a;fx};iﬂ;lamcr SR
The constraints are >
2x+ 8y< 60 (Resulting from machine M) i :
4x+ 4y= 60 (Resulting from machine M;) |
x 2
i (since container cannot be negative)

T]!C‘. above Syblt‘.lll “i I]]ll-tl' uailllc constraints can bt wrtten In [lLB
; h
lﬂ“ﬂ“!ng S p! ﬁt'-d l()lm

x4+ 4y = 30
X <+ }.1{_215

1Y

x= 0
0

I\

).’
W imis i
¢ maximize the profit function P under the given constraints

As before, graphing the linear inequalities
we obtain the feasible region OABC which‘
is shaded in Figure 9.32. Solving the equations
X + %y=30 and x + y=15, we get x = 10, y=5
'lhﬂt is, their point of intersection is (10, 5): :
Thus, the comer points of the feasible region

Mathematics-XI
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We find the value of the

pat the maximut is Rs. 515 per hour at the

Fr(r):;rthcosilt‘t:lo;c Ea:ble.s;fﬂrrsi‘ﬁ:s:‘ the optimal production plan 'Ehﬂt maximizes the
:?oﬁt ispachievcd by produci of A ﬂ‘nddﬁ \:01;1':::!8; : :rf IB;

Example 14: A farmer poSSEsses 80 acres of land an 191 1 _g_ﬁ ,d v;o types of
crops A and B. Cultivation of crop A rec;ulrcs 3 hours per M.:rc& J'; & {-:)*,u tivation of
crop B requires 2 hours per acres working hours cannlot e:-»c{ec_ 120, If he gets a
profit of Rs. 50 per acres for crop A fmd Rs.40 per 4cre o1 C;_Op B, then how |
many acres of each crop should be cultivated 10 maxinmze his profit.

Solution: Let x = ACTes required for cultivation of crop A
and y = Acres required for cultivation of crops B‘Q |

If P(x, y) is the profit function, then "I
R

P(x, y) =50x+ 40y L
w.sa]c‘i»-\
L eBl

The constraints are 20,60) i
l\

O |
e T A

x+ ys 80 (Rcslrictionof land)

3x+ 2y S 180 ( Restriction due to timé i :
IR, o S

v & D} Non-negative constraints, T
e 0 since acres cannot be negative, P

Graphing the inequalities,we obtain the feasible region OABC W
by shading in figure 9.33. Solving x + y = 80 and 3x + 2y =180,
we get x=20 and y= 60, that is their point of intersection is (20,6
corner points of the feasible region are O(0, 0), A (60,0), B (20 ﬁﬁ) and
We find the values of the function P at the corner pnil;ls ‘ :

0). Thus the
c (0,80 -

-

. Mathematics-X1
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Comer Points
(0,0
oA P(0,0) =50(0)+40(0) = 0
v i(ﬁo, 0) = 50 (60) + 40(0) = 3000
e ; (20, 60) = 50 (20) + 40 (60) = 3400
(0, 80) = 50 (0) + 40 (80) = 3200

rom lhc abo\'ﬂ ah €, we {II
[t I W
s¢e Ihﬂt the maximum pr it is Rs 34[}0‘
F LY at lll!: corner

point (20, 60). Thus mn
; , OU). , the farr ill e
ey o sl nrc; u;)tll get the maximum profit if he cultivates 20

find the corngr points.

(=

(1) 2 + y £
; = ay Ax e
41‘4—}:53 (i x+}'.i—4
v i
¥y 20 5 ; :
1 'j .
X + ) = 6 {I'\-) x + v > 3
oy 2x + 3y £ 12
x4 = 2 ""_T's-‘;;},
x 2 0 r; ;
yz 0 }; N
2. () Maximi: -
ize f(x, y) = 2x + "
- x+ys g subject to the constraints
I+Jr21
i x,y20 .
1) Maximize f(x
,¥) = 3x + Sy subject t A
2x+3y <12 ok CEConaainG
3x+2y £12
X+ y =1
x=20
y=20
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- ini values of
d the maximum and minimum
3. (@) Fin d
subject 10 the constraints _ s
42y S 10
xz0
y 0

function £, y)=Tx+21y
e alues of the
d minimum b

(ii) Find the maximuim an

subject 10 the constraints

' del B b
pbicycles, model A e nd
fac ‘

A company manu e My ha o
:Sriﬂg i 8 i _Emi:‘i E{Nll:4 hours awmla‘t)le‘;.l1*»'1\]z:sn-LJ.ilf::Lc*::;1 cﬁn‘c g
g o aﬁmhac}::l?; in machine M, and 4 ho

1 requires : :
blzﬁftlfﬁacmging of a model B bic}rcletle;:ﬂ e
!ll:l machine Ma. If the company ¢

pIOfIE D[ RS. 50 p‘BI IIIOdBl B blC}'Cle. ho‘-‘il man
. 0
maﬂufaciutﬁ'.d for I'['Ia)llmlHIl pfoh[,

; its of chemi
by using 2 umits ©  Yahd
- roduce product A . it of chemical 2

it e ‘3:: Emduce product B ehvc lélmtn(i}tq of the compound ¢

of a compound 10 P unisofchemicl G S0 s 20 espectui

of e opE it of A and B are Rs. a to achieve the
available. Tﬁle pﬁ!&ypﬁ; i.::lof e product should be produced

Determine how

maximum profit. Use the

ires 4 };);ino pé; model A bicycle and

y of each model should be

cal and 1 unit
units

A company manufactures and sells two modd? gi.:;?gl:otlld\jg En-odu-: ol
. following table to determine how marny of each type © &
Ll o pmﬁwﬁq‘. AL TAGABIL T O AL .-_.Hl-mlg:j'%
finis'hlnghEBW lamp Lﬁﬁ‘ﬂ? ok ‘.-‘_:-'L”‘;"-!‘_." ST -
WP"WP : [Rs. 700 S Re S MRS

Mathe m-ntici-xl

in machine M, and 8 hours -

(1)

(11}

(vi)

Choose the correct option

The solution of the system of inequalities x =20, x—5<0and x = y

is a polygonal region with the vertices as

(a) (0,0, (5,00, (5,5) (b) (0,0, (0,5), (5.5)

(©) (5.5, (0.5), (5.0) () (0,0), (0.5), (5,0) s

Find the profit function p if it yields the value 11 and 7 at (3,7) and
(1,3) respectively g

(2) p=—8x+5y (b) p=8x — S5y

(¢) p=38x+ 5y (d)p= —(8x+5y)

The vertices of closed convex polygon representing the feasible
region of the objective function are (6, 2), (4, 6), (5. 4) and (3, 6).

'Find the maximum value of the function f=Tx + 11y

() 64 (b) 79 (c)94 (d) 87

Which of the following is a point in the feasible region determined
by the linear inequations 2x + 3y < 6 and 3x — 2y £ 167

(@) (4, =3) (-2, @G -2) (dE -9

The maximum value of the function f= 5x + 3y subjected to the
constraints x >3 and y 23 is

(a) 15 (b) 9 (cy24 1d) does not exist

Maximize 5x + 7y, subject to the constraints 2x + 3y = 12,
x+y<5,x20andy=0

(a) 29 (b) 30 (c) 28 (dy 31

Maximize Z= 4x+3y subject to the constraints
3x + 4y<24
Bx + 6Oy =48

6
xnyz 0
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ether two kinds of food X and Y in such way e s s

% 73 Adietician wishes to mix togﬂ uits of vitamin A, 12 units of vitamins r_, : . TMGDNDM_E}mcmEﬂr FS - : Hﬂ
f N |
i

B and 8 units of vitamin C. The vitamin cont

Vitamin A

y mainsalleastl e . g
B i & s o o ent of one kg, food is given below SUM AND DIFFERENCE OF ANGLES

%
’ -

I
One kg of food X costs Rs:lﬁ and one
cost of the mixture which will produce t i
Find the maximum and minimum values of the function Z=5x+ 10y

ST LT T T

kg of food Y costs Rs.20. Find the legg
he required diet. :

| —
4

4, ! |
subject to the constraints & |
x+2y> 120
x+ y=>60 ;
x-2y >0 |
%y>0 s ;
Use distance formula to establish fundamental law of trigonometry
| o cos(o=—f) = cosacosf + sinasinf, and deduce that
| o cos(o+ () = cosacosf- sinasinf,
conslraint | e : :
"/ i | o sin(op ) = sinacosPx cosasing,
* e\ ® o e
i fance tian
( e tan( ek f7) =-I-:;~ ‘!5;
: : Tlanc tan
.nh_jl.:-.'li\'c Tunction ; f‘
. lil Define allied angles
N Use Tundamental law and its deductions to derive trigonometric
-i(‘,;; ratios of allied angles
0 Lixpress o sin@ + b cost in the form r sin(0 +¢ ) where a = rcos ¢
1k and b= rsing
E, Derive double angle, hall angle and triple angle identities from
0 fundamental. law and its deductions.
M Lxpress the product (of sines and cosines) as sums or differences
. = i 3 (of sines and cosines)
b S : g .
: i «  Lxpress the sums or differences (of sines and cosines) as products
x . u 1
i (of sines and cosines) . \ e ] e
e

Not For Sale
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10.1 Introduction ey
In the previous class some basic trigonometric identities have been proveq

and applied to show different trigonorietric relations. This unit is a continuation
o} dextvations of different trigonomietric identities. These identities play an
important role in calculus, the physical and life sciences and economics, where

these identities are used to simplify complicated expressions.

We shall first establish the fundamental law of trigonometry so as to be.
able to deduce other trigonometric identities. ]
10.1.1 Fundamental law of trigonometry
cos(e— /) =008 (£C0S ﬁ +sin asin il

Alcos :1. sin a)
Bcos B, sin

Consider the given unit circle with
centerat O. 3
To establish the identity (1), we use the unit
circle shown in Figure 10.1. The angles a
- and B are drawn in standard position, with
04 and OB as the terminal sides of a and [3,
respectively.
‘The coordinates of A are (cosa, sinc),
The coordinates of B are(cosf, sinf3). o
The angle (a—p) is formed by the terminal sidés of the angles o and . An angle
equal in measure to angle (a—f) is placed in standard position in the same figure
(«£cop).
From geometry, if two central angles of a circle have the same measure, then the

respec_ﬁvc chords are also equal in measure. Thus the chords AB and CD are
equal in length. Using the distance formula, we can calculate the lengths of the

chords AB and CD.

The length of a line segment with end points (x AR o v i fhe
following distance formula P 1Y) and (xz, y2) is g y

d=|RB|= (-5l +(n-y) .
We apply this formula to the chords AB and CD .

X' Q

Figure 10.1

<..

‘As |AB|=]¢€D], so by distance formula, "

\f(cos a—cos f) +(sin @—sin B = V@s(fz;ﬂ}_l]z - [sin(a—ﬁ)lz

Squaring each side of the equation and simplifying, we obtain

(coset—cos B + (sina—sin B = E:‘gs(a_'ﬂ) _]]2+ [.ﬂ'n(o: _ﬁ]]z
= cos’@—2 cosacos B+ cos’ B+ sin*a~2sinasin B+ sin’ B

_ cos* (@~ f)=2 cos(@- ) +1+ sin' (&~ f)

= cos’ e+ sin" @+ cos B+ sin® - 2cosarcos f— 2sinarsin B

= cos’(@ - B)+sin’ (@~ B) +1-2cos(c— B

Simplifying by using sin’@ + cos’8 = 1, we have

2—2sinarsin ff—2cosacos f=2-2cos(c— f3).

Solving for cos(o-p), it gives us

cos(er— 3) =cos arcos f+sinarsin 8

We refer to (1) as fundamental law of trigonometry.

10.1.2, Deduetions from the fundamental law of trigonometry

The following can be deduced from the fundamental law of trigonometry
which are useful and play a significant role in proving the other trigonometry

identities.

(i) cos(—ff)=cos

By Fundamental Law of Trigonometry,
cos(er— ff) =cos xxcos f+sinarsin f
Letting a=0, we get

cos(0— B) =cosOcos f+sinOsin
cos(—fF) =1-cos f+0-sin 8

cos(—f) =cos f§

(ii) cos(-’zi— B)=sin B

By Fundamental Law of Trigonometry,
cos(a— f3) =cos excos ff+sin arsin 4

; Fis
Letting o = E' we get

T B
CDS(-Z——ﬁ) =cos%cos B+sin ;smﬁ




: o
:mﬂ%—ﬂ?:ﬂ-coﬁﬁﬂ'sinﬂ ('.'cosi—ﬂ.smz IJ
oos(%— B)=sin

P, 1 :
(iid) sm(E+a]=cas:z
i e gD ; '
By identity (ii), :m(E— B)=sin f
Letting B=g+u, we get

cos(%—[% HIJ) =sin (%+ aJ = cos(—a) =sin [i;— + a’J
= cosa =sin(§+ cz] (- cos(—a) =cos )

o
5111(5 +a)=cosa

e cm{§+a] SR (iv) {b) sin(-@)= ~sina

By Fundamertal Law of Trigonometry, By identity (ii)

cos(a— ) =cosacos f+sinasin f ws(f _ﬁ)z sin 3
Letting ﬁ=—§.wege! ;
Setting f=-a
T Hiles by oediy 2 oE
cos(a—(—=)) =cos @cos(—=) +sin asin(——) fid
2 b 2 cc—s(? +afJ = sin(-&)
=> cos(@+2) =cos ar-0+sin (~1) 2
By using(iv) (a)

8 T L 2 T B
(. cos(ﬁEJ—D._Sln(—EJ——IJ -sina = sin(-&)

E = : .
o COS(E + (’x] =—sing

(v)  cos(@+f)=cosacos f—sin gsin yi]
By Fundamental law of trigonometry,
cos(a— ff) =cos acos f+sin arsin Ji)

Not For Sale

Replacing Bby-f, we get
cos{a—(—ﬂ)) =cos acus("ﬁ}‘*‘-ﬁin{xsin(_ﬁ]

ok CDS(GE + ﬁ:’ =COsorcos lB —sin ¢sin ,‘5‘ ('_' COS(—,’S} - COSﬁ,Sin(—ﬁ] e ——sin'ﬁ)

(vi) sin(er + ) =sin ezcos f+cos arsin 8
By identity (), cos(er+ ) =cos ercos B -sinesin
Replacing a_b)f-‘g-+a‘. we get
cos[[%a— a’)+ﬁ)=cos[%+aJcosﬁ—sin[%+a]sinﬁ
= cos(—g+(a+ﬁ)] =cos[i;-+£x]ccsﬁ—sin[%+a]sin B
By using identities (iii) and (jv), we get .
sin (@ + ) =sin acos f +cos arsin § '
(vii)  sin(e— ) =sincrcos f—cos@sin
By identity (vi), sin (& + ) =singcos ff + cos @sin §
Replacing fby—f, we get
sin(a+(~/)) =sin & cos(—f) +cos asin(~)
= sin (@ — ) =sin & (cos f)+cos &(—sin )
(- cos(— ) = cos B,sin(—F) = —sin )
5 sin(e — f) =sin xcos f—cosarsin
(viii)  tan(-@)=—tané
sin () _ —siné _
cos(—-#) cos#

tan ¢ +tan f§
1-tan &r tan
sin(a+f) _sinacos f+cosasin B
cos(a+fB) cosacosf-sinasinf

—tan @

tan(-8)

() tan(e+p)=

tan (e + ) =

Dividing numerator and denominator of R.H.S bycosacos 3,




; COS & si
: openp - Encosd coodsing
sinarcos B cosacos B coscrcos 3

T eosaesl = f_sinasin§
i — Fan COSTERL _~—— NP
tan(a@+8)="ggsacos f S“jﬁ s cosacos f  cosacos §

cos.:rcus
sind+ﬂﬂ£
cosd cos S
= sina_sinf
“cosax cosf

tana‘Hﬂ"ﬁ
an(@+ )= naan

_ tang-tanf
® mn(g_'g}riﬂanman,ﬁ
[ana'-i-lal‘l,g
By identity (), tan(ar+f)=1" g
Replacing fby—/,we get
_ tan a+tan(-f) -
tan(a+(—ﬁ)) " 1-tanatan(-f)
tan oz +(~tan f) ' ;
_py= @=L (- tan(—f) =—tan B
= tan(a-p) I—t:ma{—tanﬁ]{ )
3 _ tang—tan f}
G ﬂ)_lﬂanmanﬁ
Example 1: Find tan15°exactly.
Solution: We rewrite 15° as 45°~30° and using the identity
tan oz~ tan
tan(@—f) = ———
n(@=F) I+tanatan § 1
o a 1-_ it
tan15" = tan (45° - 37 = S045 —an30° 3 A1 32
1+tan 45° tan 30° 1-—1— J3 +1 3+J§

NG

Example 2: Find the exact value of: sin 42°cos12° — cos 42°sin12°.
Solutlon:  Using the identity sin(e/~ ) =sin acos 3 — cos ersin

sin42°cos12°-c0s42°5in12° = i {42°= 12°)

I+

1
=sin30°=—.
; 2

et 12 3
Example 3: Given sina=2% and cos ﬁ=§‘ where & and B are in the first quadrant.

Find in which quadrant does (& + §) lie.

Solution: Given thata, # are both in the first quadrant. Since cosine is positive in
the first quadrant and negative in the second quadrant, therefore, cos (e + ) will
decide the quadrant in which (a + 8) lies?

Cos(a_!_ﬁ):cosacosﬁ—sin asin § ‘ )

2
As cos’e=1-sin’a, puttingsin’ & = {%] - 1;;%

T l_l_di = 169-144 o 25
169 169 169

cosa = 115—3. But cos e is +ve in the 1st quadrant,

5
SCOSE = +—
13
A 1 3 = ] L Be 9
As sin® g=1-cos” g8, putting in it cos ,B—-z-s—
T Y o _25-9 _16_ %
B Pl a3 &

But sin # is +ve in the 1st quadrant,

|

~.8inf=
Putting values of sin a, cosa, sin # and cos § in (1)

5)(3)_(12)(4 r_li)_ﬁ _15-48_ -33

cos(a+ﬁ):[ﬁ}[§]‘[ﬁ 5)7 ) \6s) 65 65

it follows that ( &+ f) is in the second guadrant.

Since cos(+ #) is negative,




10.2.1 The angles of measure =

102 Trigonometric ratios of allied angles

T 40,756, _23"'-’19,2,1-19 are called allied angles,

Thus the angles which are connected with basic angles of measure & by a righ

angle or its multiple are known

as allied angles.
tric ratios of allied angles

10.2.2 Derivation of trigonome :
All the following trigonometric ratios of allied angles can be derived from the
fundamental theorem of trigonometry and thus has been left for the students as 5y,

exercise.
i. sin (%-5}.:1:059 3

ii. cos(-;!—s):sina :

i, m(%-s) =cot @

iv. sin(x-8)=sing |,
V. sin(x+8) =-sin & ,
vi. tan(z-8)=—tan g |,

Vil Sﬁlfz—fw):—cos&' i

viii.  sin f%—i—ﬂ]:_ﬂ]sg -

- 3
-IX. tﬂ-ﬂ(—;ifﬁ'}= cotd
X sin(2r-8)=-sin g ,

xi. sin (2;’(1'9} =3in & :
Xii.  tan(2r-@)=—tan g ,

Note: 1. The above results also ap

sin (gﬂ?] =cosd
cos (%m}:—sin g

tan{%+ﬂ) =—cot &

cos(z-8) =—cosé
cos{x+8) =-cosd
tan (x+&) =tan &

m(sz_g} =—sin @
3r :
ms{;m):sm g

3
tan(?'rw):—cm ]

cos (27-6) = cos @
cos (2z+8) =cos@
tan (27+8) =tan @

Ply to the reciprocals of sine, cosine and tangent.

These results are to be applied f i :
! ' Irequently in the study of trigonometry.
2. They can be obtained by using the following Iwo-steps pfoacdurefy

a)

1adrant
quadrant
Third quadrant
Fourth quadrani

All are +ve
sin is +ve
tan is +ve
cos is +ve

3z
have — or — i
b) If we 2 > in the formula, the formula changes sine 6o costne And

cosine to sine, tangent to cotangent and cotan ent to tan :

cosecant to secant. If we have 1 or 21 in the t%mu]uhﬂ?:az‘:ic::ﬁ:{f;c;;:;:

Example 4:.Simp1i_fy each expression, given that 0 < x <m/2.
(i) sin(n2+x) (i) cos(/2 +x) (iii) tan(31/2 + x)
(iv) cot(Zm-x) (v) sin(m + x) (vi) cos(2m +x)

Solution: (i) (/2 + x) is in the second quadrant, so sin (/2 + x) = cosx

(i) (W2 +x) is in the second quadrant, so cos(m/2 +x) =—sinx

(iii)  (31/2 + x) is in the fourth quadrant, so tan(31/2 + x) = —cotx

(iv)  (2m—x) is in the fourth quadrant, so cot(2m—-x) = —sinx

(v)  (m+x) is in the third quadrant, so sin(m+ x) = —cotx

(vi) (2w + x) is in the first quadrant, so cos(2 + x) = cosx

cos(90°+x) + sin(270°-x ) + 5in(180°~x)

cos(—x)—cos (360°—x) + 5in(90°+x )

Example 5: Simplify

Solution: c0s(90°+x) +sin (270°~x) + sin (13'3°—I)
cos(—x)—cos(360° —x)+ sin(90° +x)
_ —sinx—cosx+sinx _ —cosx
 COSX—cOSX+cOSX  COsx =
Example 6: If a, B, y are the angles of A ABC. Prove that
1) tanct + tanf + tany = tana tanBtany

ii) tan = ta.::.ﬁﬂanE tant+tan Ltan L =1
2 2 2 2z

Solution: Asa, B, y are the angles of AABC = + B +y = 180°
i) a+B=180"-y

t
tan (a + B) = tan (180° - y) Aotk

1-tana tanf

= tana + tanP = —tany + tano tanf tany

- tane + tanf + tany = tana tanf tany
i po By,
= = += 42 ="90°
i)  Asa+p+y=180 St
By = tan [9o° -l]
2

tan(E +=
2

a P o ¥
So— +==90"-=
Y ] 2 2




z -ﬁ Z: -t E —'8.
o :mn%lan%-kmn—z-lmz ! anztanz

&g 2 ¥

tan2
Eai=
mn%tan-gﬂanglangﬂanitan2 1
10.2.3 Writing a sin@ + beosé in the form rsin(8+¢) where a = rcos ¢

and b=r sin ¢ . I
Writing a sin 8+ bcos #in the Form rsin(8+¢). Plach)
Let P(a, b) be a coordinate point in the planc-and let é k
be the angle with initial side x-axis and terminal side .
the ray OP as shown in Figure 10.2. 4
—
Figure 10,2

We can express a siné + b cosé in the form rsin(@+¢)
where r = Jar+5? and ¢ is given by the equations rcos¢ =a and rsing = b.
The method is explained through the following example.

Example 7: Express Ssin# + 12cos # in the form rsin (8+¢), where the terminal
side of the angle of measure ¢ is in the 1st quadrant, .

" Solution: Identifying 5sin@ + 12cos @ with rsin (6+¢) gives

5sind + 12 cosd = rcos@ sind + rsingcoséd (1

50 5=mos¢'and 12 =rsing
r=Ja+b = 57 +(12)} =

V25+144 = 4169 = 13

and rcosg = 5 = 13cosg =35

= cos¢=

rsing = 12
Thus, from (1) we get

5sind + 12 cos@= 13(1—53sin9+£msﬂ]
b B

E;
= 13sing =12 = siné:%.
1

13(sin 0>+ cos 912 :
S[mnﬂn-r cosﬂﬁ]= r (sin #cos ¢ + cos A sin ¢)

rsin(8+¢) where sing = %_cgs¢=% and r=13

e e

6.

Write each of the following as a tr
(i)sin37° cos 22° +cos37° 5in 22°
(1ii) cos19° cos 5° —sin19° sin 5°
v) tan 20° + tan 32‘:
1—tan 20° tan 32

gonometric function of a single angle.
(i1) cos83° cos 53° +5in83° 5in 53°
(iv)sin40” cos15° —cos 40° sin15°
) tan 35" —tan12°
1+ tan 35° tan12°

(vi
Evaluate each of the following exactly.

i il e o 5 ;
(i) smﬁ (i1} tan75% (iii) tan105 {w)lan—l% ‘(v)coslS5® u-:]sin-':—z

; 3 : 4
If sinu= E and sinv =§ and u and v are between 0 and g , evaluate

each of the following exactly.

(iyeos(u+v)  (iytan(u—v) (ii)sin(u-v) (iv)cos(u—v)

If sina = —% and cos f = -%, o in Quadrant Il and 4 in Quadrant II,

find the exact value of:

(i) sin(e¢—-8) (i)

If tan & =§1 ,sec fi= l;—. and neither the terminal side of the angle of

cos(e+f8) (iii) tan(a+g)

et ———

measure e nor f in the first quadrant, then find:

(i) sin(a+8) (i) cos(e+g) (i) tan(a+p)
Show that:
(i) cose=2cos* % ~1=1-2sin* 2
(i) sin(a+B)sin (a—-B)=cos® f —cos’ a
T )
S : (i = coeotfl iy, Sn@P) gy an
how that: (i) cot (a+5) cota+cot § ¥ cosareos § b
iyt (Eeg)= S80SOy (X _g) - Lotn®
Prove that; u}tan{~4—+6)_ = { (4 ) s

1-tan@tang _ cos(8+4)

.. tan(a+f) _ an’a-tn’f a0 -
- 1+tanftang cos(6—¢)

) col(@-f)  1-tan’@tan’ B




R R T e S Y

- o

e A

--'.—_'F:.__"-- - ;
—SI) e
n(180°=a)oosFT0°=2) g
Show that: . sinﬂsﬂ"*-ﬂ)ﬂm(z'm”“:'
Ifa, B ymmemzﬁofama}glehﬁ
£ 3 1] a
T ot B Ecot=
cot§+cctg+oot5-cm 2cl-::-e‘ 2 2
: =180°, show ﬂlatmtacutﬁ+00tﬂcot'r+mwcom=l
I.'lg:p;fs:c-h of-tt:a following in the form 7 sin (8+¢) where termina i
of @ and ¢ are in the first guadrant.
(@) 4sing+3cosf.
- (i) ~2'sin 8 —5cos8.

C, show that

(ii) 15sin & + 8 coss,
(iv) siné +cosé.

103 Double, Half and Triple Angle Identities
In this section we derive formulae/identities for sin28, cos2 @ and tan2¢

_1_.9 and tan %5’ and for sin3 @, cos3 & and tan3 @ called
2 - .
double angle, half angle and triple angle formulae respectively.
10.3.1 Double Angle Identities
We know that. sin (&+ /) =sinacos f+ cosasin f (1)
(2) Putting f=e in(1).

il
fi —8, cos
or sin 2 C

and  cos (a+/f)=cosacos f-sinasin §
sin (@+a)=sinacose + cose sina
[sin2e =2sinacosa @
Now putting f=g in (2)
cos(a+a)=cosecosa -sinesina

e T T T

Ry )
Potting cos” @ =1-sin’ g in(4) (. gin2y 4 cos’a = 1)
cos2 @ =1-sin’ g —sjp? ,
|cos2a =1=25in? ]

3)

Now putting sin® & = 1 —¢os? ¢ in (4)

cos 2 =cos” & - (1 - cos? q)

cos 2a =cos® — 1 4+cos? o

cos2a =2cos’a—1 ©)
We also know that tan (a4 g) = ‘an@+tanf ; -
B) S Putting g = &
tan (a+g) = Sn&tane
I—tan e tan e
; 2taner |
tan 2 = e o)

Example 8: Given that tan 8= —%amf 8is in the quadrant IT, find each of the

following.

i) cos 26 if) cos26

i)  tan28 iv)  The quadrant in which 28 lies
Soultion: By drawing a refernce triangle as shown,

we find that

sinﬁ'z% And ::t:-t=.:‘,5'=i
N )
Thus we have the following. i
. ' X
i) sin29=Zsinﬁcosﬂ=2-é-[—i]=—2—4
5\ Bl 25 :
Figure 10.3
2 2
i) | cos20=cos* 9—sin*a=[_4 -(E] I
5 5 25 25 25

el
iii] tan 28 = Zmnf = 3 = 2 = 3-16“—‘2—4
1-tan® @ ]_(_3] g b, R O




S e,

d
Note that tan28 could have been foun
following: B
sin28 __ 25 _ F_Z_i
2= con & 1
23

i iti th 26 is -[;
Si i 25 is negaliw.: and -::0529 15 pOS]t] e, WE know i
i'“} ince sin . W a

quadrant IV. .
10.3.2 Half Angle Identities- g
We have cos2a =1-2sn a=

. 2 1-cos2a
= sIn” &= -—-2—'“

!_.- s, - [—6.052.5 i (8)
sing = £. e

Now putting & = 52- in (8).

rsinfa=1-cos2 a

)

If g lies in the first or second quadraﬁt then we will write the identity (9)

with the positive signie.  sin "_: s 1_2059

If g lies in the 3rd or 4th quadrant, we will write the identity (9) with the

" negative sign i.e.

P a8 ‘l-msa )
SIN—"= —_ [~ L
|‘- 2 ' .2_ ____.L

Also we- know that *

= z
Pakeap Rl = 2cos’a =1+cos2a
o cos?aq = Moosla

cosq=+Jm
-

E #
Putting @ = 3

"‘”%“\,E;m—a (10)
: s'm-'?-
From (9) and (10), we ha\'ctangz 2 = ’I"CGSB ,
2 1+cosé

tang=i 1-cos@

11
5, 1+coséd (11)

Example 9: Find tan (7/8) exactly.

1
"z _'J\E—l “Jﬁ(ﬁ_n . -2

Solution: (7

e > ) i
lang—tan 5 HL orr NI P uzhﬁ
2
B T 2—J§_\(4—N§—2J5+2_ 6—42 _ R
_\(2+J§‘2—J§ = . N

The identities that we have developed are also useful for simplifying
trigonometric expressions.
Example 10: Simplify each of the following.

sin xcos x it
L) ——— b) 231n'—2~+cosx

—~c08 2x

2 ®

sinxcosx 2 sinxcosx _ 2sinXcosx
2 cos 2x

Solution: a)

—cos2x lcosh
a N 2

S tan2x  (usingsin2x=2sin xcosx)
cos2x

—, orsin°—

o N e
b) 2sin® % +cosx= 2(1—‘—;;—5{] + ms.r[usmg sin>= + :

=]-cosx+cosx=1.

l—cosx . 2Xx _l-cosx

)




sine
)sinee (BY () and (5) )

10.3.3. Triple Angle [dentiﬁ
We have sin3a= il (2até
= Zsinacos

2 2o =
nzrx;li-sma—-zsmsa o it enopiasl)

in3
_2sin*a=3sina —4sin°e

(12)

=2sina(l =8
s zsiﬂﬂ' __zsmsa +$1I’lﬂ'

cos3a=cos (2a+a)
i —sin2asin@
:;::;f f} cos — 2sinacosasing (by (3) and (6) )

= 2cos}a— cosa — — 2sintacos o

T 2 oy
o Ao -2 (1 -cos?a)cos & (- sin? + cosa=1)
= 2costa — cosa - Jcosa + 2008 0= 4cos’ e — 3cosa
(13)
2tan g
Bl T T
i tan2z+tan@ _ _1—tan’e (By (7))
tan3 @ =tﬂ.ﬂ( ata _l-—taniatana' fo 2 tan o i
1-tan?a
2'taua:+tana(l—1an‘a} :
G 1—tan2a _3tang—tan” &
1-tan’ @-2tan’ & 1-3tan2a
I-tan?ax
(14)
Example 11: Prove the identity ~ 502X _©082% _
sinx cosx
Solution: szx msz,r M cos® x—sin? x ! ble =
sinx cosx e { uuing donbk )
b angle idnetities

Seisify
cos % (simplifying)

=2cosx—

s 2c0s” x—cos® x+sin? x :
o (taking LCM and simplifying)

_cos’x+sin’x 1

T =sec
cos x cos x &

We started with the left side and obtained the nght side, so the proof is complete.
Example 12: Prove the identity

sin’x tan*x =tan® x—sin® x.

Solution: For this proof, we are going to work with each side sepa:ately
We try to obtain the same expression on each side.

= . . 5 (sin®x) sin*x
sin“x tan“x=sin" x| —— |=

= [ X )
cos’x) cos’x
sin® x sinx
tan® x—sin® x =————sin’ x s tan x=——
i COs8™ X COsX
<2 . 2 2
sin® x—sin® xcos® x :
= 3 (Taking LCM) -
cos® x
sin® x(1-cos” x) 3
=——————— (Factoring)
cos’ x
“sin® xsin® x 2 2
=————— (Recalling the identity 1-cos x=sin"x)
cos® x
. 4
sin® x
==—=....0Q
cos® x

We have obtained the same expression from each side, so the proof is complete.
Example 13: Find the exact value of cos 105°.

Solution: Because 105° :%(21{]“} we can find cos 105° by using the half-angle

identity for cos /2 with o= 210°. The angle a/2=105°lies in Quadrant II, and the
cosine function is negative in Quadrant II. Thus cos 105°< 0, and we must select
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Frmoghe 18: Prevrss fte fedlenniing denditivs,

i
e Tlan iy :
(4 4 I ¥ 'H:f’:r (},i} WAl = Lo lieee, 1)
r*i
%'; "!,’ﬁff 3 - ;‘mﬂf:‘ ; fﬁlfr l:l'

o i 7, (i’ 11
Ivtw'd e’ g

“ Ll 1y

VRRTIN/ L

=25inlcos ()

= &in 20
(ii) sin 40 = Buin 0 cos™ O Asin O cos o
L8 = sin 40 = sin[ 2(20) |

=25 200520 (Use sin2u = Leinacma, with «=20)

=2 2sin ﬂt:-‘mﬁ'}f?,rm? - 1) = 4sin Ouend|2un 0-1) !
= tsinfcos' O Asinfleend) - gy

o S |
|

I Vind the values of sin 20 , cos20 and tan 20, given tanh = Lovin quadrant 11,
. 5

g I sing- I-""

)

and lermisal sy of 0 s in the second quadram, then find

1y s (i

i ity tlanl o

4 i i
oM st = and teningl iy of 0 Bs in the seconad titiackeant, then find

i

i

fiy st {11} tirs

)
1 ¢ foy Y, [ e
A, I e - / andl teripinl tay of 0 bs i e quadtant, then find on-2.

Figee dashiles singeles idessititios to evaliate exactly,

b I
r-]] Ak
5 L]

fiy L

o b ths Bl angelee seleeptitiess b vsliistes ernctly.

iy w18t sinli2¥

i bl
LY ”.l-'r' ]

1) 1an1y i “ﬂ%
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i 7. * Prove the following Idﬂﬂ"“es 1} Bl 2
- (ii) t,an—2-+¢‘0f—=——

& (i) cos'@-sin 9*_@29 2 sind
b (iv) cosec20—cot20 = tanf

|| R i J4cos 2 0 dn36 , 30
e 5
' . & : e
4 (vii) cos9—sin’ =r_--—-—-2+sm2EI {wu)-—————f'ms % =72 ¢os 0+sin 20
2 W, os8—sind 2 sin
i -‘. 1
{ix) cot26=—[oot€-a§]

ing—Ccosa
) sma+cosa+sma : 0.0
cosa—sing cosa-+sind

! '-. d i ... cosec@—cotB

i (xi) tmf—sﬂ (xii) ————=C05ecﬁtanzﬂ
{ 2 l4cosa 1+cos B 2

t o

1-tan®—

1 i
('ml}coszﬂ 1=cos® {xiv) 2 = coso
2 2-2cosb 1+an*Z
2

(xv) sin20—4 sin’ cosf =sin26 cos20

8. Write cos'® in terms of the first power of one or more cosine functions,

9. Prove the following identities: 2
e et : 1-tan’26
(i) sind@ =8sin @ cos’@—4sinfcosd (i) cot4f="7an28
= 3
§ i), cotag= 2t f-300t0
g 3cot? -1

10.4 Sum, Difference and Product of sine and cosine
10.4.1. Converting Product to Sums or Differences

We know that

sin (0+ ) = sin ot cos f + cosat sin § (1)
and  sin (0-#) = sin o cos § - coso sm;:i' (2)

Adding (1) and (2) we get

- -Mathematics'XI
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sin (0 B) + sin (0-8) =2 sinoeos g

2 2 sin0cos # = sin (o ) + sin (653

Now Subtracting (2) from (1) {3)

sin (04 #) — sin (0= §) = 2 cosgy sin f§

~.2 cosot sin ff =sin (a-t-,&)-sin(uum @)
We also know that;

cos (o:+ B) = coseicos B~ sinasin g (5)
and  cos (0—f) = cosowcos § + sinasin g (6)

Adding (5) and (6) we have,

2.2 cosoieos f = cos (o ) + cos (o- §) N
Subtracting (6) from (5) we get, '

. ~2 sinosin # = cos (0+ ) — cos (0~ 5)
-~ 2sinat sin § = cos (- §) - cos'(o+ §) (8)

So, by converting products into sums or differences we get the following four

identities:
2 sinoicos § = sin (o+ 8) + sin (o-8)
2 coso sin f = sin (o ) - sin (0 8)
2 cosucos § = cos (o F) + cos (o—fF)
2 sinosin § = cos (o) — cos (c+ f)

These identities are usually called the Product-to-Sum formulae.
Example 16 Wmc the product 2 sin 5@ cos 38 as a sum or difference of sine

and cosine.
Solution: Using the identity 2 sincicos § = sin (0:+5) + sin (e~ 8)
We have,

2 sin S@cos 3 @ =sin (56 +36) +sin (36-36)=sin 86 +sin 28
Exampie 17: Express sinl0#cos 46 as a sum or difference.
Solution:  Using the id:zmil;r 2 sinccos # = sin (o+ §) +sin (&= B)
We have, sinocosfg = - [sm (cc+ f)+sin (- F }]

sinl0@cos 49 = % [sin (109 +48)+sin (108 - 45‘)]- - (sm 14 8 +5in 68)

e e
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. 45° cos 15° as a sum Or d'}ffercnce_
08
2c  cosocosf = cos (o B) + cos (a-g)

8 Write the produCl

Using the identity

o o
15° = cos (45"+15°) + cos (45° — 15%)

45° cos =
S = cos 60° + €08 30°

Sums or Differences 0 Products

.......... (1
(@)

1042 Converting
Leto+f =

'ﬂ-",ﬁ = ¢

Adding (1) and (2), we have

= G+¢' :
ID:' =
;ubira;ung (2) from (1), we have
o &-‘#
ﬂ- :
= -—-g in the four identities of section 10.4.1,we gét
Subsututmg o= T ? and B =

E g s 9-¢ -
t-‘éﬁsﬂ—eow:-mn—— .5in —2-'

[T

+ formulae.
These identities are usually called the sum-to—producl formu

Example 19: Convert the sum sin16° + sin12° into pmduct-
o+¢ 09
2

cos -—""

Solution: .

We know that, sin 8 + sin ¢= zsin

g 16°-12°

sin ]6° +sin lzn e 2 Sil‘[ ]ﬁo+11¢ .
1 ___2__' sin Tcgs?

=2sin 14° cos 4°
Example 20: Express cos48.- ¢0s20 as a product,

Solution: We have cos B —cos ¢ =-2 gin fiﬂsinﬂ'_ﬁ'
2 2
COS‘I-B‘—COSlG =2 gip ——=¥ 46"'29 .412_9
2
. 68 .
=-2sin —z—sm % =-2 sin 30 sinf

sxample 21: Show that $8¢=¢0s8 _ .01 oo
Examp St since+sin g m 2 (5-#) - .

' @B a-f . a-f
Solution: L.H.S= O(lJSﬂ'—cf}gﬁ aa Slll'h 2_sm = sin 3 =_‘mﬂ

sinar+sin § isina+‘3cosa—ﬁ cos %2 %
2 2 2

=—tan % (a-g)=RHS
Example 22: Show thatsin 58 + 2 sin36 +siné =4 sin30cos® @
Solution: ' '

LHS=sin56 +2sin36 +sinf =(sin56 +sin38) + (sin 38 +siné)
_ [ 50438 56-36 36+8 [z.a—s)
= Zsm[ 5 ]ccs[ = J+2 ll‘l[ = ]cos 5

=2 Sl“iqcosl—g + 2 sin 522 cos? =2sindfcosd + 2 sin2fcosd
2 2

. (46+28 48-28
=2 cos# (sin 48 + sin 23):2-:053[2@[ ; ]:05[-2—-]]

=2 cos@ (2sin 3#cos @) = 4 sin 3gcos” §-=RHS.

sin 36 +sin a}(M]:-cm’ P

Example 23: {(UE ks L
i S (sin39—sin8 cos38-cosd

Solution:

sin3@+sin 9][cos§9+ cos 9] =(23in Zﬂcusﬂ][ 2cos28cosf

LH'SZ[sinw-sing o330 —cos@) \2sinfcos28 )\ ~2sin26sin

)




3 U nit 10] Trigonometric Identities of Sym And Difference ¢

s20

) (vi) cos f + cos 2 L
L 36+6 cos["‘{“] sl : f B +cos58 = cog 28 (142 cos 3 ) ,
y 8 HEs 2c08) = = ———= et ? 3 i . -
' 8 2sin 3}_;_5 cos| =3 C 392+9 : (39— '-"] sin?g ot . 5. Provethat (i)cos20°cos40’cos600 cosgqe = L : ~4
i g 22T  |sin] = 16 5 -
i B = —(36-9) || 2sin ) 2 > - :
1B 36+0 ,{,,H—] [ 2 . i) sinZXsin 2 ginZ sjn 3% _ 3 i) sl 0P ot -
?: ZEOS[T] 5 0° cos40’ c6330° =1/8 ' e e S e 9 16 () inlF sin30P s 21_16- |
| [§ 0 '
| B . show that cos20" € e :
B ey 20° cosd0° cos8O'] _ REVIEW EXERCISE10
! p Solution: 0 osd0” s80" = 14[4 cos 0 20% 2 80° = A
i & LH.S. = cos20° cos40" €0 i g0") = ¥ [(cos60” + cos ) 2cos 807 (. Choose the correct option
| BN e [ 0 :
¥ | =14 [2 cosd” c020') 50?) =V4 [cos80° + 20580 cos 20°] (i) cos50° 50'cos9” 10/~ sin 50° 50/sin9® 10/ =
: =1 [(1/12+ cos20°) 208 0=t cos80° + cos(180° = 80") + cos 607} (a) 0 O B |
0° + cos100° + cos 60 1= (a) (b) — (c)1 33 |
_—:W[COSS + 0 5ok “8[:.“. G}:—- cosB : 5!
, = Y4 [cos 80" -cos80° +%2] ~ (i) Iftan15°=2 —+/3,, then the value of cot®75%is
! s — RHS o
; =u[12]=18 @ 7+¥3  (B)7-243 (©)T-43 (@) 7+4+3 ]
; I_., : IO s (iii} If tan (e + B) =1/2 and tan a = 1/3, then tanfp =
4 : the following products as St (2) 1/6 () 117 : L I
5 |.  Express iy  sirss” c0s123° (2) ) eyl d) 76 |
(i) 2sin 6’:51“': s P+Q o P-0 . (iv) sinBcos(90° - 8) + cosB sin(90° - 6) = : !
B (iii) sini}'gcﬂs-—i—' sy Ty 2 (a) -1 (b32 (©0 (@1 ;
. : 5 Convert the following sums or differences to products: v} Simplified expression of (secO + tan®) (1 - sinB) is !
] = , o « aq* Len AT i cos 36° —cos82° (a) sin“@ (b) cos*8 (c)tan’0 (dicos B
. E (i)  sin37 +sin43 (i1) H : |
' o S PED L BER ey ol 2 COS% . sin[x—i]:? : | |
| B ‘(m'l Sln——l— 2 2 i 2 : : i o
| b the follow p e | {(a) sinx (h)—sinx (c)cosx 1| —cosx :
| I Prove the following. ’ ! - - : . .
B cosT5" +cosls® . 5in38°— cos68” _ Fgpge | (vi) A point i in Quadrant-IIl and on the unt circle. it x-coordinae s~
' r’,. e A (i) cGs68° + sin38° - ! what is the y-coordinate of the point?
. , | @315 (b)-3/5 (c)-215 (373
b : 4. Prove the following identities: 5 . (viii) Which of the following is an identity?
' : ; ; +cos3f+cos3P _ o 3f ' ich of the following 1s an S :
: L Lol b e o (n)ff’ifz—-_—-gw : (a) sin (a) cos (a) = (1/2) sin(2a) ~ (b)sina+cosa=1
' c080:+0089 - sin f+in 3P+ (©) sin(-a)= sin a (d)tana = cosa sina
(iii) sin26+sin46+sin 68 = 4cos Hcos 20sin 36 . Prove the following identities: ;
: ; J 25inBsin20 sinl0a—sinda _cos/a
: - 2 9 <SnBsin26 s e
{iv) sin56 +siné# +2 sin3#=4 sin 38cos ¢ COSQ+Cos3@ =tn2frang St sinda+sin2a  cosd

(v) sin38 +5in56 +sin7e +sin 99 = 4 cosg sin 68




vy =g 3
. cosdd =1-8sin A cos _
s3x=cosdxcos2x

L cos26
poobele

. Prove that sin(F—¢ )sin (F+9)=

: 3n
sin®( ©+ B]tan[-z—-t- B)
wot® (%~ ) cos* (7~ 8)cosec (2~ 6)
2

cos(90° +'B}sec(-6)tﬁn(180“ -8)
H ‘sec(360°-6)sin(180° +8)c?1(9[}° )

,l 9, Prove that i)

(SR SE e

=cosh
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Solve right angled triangle when measures of

two sides are given,

one side and one angle are given.
Define an oblique triangle and prove

the law of cosines,

the law of sines, !

the law of tangents, and deduce respective half angle formulae,
Apply above laws to solve oblique triangles.

Derive the formulae to find the area of a triangle in terms of the
measures of '

two sides and their included angle,
one side and two angles,
three sides (Hero's formula)
Define circum-circle, in-circle and escribed-circle.
Derive the formulae to find
circum-radius,
in-radius,
escribed-radii, and apply them to deduce different identities.
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Unit }]':.-\]uﬂil:-.tlilnl

s il'lfl'ﬂd““u:;: variet th:rpﬂiizznsc
: i 7 t ’
Tngﬂﬂﬁm:f"y demic fields primarily ma . the measurement of hei
in a number of a¢ _ n used in the clghts
in ancient times: therwise measured. For example,
ars from the earth. Even today, in

Trigonometry, i could not be ©
-otances of objects W : of st :

and distan find the distance trigonometry is often used for

ghts and distance of far-off

on. It is used extensively
ience and engineering,

; ed t0 e
trigonometry Was U thods being available, 10
£ te me 0as 3

A ::J?c[f: :Jc-:iuzmpls calculations regarding het
objects. : . i solving triangles. Every triang],
- onometry 18 $ gle

One of the important usclis of \:’Ei o called the clements {OF Parts) of the

has three sides and three ang™ss, jved when all six elements are known and

iangle is SO . i :
at a triangl hich one is side, will be given and it will

J ; ments, in W ; ; .
listed. Typically three TE: other threc elements using trigonometric laws and

be our task to find
definitions.

As shown in figu
angles of a right triangle.
B, where a and b are the legs,
the right angle.

A triangle i

ndard lettering for naming the sides and
angle A, side b is opposite to angle
is opposite to angle C,

re 11.1 we use sta

side a is opposite 0
and side ¢, the hypolenuse,

s usually labeled as shown in figure 11.1

Figure 11.]

The vertices are labeled A, B, C with sides opposite to these vertices aré

denoted by a,b,c respectively and the measure of three angles are usually denoted
by o, B and y respectively.

, We begin Wi!_h. using the trigonometric functions to solve righ

triangles. Later we will learn how to solve triangles that are not necessarily

angled triangles. We wi . _
h‘ifn egles. angles. We will also derive formulae for finding the areas of

t angled
right
such

nit 11 I Application of Trigonomeqry

11.1.1 Solution of Right Angleq Triangles
We can solve a right angled triangle provided

(i) two sides are given or hat either measure of

(i) one ac

a . ute ﬂ_nglg and
one side are given. We consider the cases as o]

i When measure of twe e

Case-12 : c=J7
sides are given

Example 1: Solve the right angled triangle ABC
in which @ = 15, ¢ = 17 and y = 90°, J

Solution: From figure 11.2, we have Y
sina =2 =12 _ g8 & e
e 17 : Figure 11.2°

=5 @ = sin"'(0.882) = 61.89°

since a+ fi= 90° o

= B=00"-a , The side b can also be

=90°-61.89° = 28.11° found hy Using

Pythagorean Theorem

ct=a*+bor

br=ct—gt= 7P - (159

sothatb = 8.

b
Now cosar=—
[ &

= 17cos (61.89°)
=17(0.471)
=3

= b = ccosex

Case-11: VWhen measure of one angle and one side are given
Example 2: Solve the right angled triangle ABC,
in which b = 12, @=70" and Y= 90 §
Solution: From'figure 11.3, we have
a
13’ /
or a = 12 tan70° &
=12 (2.747)
= 32.97 ft. k- e
To find the length ¢ of the ladder we have
i % 12 ft
cos = - Figure 11.3
or ¢ =12sec 70°
=12(2.92)
=35.088 ft.
Example 3: The angle of elevation of a tree

its base is 33'. Find the height of the tree?

313

Mathematics-X1

|
j

from a point on the ground 42m from

i o  — -
e L T T Ee—



m-\- —

Ry

of elevation = e

Solution: Let the angle #
and height of thetreé = :

3 ft

Then tan 6= .4% = tan33® = 22
= h = 42 tan 33° i
%2728 _ 4 om
The tree is 27m tall. Figure 11.4

Example 4: From point B, the top of a light house 1_20 ft above the sea, the angle
of depression of a boat at point A 1S 5°. How far is it from the light house to the
boat? ‘ "
Solution: Since the angle of depression 5
is the acute angle formed by the line of sight  qz20n e

ne passing through the | B,

and the horizontal li
position of sighting. Figure 11
situation. The angle A must
measure. We have

5 indicates the
also be 5° in

Figure 11.5

B b
cot A=— cot 5° = —
st 120

= b =120 (1143) = 1372 ft, approx.
Example 5: From the two successive
positions on a straight road 1000 meter
apart, a man observes that the angle of
elevation of the top of a building directly
ahead of him is 12°10° and 42°35". How
high is the building?

Solution: Let A and B be the two successive positions of 2 man on the road

such that | 48| = 1000m. CD denote the height h of the building and let BC =x

A 1000m B x
Figure 11.6

o AKCD i Kive b 1010 e ek B
AC  AB+BC x+1000
or x+1000 =hcot 12°10' =4.6382h (1)
In ABCD we have  tan 42°35' =h
X
=x =hcot42°35 =1.088 h (2)

From (1),2) 1.088h+1000= 4.6382h

= h=281.6Tm~282 m
¥ =3068 ~ 307m s L R
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Solve the following right triangles

(i)
’/fitﬂ (1) 4
6~ |a 12§ __+F W) 3
- | 26— ¢
& | A"‘:::'J‘—F \
A A_ 2 ___r_:ic ""-—-...__L_m,y"\a bl \\‘.“
A5 _ BTl [
. Solve right triangles ABC inwhich 7 =90" anq c".l__ "5;:\-3
1 = = 78" =5 5 o d
(ha=14, pg=28 (i) b=89, B=215 (iii) b 14
5 (i) b=14,c=450

The angle of elevation of the
: 5 : top of a post f; ]
away is 33.23". Find the height of the P[:m rom a point on level ground 38m

A masjid minar 82 meters hi
: igh casts a
angle of elevation of the sun at that mom;:ta TR S TR,

The angle of depression of
; a boat .
How high s the cliff? at 65.7m from the base of a cliff is 28.9°. -

. Fro i i
s ;5 [n:) ;1:11: ;opscgz a cliff qum high the angles of depression of two ships due
re and 24° respectively. Find the distance between the ships

. IWO maslts are 20[I'I Hi i o e {I[}S u]ilkes an
"'d I.Zm hlgh If T.he lil‘lE i ini i
: ; - o (J:lﬂ.'.l:'i:I th 1r 1

8. Th
e measure of the angle of elevation of a kite is 35°. The string of the

10. An isosceles triangle has a vertical angle of 108 and a base 2

kite is 340 meters 1 i ing i :
o s rs long. If the sag in the string is 10 meters, find the height

How far does the parachutist fall as. -
to 30° which is observed from a
hutist where he Lpuches the ground.

: ',A' PiffachutiSI is_'_descﬁnding vertically.
the angle of elevation changes from 500
point 100m away from-the feet of a parac

0 cm long.

Calculate its altitude.
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Trigonometry
ication of Trigonol

Unit (1]A02

s richt 3[|ng.
le is IE lique Lrlanglc_s-

le of a triang o b

f the ang :
Lf-i:nugrli:.;ﬁgﬂm 1.7 both triangles

abtuse angle
Figure 11.7 . (b)
(@
We see that an obligué riangle has either
i) three acute angles (figure 11.7(a)) o
?.) two acute angles and one obtuse angle (figure 11.7(b))
1]

; iangles, however, in th;
. we solved right angled triang | , in this
i s !as;v:c::ﬁgue triangles. Given three elements of a triangle we wij
ﬁmﬂ i:ltlil:ﬁo the remaining three elements. Thus; we have the following
as
five possibilities:
When three parts of a triangle including at least one side are kno
uniquely determined. The five cases of oblique triangles are

wn, the triangle js

1. A.A.S: Given two angles and the side opposite to one of them
2. A.S.A: Given two angles and the included side

3.8.5.A: Given two sides and the angle opposite to one of them
4. 5.A.S: Given two sides and the included angle
5. 8.5.5: Given the three sides

In case of (5.5.A) there is not always a unique solution. It is possible to have no
solution for the angle, one solution for the angle, or two solutions——an angle and
its supplement. :
mamamI:ﬁz::er tln solve the above cases of oblique triangles, we develop special
tools called the law of cosines, the Jaw of sines the law of tangents.
(a) The Law of Cosines
In this section, we

case 5 of oblique triang]é:sWlll derive the law of cosines and we use it to solve e

Not For Sale
Maihcffﬁ

the triangle is called oblique :

Unit 11] Application Of Trigonumetry
Theorem (Law of Cosines) 1 an
(i}_ azzbz-rrz—-%ccu's:z
(ii) b2=c2+a2—2mcos,3
qil)  ef=at +bz—-2abcus}'
Proof: Case 1: All the angles
acute angle in figure | 1.8. If h

Y triangle with usyg] labc.]ljng

are acute, g is an
1s the altityge of

vertex B, then in ABCD, we have, A P
a* z}iz-f—{r-"‘ﬂz (1) -
In ABAD we have 1 Figure 11.8
CUS:Z:-E_
[ &
S X =008 y, i
: h§

Put (2) and (3) in (1)
a? =(r2—x2]+{b2—2bx+xz)
= b1+c1-2.‘)ccastz

Case2: One angle is obtuse. « is obtuse R
In ABCD ({2‘—‘flz+l:-b+x)2

giving a® =h?+b% 4 5% 4 2y (1)

2 15 obtuse
Figure 11.9

InABAD,  cos(80°-g)= £
[

S x=C CO05 (180°~g)=—¢ cos @@ (2)

and ; ¢ p2yy? (3)

Put (2) and (3) into (1)

2 _ el 2 2
a=(c" =)+ + 2+ (x) =5+ +2(-c COS @ y=b?+¢* ~2be cos &

- Inboth the triangles, we obtained a® =% +¢* - 2bc cosar.

¥ considering angles B and C in a similar manner, wé can prove that

2
b =a* +¢* - 2accos B

e =a* +b* - 2abcosy

By rearranging the formula we can express the cosine of the angles in terms of-
three lengths sides of the triangle.

*Mathematics-X1 317
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%.5.5. and S.A.S,
possibilities could be
tackled by using cosing”
law. However in S.AS,,
where two sides and
included angle is given,
it is necessary that the
given angle must be
less than 180°.

gle of triangle whose sides measure

Example 6: (S88): Wht is the smallest an

25, 18 and 21117

S If 7 represent n ¢ (the side opposite) 7 must be
olution:

the smallest angle, the
dabi=c @+ U9 _ o
Bl G o 0.
the smallest side, s0 ¢ = 18. Then cosy=—"r, 25 ED

= y=cos ' (0.707)=45°
Example 7: (S.A.5.): Findc wherea=352,b= 28.3, y=38.5°
Solution: ¥ is the angle included between a and b.
ot = a® +b* —2abcos ¥
= (52)* +(28.3)* ~2(52)(28.3)cos 38.5"

=c*= 918.355

=¢ - 30.30 unit
Example 8: A body is acted upon by the forces 10N
25°35" with each other. Find the magnitude of the resultant of the forces.

and 20N making an angle

Solution:

The forces of 10N and 20N are represen _
ted by sides of parall -
elogram,

U,Ilit 11_{ Application of Trigonomerry

D

ol 10N 4 ,
Figure 11.10 (b)

The resultant R is the diagonal of parallelogram ABCD. Hence
R = (10) +(20)* —2x10% 20cos(180°- 25° 35)

=860.78 N* =R =203 N.
Example 9: An equilateral triangle is inscribed in a circle of radius Scm.
Find the perimeter of the triangle. A
Solution: Let O be the centre of the circle. Join O
with vertices B and C.
In the equilateral triangle ABC, we have

LBOC = ZAOC = £AOB =-%(360")=120’
8]0 - o8] 5n

Using cosine law
| B[ =|0B[ +|oc|" -2x| 08| oC]cos 280C Figure 11.11

c

=52 +5% ~2x5x5c0s120°
= J'E .Each side is ¥75cm.

Hence perimeter of ABC =475 +475 +75 =375=15\3cm

(B)  The Law of sines
e In the last section we disc
angles S : 2e
X In gl?; ge.:gon we will consider the fourth case ASA or A{tS which is one*
case because knowing any two angles and one side means knowing all the three
angles and one side. The law of cosine does not work where at least two sides are.
needed. We state and prove the law of sines for this purpose-

ussed the two possibilities of solving oblique

Alathematics-N1
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abelling

s shown in f'g'-"'e 11.12

(ii) 7 is obluse

e ) Figure 11.12(b)
Figure 11.12(2 2 s A
':hmf the triangle with base CA. Then 1n figure 11.12 (a]
Let = height ¢
h ook (Solving forh)
ing=—andsin}=
sin@r =" .
h=csinoand h=asiny .
a_siny
Thus ¢ sina=asiny = ﬂ%— =L

i h=csin&
In figure 11. 12(b) h=a sin (180°—y) =asin ¥ and
Hence ¢ sina =a siny

draw perpendiculars from the other two vertices on opposite sides

ISimj]aﬂy if we
of AABC we get -
sing _sinf @
a b
wi . Sep_say 3)
b c

Combining (1), (2) and (3) we have
sing _sinf _ sm;v

Unit L1} Application of Trigonomeiry

Example 10: For a triangle ABC, b

Solution: Using law of sine
sing _ sin 8
R

g AEo sin85°
= ERERIX TR TR g=1ess

=30,b=70 § =85°. Find @.

Example 11: Fror:n a point P. t]‘n: angle of elevation of the top C of a tower is 28°.
From a chcnd point B.’ which is 2200 ft closer to the base of the tower, the angle
of elevation oé the top is 66°. What is the height h of the tower?

D B 2200 ft
Figure 11.13

Solution: For AABC, AB =2200, £ ABC = 180°-66° = 114° and £ BCA=38"°,
Applying the law of sines to A ABC, we have

sin338°  sin28°

200 a
Thus a= 1678 ft, approximately.
Now for ABDC, we have '

$in 66° = —=—
a

Thus  h = 1678 sin 66° = 1533 ft, approximately.

Using The Law eof Sines for SAA Triangles
85°

A =180 - (85 ¢+ 50)
A=45 7 @
50°

AMathematics=l
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nwhjl:h
d a= 20

Unit 11| Applic
Solve the triangle i

Example 12: s
a=38,p=121

Solution: A
y=180°-121°-38

Bir e A

. = sing

sin sin sin121°
= E';Tm_a." = sin38°

Use the law of sines again but this time using & , 7 10 get
0% 52 o 11
sin 38°

a .
o B c= — X siny =
siny sin & 1

(c) The Law of Tangents
triangle ABC, show that

Theorem: In any :
tan (@ +f) 1 b+e
@) atb _ :1’- iy, e
a-b t&ﬂ'i(a" B

1
tan—(y+a)
(iii) ota _ _f__
cod ta.nE(J‘-ﬂ')

Proof: By the law of sines in any triangle lABC

a b [4
sing@ ¥ m P m =D(Saﬂ
We have
a=Dsin@and b=Dsin g
a+b=D(sin& +sin f) (1)
a-b=D(sin& —sin ) _ (2)
From (1) and (2)

at+b _ sina+sin§
a-b  sina-sinf
Using the formulae

sin + sin § = 2sin E;—ﬁcmgg_ﬁ

£ =18'U'
Since a+p+7 _21° Use the law of sines to getb

b =20 x =—— = 28 approximately.

6 =12 approximatcly.

1
“tana(ﬂﬂﬂ

R 7 .
Ianziﬁ 7

a/ ¢

i

Figure 11.14

122
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and sin@ —sin g = Qcos-':%ﬁ sinZ=8

we get

1
tan—
Similarly bic Wn00+n L

Sl
tan=(f-n

: These three relations are known as the law of tangents. Note that the
interchange of lengths a, b result in the interchange of angles &, §. Hence if

b>a then it is better to use the tangent formula in the form,

1
b+a _ lani(ﬁﬂzj

i ‘““%(ﬂ—a}
Example 13: Use the law of tangents to solve the triangle ABC in whi
a=925 c=432and § =42°%0. 8 in which

1
tan — (@ —
a-c "3( n

Solution:
a+c 1
tan -i(cH- ¥)

But o + 5 =180°— § = 137°30' = ;—(a +7)=68°45

1
525432 Wz (@-)

Hence =
_ 925+432 tan(68° 45"
. | vl Y
Therefore tan(a-7) = —2 x 2.5715 = 0.93=> L(a-7) =43°F = a-r=86°6
2 1357 2
Now @& +y=137°30
a —y =866
By addition 24 =223°3¢
@ =111°48"
By subtraction 2y=51°24'
: y =25°42

Mathematics-X1
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To find b, W€ use the 1aw -_:nf sines
g
S'Il'lv_ﬁI 5':?' E fa ____‘1_3_'_2____. 55.11420 301 =6T3
B ';1;-?: sinf = i 25047 :

; Angle Formulae useful to solve @ triangle when the
@ The half angle fcnnul:;, M‘Tc":g given and 10 angle is known. These

sid :
?e::ﬁ:: c(:)ul;ﬂ;: derived using the law of cosines:
cosine of Half the Angle in Terms of Sides <
Theorem: In any wriangle ABC: shov;}mal \ﬁ}\
& _ 5(5-4a) ] S[-‘;é . 3
5Ty be -2 . X
1 1
}S':s'ﬂ =—(atb+c)
cns% = T where $ ?.l:a
1 /
proof: Let S=E{a+b+c) G.L;@—” P A i
: _ g

Using the law of cosines % T

E’.fﬁil“i Figure 11.15

cosa = 2be

o
Butcns.:r=2 cnsi-id -

%) 2 0 l_-bz"’ci-ﬂi
Hence 2cos - g T

. ?yct-at b+c)2-—a1
g W HE = o S
= 2 cos 2_______-—-— e

" - s
The numerator being difference of two squares, can be written &

%= [®+c)+a] [® +c)-a]
2 2be
Since a+b+c=28 .
and b+c-a=23-zﬂ=2(5_a)_

L _ AS)XAS-a)
3 ke

2 @ S(S—ﬂ) o
cos —= —0r .
72 be cos 2

Unit 11 E Application of Trigonomeiry

As a £ 180°, — is a measure ,
Z of acute angle, the v
e alue of cos o will be 2
: TR positive.

Hence. [cosZ = S(S-a) ) :
2 be M
gimilarly we can prove

i) The sines of Half the Angle in T
: e
Theoren: In any triangle ABC, show thatrms of Sides

sinZ= (S—b)S—c)
2 be

i B 8 NS =)
2 o

inZ= [E=akS-0)

2 ab

8 .whcre,sz.;_(_a_,_bﬂ)

B
&
Proof: cos@ = 1-2sin* £
a \ c
3 \
i
P

Hence 2 sin’ % = l-cos&

=]- b2+{,‘1-.—a'z= ﬂz—[:b—fﬂa CL’.D . E!\‘
2be e
_ (a=b+c)a+b-c) Figure 11.16
: 2be
S]'I'ICC a+b +C=ZS
S0 %
a b+C=2:S—2-b=2(S—b) and a4+ b-c=258-2c=2(5-c)

S s .
ubstituting these values in the above equation

2 gin2 & _ AS-b)XAS-0) . a _ , [s-biS=9)
e e =sin - =&

Arain sin &
£4ain sin T is measure of an acute angle sin % is always positive.

Hence L2 f(Sa-b)(S—c] :
. Sm2 L be (2)

Vlathematics-Al
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Unit 11} \pplication o (S e
al‘ld sm ab .
Si-’i 2 d(-'
Similarly 2 M —
Tangent of Half the Angle in Terms
: at
iy Th In any triang€ ABC, show thi
pap 5 -b)S -c)
tan—=55(5-a) /
)i E-ofS-a) ;
e )
= -b)
o L a)(s 3 i
2

Figure 11.17

(by (1) and (2))

(S—b)S-¢) (3)

Similarly a

: —a) weget
Now if we multiply and divide the right hand side of (3) by J(5-9

&0 AT fES-a){S—b)(S-t‘)

"3 = G-aV 5

Hence y=180°-(a + 8 )=180°-138°12 =41°4¢

L. Solve the Mangles with dimensions.

Denoting 1‘% by r, we get

Uﬂ“ 11 i Application ::-i“.rri;;unnmcn-}

= S R

-a

where 5='2-':ﬂ+b+0)andr= M_S_—_E'Ls_;g_
S

Example 14: Solve the triangle ABC with
a=75,b=55andc =50

1 1
S= E(ﬂ+b+c]=—2..(?5+55+50)

gimilarly

usual notation for its sides given that
Solution:
=90

So 3._,a=90~'.-'5=15

S5-b=90-55=35
S—C=9€|—-50=4ﬂ

Using half anglc formula
['5(3 a) _ [9005)
G)s0) 0700649
= % =453 or a=91°Y
B_ [SG-b) _ {mxzs =
Also cos z — st 0.9165
Jij

= ?=23°35“,'-ﬁ =47°10°

EXERCISET20

() a=209,b=120,c=241
(i) @ =100°c=3457=564° (iv) a=245,c=438, f=112°
V) b =16 c=32a=1002¢ (vi) §=39°30",y=34°10",a=240
Vi) @ =35°, g =70°,c =115 b=124, f =72°

(i) a=120,b=240, y=32°

(viil) a=375,

(i) b=125c=23,2=38°20 (x) a=168,c=319, f=110"22

2. Find the angle of largest measure (Using half sine law).
M a=74, b=52 and c =47

327
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Unit 1 | Application r;j"['rigﬁlfnn‘-clr!'

(i) a=T, b=9 . andc=7
(i) a=23, l -f " .;.,.'h::: l]a.';:gth of t]:rne: zi:ei-;rc given.(Using half cosine
- 3. Solve the triangle 10 :
]?i‘:)a=9. b=T" andc=35
(i) a=1.2, b=9 andc=10
(iii)a =6, b=8 andc=12
4: One diagonal of a parallelogram is 20cm long and at one end forms angles 20°
and 40° with the sides of the parallelogram. Find the length of the sides.

Two planes start from Karachi International Airport at the same time and fly

in directions that make an angle of 127° with each other. Their speeds are

525km/h. How far apart they are at the end of 2 hours of flying ime?
6. A city blﬁcl: is bounded by three streets. If the measure of the sides of the

block are 285,375 and 396 meters, find the measure of the angles of the street

make with each other.
7. The diagonal of a parallelogram meets the sides at angle of 30° and 40°, If the

length of the diagonél is 30.0cm, then find the perimeter of the parallelogram.

8. Use the law of cosines to prove

(b+c+a)b+c—a)
2be
(a-b+c)la+b—c)
. 2be
11.2  Areas of Triangular Regions
To find the area of a triangle ABC
we discuss three cases SAS, SAA and SSS
separately as follow
(a) Area of a triangle when two sides //
and their included angle is given, /J o o RS
From elementary geometrywe know A C B
that the area of a triangle is equal to Figure 11.18

(i) 1+cosa =

(i)  I-cose=

Unit 11 |I Application of Trigonomerry

one half the product of measure of the base and measure of altitude. In figure

11.18 for the triangle ABC.Let h be the measure of altitude.

Then area A is given by A = % (AB)(h)

. L .
But since AB = ¢ and E! =sin & orh=bsip &

1
A= Ec(bsm&)——bcsma (1)

. % h i
Also h can be written as 3 =sing orh=g4 sin g

So that A becomes, A = %(p) (@asing) = -;—q’(; sin g

Similarly by taking other sides of the triangle ABC as base
We have A= %ﬂb sin ¥

Hence the area A can be found by either formula
A= E ab sin y = % acsmﬂ ——br:sintz

This shows that the area of a l.nangle is .

“One half the product Df the mensure of two sides and lﬂe a’slf
measure of the a.ngle included between ﬂwm." .

(b)  Area of a triangle when the measure of one side and measure of two
angles is given (SAA)

If in the formula = ac sin f of the area of a triangle one of the sides say c is not

known we can replace it from the law of sines.

We have :

a b c asin
- oo asiny

sin sinf siny sina
So that the area is now given by

A =L gesin B = la[a?iny}x sin g
2 : 2 sinex
s sin,:{?sin;}-‘ 2
2 sing

= ¥
Aathematics-X1 . 329
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Unit 11152

: 3 2
Similarly we have ES2 : ; ; .
measures of all the sides of a triangle are given,
triangle when
(clil!eaﬁfa A lsg]\"ﬂﬂby o L %
Weknowmaiﬂwm mszlngmz =bCSlI'lEC()52

Using half mgll‘lf;’J’_“:’:s/ﬂ JEE/::- _ fe-a6-bs-a Q)
b4

tively known as i
Hero's formula (alterna y Heron's

This formula i known a5

formula). he above mentioned formula.

using t
We now find the m":;ﬂ?:ﬁleﬁwasc ® here @=18.4°,b=154ft and ¢ =2115,
le 15: Fin B
o ! pesin@ = —(154}(211)(5151 18.4°) = 5128.349
Solution: A = &
28.35 square feet.

¢ with angles 20°, 50° and 110° if the side

decimal places the ared is 51
area of a triangl

To two
ample 16: Find the
?pposie the 50° angle is 24 inches long.

o e o
Solution: Let « =20°% p =50 y =110
Now b is given which is 24 inches

Hence the area A is
o 1. sin frs'mf

2 sinf

1 . .2sin20%in110° _ 120 83 square inches.

s= N —

2 sin50°
Example 17: Find the area of a triang
Solution: Since three sides (but none of the angles) are know
formula to find area.

Let a=43,b=289andc=120, then

§= %(43+39+120] =126

le having sides of 43ft, 89ft and 120ft.
n, we need Hero's

A = 126(126-43)(126-89)(126-120) ~1523.70
To two decimal places the area is 1523 sﬁuare ft.

Unit 11/} Application of Trigonometry

Example 18: What is the vertex al'lgie .

are 131t long if the area is 50 fi*. isosceles triangle whose equal sides

Solution: Area A ABC= —iab sin ¢ 2
50 = % (13)(13)(sin ¢)
13 13
sinc= — =0.5917
¢ = sin” (0.5917) = 36.3° .
=36°18' Figure 11.19
1. Find the area of the triangle ABC in each case .
iy a=15 b=80 y=138°
L (i) b=14 c=12 o=82°
(iiiy a=30 - g =50° ¥=100°
(iv) b=40 a=50° ¥=60°
vy a=70 b=8.0 c=20
{vi) a=l11 b=90 c=8.0
(vii) b=414 c =485 a=49°47
(viii) a=32 B=47°24 y=70°16"
(ix) b=47 Ca=60°25 y=41°35
x =57 c=23°24 B=171°36
(xi) @=925 c=433 B=42°1T
i) a=92  b=T y=56°44’

" 2.The areaof a triangle is 121.34. [f@=32°25, f=6565" then find c and angle 7.

. : 125
3. One side of a triangular garden is 30 m. If its two comer angles areZl—ignd
! .]?-‘1.‘.' , find the cost of planting the grass at the rate of Rs. 5 per square meter.

4. A new home ownet: hias a triangular-shaped back yard. Two of the three slides

Measure 53 ft and 42 ft and form an included angle of 135°. To determine the

Mathematics-XI1
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el

the owner has to kno
square foot. o

to 'he pur¢h
yard to the nearest

th Triangles

413 Circles Connected Wi : .
111:3-! (2) Circumeircle: A circle passing through the vertices of any triangle
: The measure of radius of this circle called

is called the circumcirele.

is denoted by R. The center of this circle is called

* circumeenter. ; .
bisectors of its sides meet each

The circumcenter is
other.
) Incircle: A circle drawn inside a triangle
the incircle associated with the triangle. Its radius i
is called incenter. '
: The student know
which internal bisectors of the ang
() Escribed Circles: A circle, W
extertially, and the other two sides internally when

circle or ex-circle or  e-circle.
There are three such circles, touching the sides a, b and ¢ externally. Each
uches externally- The measure

circle is associated with the side of the triangle it to :
of the radius of the circle opposite o the vertex (touching side externally) 18

denoted by rand measures of the radius of the circles opposi

and C are denoted by r,and r, respectively. The centres of t

the point where the right

and touching its sides is called
¢ called inradius and its center

s from elementary geometry that incenter is the point at
t each other.

Jes of a triangle MEE
hich touches one side of a triangle
produced is called escribed

ex-centres are similarly denoted by I, , I;and L.
is the point of inte

The ex-centrel, with respect to the vertex A
gle A-

the external bisectors of angles B and C and internal bisector of an

te to the vertices B

hese circles called

rsection of

[/nit ]ll-Ap]:lIiE:]timl of Trigonome
) ctry

11.3.2 (a)To find circumra
. dius for any tri
any triangle ABC

(i) To find R, the ci
) ] circumradiug
a side and its opposite R oL A
site angle, angle ABC in terms
of measure of

Let O be the circumcenter of the trj
! an

meet the circle at D. Join C and D, gle ABC. Join B and O and produce it to

'\l
-__r?‘:}.
_.._-':; a

Figure 11.20

Figure 11.20 (1), (ii) and (iii i
g 0, (iii) depicts th
;Ibtuse S ol s mspemingly e cases where measure of angle & is acute
ow BD i i ‘ |
measure of BD is the diameter of circumci
i mcircle. Hence
mac =a
In figure (i) m £ZBDC = a<Z
2

BBLdUSe o a".d Z B n lhﬁ same arca o e = I'I| *

/ Henc @_— ;
e =sin £BDC =sin &

mBD

So -,;T;'r-sin o
(1)

§ I" ﬁGU"e (HJ £ and rd ;
ol BDC
Sup lemenf
‘ : a are ‘ p "‘-‘fry alt%l;ﬁibecause ﬂ]ﬂy are madﬂ
} L]Ie same C]lo[d BC 1n two OPPOS“C arcs BA.C aﬂd BDC.

Hence

JHE e

—— =sin Z BDC=sin (n—-&)
, =sin a (2)
n figure (iii) a==Z-

Not For Sale

Mathematics-X1

o —

i S




ation of Trige etrs
cation of Trigonomes. =
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Unit 11

Hence in this case 4 "
BC a8 _gnd
E.'EE =1=sin %ssin aie 3z = sin
o oniclusion that
jtuati ead to the cuncl_usl
Hencca]ltheﬂlreesmauansa d o
m=—2— o [EEGRER AT
sin& R -
dius in terms of the measurements of sides of a triangje
i radius

i Circum
(@) We have almad}' pm?@d thats-b}(s-ﬂ} 5 fS(S—a)
=2 sin 2 cos o = e be

sing = 2 2
SE-a)S-BS—C) -
e

R= 2sin@ T 4A

o A = SE-DE-DS0) _ _
::;:ple 19: Find the circumscribing radius for a triangle whose sides are 3,5 and 6,

: Solution: 4psc _3+5+6_4

i g S
abc . _3xsx6 . %0 _ % _- 3(approx)
k= 55 -a)5-b)S—O) TN M6 2456
®)  Tofind inradius r for any triangle ABC - |
_ . A b.
We shall prove r= ﬁw_‘l /’1\
‘where S = %(“bafc) is the half perimeter. y \

. Let the internal bisectors of a triangle ABC meet

at the point O which is the incenter. Join O with
vertices A, B and C, We obtain three triangles
OAB, OBC and OCA. The altitude OF, OD and
OE respectively of these triangles is a radius of
the inscribed circle. The bases of these triangles
are sides of the original triangle. Then from

figure 11.21 _
Area A ABC = Area A AOB + Area' A BOC + Area A AOC

Py
i
]

Figur-;?; 1121 -

are perpendiculars to the side. B¢ and sides AB, AC

l_'-l]“ 11 | \pplication of Trigono
DE I ef ey

If we write A for the areg of triangle ABC th
&
r=2- Y6 -a§ b5 g s
s __-_"‘3—-—-—_._

= [B-a)S-b)s-g
L -aNS-b)XS-c)
s

Example 20: Find
7,24 and 25,

Solution: We must first calculate the

half peri
S= %ﬂ‘ﬁz T+24+72 56, perimeter S,

T —é'-=23
Then r= %, 2Ux4x3
; \ 23 SR Jo=3

Example 21: Prove that in any triangle ABC r=4R sin & gin B s ¥
Solution: RH.S =4Rsin £ s £ g, 7 2 2 g
: ar 2 n =

_ 2
_ 4abe) [(S=p)s— [G—axs—o)
Bk __:i "_xv” a5 —¢) , |(S-a)S-b)
ac ab

=4 ’(S—af(s-b*s- 2 -
A @bc) \ a2 :Iz Lz =—(abc)x ________[5-—::}{5—5)(5-_1-)
< abe

L
] A
= 52 X SE-a)S-b)S-0)= Ly = A -
A 2 @B sy
as A= S(S-a)S-b)(5-c).
(L':] To find the Radius of e-circle of a triangle
het 0O I?e the e-center opposite to the vertex A as
Shown in Figure 11,22
LetL,M and N be the points at which the e-circle

t ; it
ouches the side BC externally and touches the sides

*AB, AC when produced respectively.

Then from elementary geometry OL, OM and ON

Muthematics- Al
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n of Trigonometry

L nit 11} Applicatio

produced) res;uecuvel

ith A, B and C,

y. Join the e-center O W
Area of the triangle js given by

(when
=m ON = ,
Clearly mOL =m oM = Mea aAOC Area ABOC Oy N T ’
“ABC = Area A AOB.* - V=== e & ]
Area AAB 1 _].ap=-r1(c+b —a) 3 T -—2-><.__=~‘Ecz f
=lepe=bhi=3 =l R = abc A 87" —re f
2 2 a+b+c : *'E-=;T__= c l
_ 1, @s-20)whereS= "7 : His ,
2
Cis g A 2
Thus the area & of triangle AB ' P = ‘Eﬂ xgz‘ =_c
] a0 )
A=n(S-3)0r ) 5. 3
Now h=s == 4 = 362 Jif

if the e-circle touches side b directly but sides a, ¢ ype, | 4
- Similarly . . S-a 33{ 5 2 :: T

pmdlIDErd‘ 4 ¥ CD . € N0
: : iated with vertex C is given b | Hence, r:Rip=-=_:.%.¥k
The e-radius ; of escribed circle associate & ¥ | 23 3’ 3
Example 22: Find R, ry 11 12 and r, for the A0l S AeAmmea ot fhe s | # :r Xlﬁ'ix 2 Y3, l 2 -.
3 , | 23 ¢ e 3 Xo=3:1li=123 ‘
5,12 and 13. Example 24: Fi b e 8 |
P : m’::z;:f:e '3? 8' Féngd th_e area of the inscribed circle of the triangle wh : |
G, i , 8 and 9 unit. gle whose sides f
et a=5.b=12an IS . Solution: Here § = ?_"'g.ﬂ =12 !:
5-_.(5+12+]3]-— | 2
J__Tr. m e . Area oftriangle with sides 7, 8 and 9.
A = JS(S-a) SE-a)S-b)S-¢) = VI2x5xax3 =26.83 unir®
: 5x12x13 i _A_ 2683
R= (frbfl _:;50_. =6.5 ! e ik 2.24 unit
0 Area of i i i ool 3
r:r?—?: 2. : of inscribed circle = s = (3.1416)(2.24)* = 15.76 unir®
a3 r e
L il | o ' i
= r | . Compute the in-radius (r) and circum- radlus ol
; f
» S 53012 7 l Sides afe given -.'R} the tnan,:les whose
sA—a |13; 4 (i) 3,5,6 (i) 21,20,29
pm = =15 , . 2, Emd the area of the inscribed circle of the triangle with measures of the
e i sides 55m, 25m and 70m.
= | 3. The measures of the sides of a triangle are 20, 25 and 30 decimeter. Find

Example 23: Prove that for any equilateral triangle 1: R oy
Solution: Let the measure of each side of the triangle be denote y
. S ctete _ 3¢

2 2

the radius of the described circles
(ii) Opposite to smaller side

(i) Opposite to larger side

Mathematics-X1
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Unit e (iiy abe(sin @ +sin B+sin V) =44, (vi) If the angle of depregs; : ;
i i3 = " - ion of an’ ok

4. Show that {1?) R then the distance of the abjecan object from a 75 m high tower is 30°,

(iii) V2 = ;

(F)50 3 m (€75 3 m

>
th
&
B

correct option. vi)e =136, =30°24', 8 =72°¢'

BC, find b
(h)3

n a departme
g esca

ifa_-:z'(;=5, and l‘=900
V21 529

nt store makes an anglé of 45 with the
Jator if it carries people a vertical distance

, Choose the
(i) Inr.ightI"."i:ﬂ'lghf“3L

(@7

fii) An escalator in @
: und. How long s th

of 24 feet?
@ 12426t~ 242 ft ) 8B & 5
he length of the base and ‘b’ the

3. Find the measure of the smallest angle

lengths of the triangle whose sides have

43,51 and 6.3 13,42 and 3.8

. C
s Prove that f:]rany +r,—r=4R (if) R +1afs + 13 = 87 (vii) The point of Concurrency of the ri : (€150 m
B n+nthT ' ‘“alnglels called e right bisectors of the sides of a
11 L i (2) In-Centre 10 ,
s 1 — ! D 71 Orthocenter 1 ¢
e B : i With usual notations rry,y, =r Circumcentre  {¢) Centroid
. Show that. - s p =Stan= i n=StanZ | |
r ok (i) :‘,:Staﬂ% @ 5 =34 e g I a LT, S . A
s idngle Are in the ratio 3:7:8. The_radius of the inscribe q ! 2. Solve the triangles. A e : \
e o Lo SI.dES .1 the sides of the triangle.. | (' a=07, c=08, f=141°30 (i) g = .'
circle is 2m. Find © . S | (iila=156, b= ' Aty D25, £25
BTV TE RCISEALL | R A A (ivia=48 ;
~REVIE = " b=35c= , b BSAk, ST
e LSV i =35,c=37,a=23°25 (viya=584, §=3720
i ? = o L] ? e 1000

]
|
i
!
|

*. Find the measure of the largest angle of the triangle whose sides have lengths
() 48 ft 29,33and4.1  6.0,8and94

The sides of a parallelogram are 25c¢m and 35c¢m

a=3 meters,b = 5 meters, andc = 6 :
formula? . .

|
ol i ‘a’ is t
iy Ifin an isosceles triangle, " 15 : 3 ;
(ifi length of one of the equal sides, then its arca 15 _ long and one of its angles is 36°. Find the length A K
L )5_1_-1-_b._ e a—b Pd of its diagonals. " 3
(a) %_ a2 (b) T 4b—a’ 4 |a-b 4 I som
‘ find the area of triangle ABC having ; - ‘:ri?an, 4 S e T, Mo ws dnt ot AV ot
(iv) If Heron’s formula is used to 1in hich of the following & LEy N he notices that the string makes an angle i /g0 X
meters, wWhi : of 60° with the ground. How high is the kite? 3 P
|
|

shows the correct way to setup the R ‘
- A robin on a branch 40ft up in a tree spots a worm at an angle of depression of

(hy A= 2)(1 - > .
(a) ﬁ:?,’l(lﬂ}(ﬂ){ﬂ} (b} A \j[ﬁ}( )(1) &/ 14°, From a branch 15ft above the robin, a crow spots the same worm at an
(d) angle of depression of 19°. How far is each bird from the worm?
(c) A=7(3)(5)(6) |[.;ﬁ=,’l7(4)(2]{1] _

(v)" In the adjoining figure, the length of BC 1S
(a) 243 cm ('n‘|3-\.6 cm A 30 — 3
(c) 443 cm

“. The angle of elevation of a building is 48° from A and 61° from B. If AB is
20m, find the height of the building. '
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Unit 12 Graph of Trigonometric and Taverse Trigone

@
-]

e Define even and odd functions.

| using periodic, even/odd and translation properties.

metric Funetions and Solutions of Trignomotri, Equau.;
L]

Graph of Trigonometric ang

* Inverse Trigonometric Functigyg

And Solutions of Trignomotjc -
Equations

Sin ©
| Generg
—1 solution

Principal
solution

Find the domain and range of the trigonometric functions.

Discuss the periodicity of trigonometric funculnns. ,
Find the maximum and minimum value of a given function of the type:

e a+bsinf,
« a+bcos0,
o a+bsin(cO+d),
¢ a+hcos(ch+d),

o the reciprocals of above, where a, b, ¢ and d are real nu_mhers.
Recognize the shapes of the graphs of sine, cosine ar.nd tan}:-lenll for all ang_[cS.
Draw the graphs of the six basic trigonometric functions within the domain
from—2nx to 2m. .
Guess the graphs of sin 26, cos 26, sin 8/2,cos 0/2 etc.without actually drawing

them. . f sinf
Define periodic, even/odd and translation properties of the grap ho ol BIEy

cosf and tanf , i.e., sin 6 has

« periodic property sin(f = 2nt) =sin 0,

¢ odd property sin(—0) =—sin @,

_ sin(@-7) =—siné

= translation property § . i
sin(z-6) = sin@
' Deduce sin( + 2kn) =sin 8 where k is an integer. it
 Solve trigonometric equations of the type sin § = k ,cos 8 =k and tan =2

B L P —

s sinf=gp2, riBonometrig “quations of the type; P rres

© cosf=g,

®  tan 0 =20 whep
»  Define the inverse t i g
Y rwpiat il mnag(:; IIertnc functions and their domain and range.

o Prin;cipa] trigonome;

® inverse trigonom

“M2<0<qp
om

tric functions,
etric functions,

NVerse trigonometric functions.

] Appl} addi ‘|IIL L ¥
ti and Sl.lbl[‘a_cnon fmu]ﬂc ri A 5 =
erse “1EOI|0:II1'BE1: fll'llClIBl'lS

to verify related identities,

" S:::.Iw: i{igﬂnmn'etric equations and cf,

- given trigonometric Equations so

e Use the perilods of trigonometric
' trigonometric equations,

eck their roots by substitution in the
as 1o discard €xtraneous roots.

functions to find the solution of general

12 Introduction

Trigonometric functions are usually

circle or right angled triangles. We will also study their properties with a special

emphasis on their graphs. Rest of the unit is concerned with inverse trigonometric
functions and solutions of trigonometric equations i

defined either with the help of a unit

12.1 Trignuometric functions

. We know that the domain of the function defined by the equation y=f (x)
15 the set of all those values of x for which the function atains finite :;cﬁnite
values, and the range is the set of all those values which y attains. So far the
functions we have studied all had subsets of real numbers as their domain and
range. But the domains of trigonometric functions are the set of angles, rather
than real numbers. We can however, make the domains of the trigonometric
function, subsets of real numbers, by defining them on the unit circle, that is a
circle whose radius is 1.

Let & be a central angle of the unit circle and P(x. y) be the point as

shown in the Figure 12.1 then r = OP = 1 = {x*+)* . and the six trigonometric

fatios also called trigonometric functions or circular functions of @ are defined
as follows: '

Mathematics-XI




cosecant@ = % (y=0) -

secant@ = % (x#0)

cotangent & = -;- (y#0)

The trigonometric functions are ab
(i) Sine & as sin &
(ii)  Cosine @ ascosd
(i) Tangent & as tan & .
(iv) -~ Cosecant® as cosec
(v)  Secant @-as sec (7]
(vi) Cotangent 8 as cotf

It can be seen that

breviated as follows:

y' Figure 12,1

P(x, ]
t> n}

' t

] —x
o / Gl1.0)

1':. Figure 12.2

i cos &
:an|9=—SEEandculB= e
cos & sin & : ‘
Since any real number can represent the length of exactly one Arc on the unit
Y

circle. If t is a positive number, we can find the
Arc of length t by measuring a distance t in
counter clockwise direction along an Arc of the
Junit circle beginning at C(1,0). So we get
ArcCP of length t.
If t is a negative number, ‘we can find
the Arc of length t, by measuring a distance t
in a clockwise direction along an Arc of the
unit circle beginning at the point C(I,O'}
" In each case, we get a.unique point

A

Unit 12 |G"P" of Trigonometric ang [y
Trigonometric Funcrigny

P(x.y) that corresponds to the real nympe; LW

which s.u_blcnds aq angle @ at the centre ofciI:c,l : :‘ﬂso k’_“’“’ that if s is an Arc
(@ in radians). € with radius.r, we have s=r@
Lets=tand r=1 then above €quation req
Thus we obtain  sin @ = gin ¢

cosfé =cost

UCes to t=0 or =,
y COSECH = cosec t g

s S€C @ = sect
: tané = tan ¢ » COL @ =cory, ;
where @ is the angle measured in radjans andtisa

real number. .
Thus we can think of each trigonometric  **
expression as being either a trigonometric function
of an angle measured in radians or as a
trigonometric function of a real number t.
Thus the trigonometric functions can be

Rl
y  Figure 12.4 "
thought of as functions that have domains and ranges that are r;ubsets of real
numbers. .

12.1.1 Domain and Range of Trigonometric Functions

(a)  Domain and Range of Sine and Cosine Functions

Refer to Figure 12.1, sin @ =y cosf =x
Domain of sine and cosine is the set of real numbers R. Since point P(x,y)

_is on the unit circle

-12y<1 and -1<x<l or -1<sin #<1 and—l<cosf<I.
Thus the range of sine and cosine functions are [-1, 1]. )
(b)  Domain and range of tangent and cotangent functions

Refer to Figure 12.1. tan@ = 2 x#0.

x
When x#0, then terminal side OP cannot coincide with OY or OY’; in

other words

grtZ 4 O
L

Therefore for the tangent function.

D{]main = R—{I| t= (2[1 + l]E, ne Z} “nd Range =R I:Ihc set of I‘eﬂ] numbel's)
2

or 8% (2n+l) %;nEZ

pramana
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" Ui 2ot

Since cot & = — y#0.
when y#0 then terminal side OP does not coincide with OX or OX’ in othe,
words

g2 0 27, L2,
Hence in case of cotangent function Domain =

Range = R (The set of real numbers)
(¢  Domainand Range of Secant and Cosecant functions

1
Refer to Figure.12.1. cnsecé:a}:' y#0

or @# N, nez
‘R-{tit=n 7 ;ne Z}

If y# 0 then as seen in the case of cot@, & # N7, neZ

Domain of cosec function = R-{tlt= nz;neZ}.

Since | y | = V{?S\szi-yz:l

1
Hence |yl < 1. or I-;?_'l.

(Figure 12.1)

Thus either l:_>1 or 1 < _1 that is cosec 82 1 orcosec <— 1.
y y A
That is cosec @ attains all values except those which lie between —1 and 1.

1
Hence Range of cosec function = R— {t1-1 <t< 1}.Now secf= = x# 0. Then

3
as seen in the case of tand. @ # (2n+1) E ne Z.

Domain of secant function =R - {tlt =(2n+1) }:— neZ}.

Also i = \l{:ljsa.fx1+y1=l
Il €1 nr—zl
l+ '
1 1 I
Thus either ;2 1 or ;S— 1 that is sec 821 or sec<- l.
That is sec @ attains all values except those which lie between —1 and 1.

Range of secant function=R- {t|-1<t<1}.

Mathematics-XI

ain and
i range of. lngﬂnﬂmemc functions;
Ymbuhc notations:

All real numbcrs. —5 < X oa

-1= realnumhe:rs 5‘1.. =¥
=) Sy<li e
~1< real numbers <1
“1gy<] &

=tan X | All real £ - -
y numbers except (25 + I}E -neZ. | all real numbers; -

y=cosx | All real numbers; —co < ye o

i

B (2n+1)-’2‘_5,nez.

=<y <eo
y=cotx | All real numbers exceptn,ne 7. i all real numbers: |
—eo<X<eo 3+ X# NT,neZ. —eagy<es | : s |

y=secx | All real numbers E :
except(2n+1) 5 *N€Z. | all real numbers<-1 or21
5 T J
—ea < X<oo 5 x¢(2n+1}a,nez. y=lory< -1 5

y=cosec x| All real numbers except n7,neZ. all real numbers<-1 or=1

—so y<ee + X# N, NEZ. yzlorys-1

Example 1: Find the domain of each of the following functions.

(i) sec 3x (ii) tan—; x (i) cosec % x

Solution (i) We know that the domain of sec tis —es < t <eo 1% (2n41) -g- neZ.

If t=3x, then dom sec 3x is —ee<3x< o0+ 3x # (2n+1) ?ﬂ » neZ
or ~oo< x<eo, x#(2n+l) % , neZ

Dom sec 3x = R-{xl x = (2n+1) £: neZ)

neZ

(ii) Domain tantis —se<t<es, t# (2n+l)

=~.‘r|‘:‘-1
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1 1.
ift= gxthen dom tan Exls

1 vz @oa1) 2 neZ
5 2

—m{:j-x{bﬂ'
I ] B % (2n+1). 7w e Z-
1 s z.neZ}
dom [an-gx =R~ xlx= 2 (2n+1)
Gii) Domcosectis —=< (<o, t#DT,DEZ
1
L 5 2 2
Let t=rl-x then dom cosec Exls —wf-’.EI‘C Y x# nNT.ne”
1
. ek xies, XE Jnx, neZ . dom COSCC Ex = R-{xlx = 2n7, nez)
Example 2: Find the range of each function.
1
(i) cos3x (ii) 3 tan 2x (iii) 2 cosec é-x
Solution: ()  We know that for all t € dom cos &, _1<cost £1
Let t=3r then -1Scos3x<l.
Hence range cos 3x is the closed interval [=1, 1]
(i)  Since forallt edomtant, —ee<tant<ee
Let t=2xthen —ca< tan 2x< e _
Hence —eo< 3 tan 2x<ee. Thus Range of 3 tan 2x is R.
(iii)  Since forallte dom cosec t

cosect < 1 orcosect 2 1

Let t= 11
3
1 1
Then cosec 5 x< =1 or cosec 5 xz 1.
S 1
Hence 2 cosec -5 x<-2 or 2cosec é— x= 2.

Hence range of 2 cosec -;; x=R-{pl-2<p<2}.
Not For Sale
‘Mathematics-X1
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12.1.2 Even and Odd
Even Functions : Fnctiong

E)|5L f““‘:‘mn f s even if for every x in the domaj f

ven functions . in, f(x)= f(-x).

S : are symmetric about the y-axis. For Jf( .

graph, the point (‘x.)‘}is also on the graph : cickipotat (s} ou the

The following are the graphs of eyen functio
ns,
yJ

(-x. :”%A'\‘x: }')
X

Ik

Figure 12.5 Figure 12.6 Figure 12.7

Notice that for any point (x, y) on each graph, the point (—x, y)also li

graph. Therefore, for any x value in the domain, f(x)= £ (—,i) G
Odd Functions |

A function f is odd if for every x in the domain, —f (x) = f(-x)

Odd functions are symmetric about the origin. For each point {.: ;.) on the
graph, the point (—x,—¥)is also on the graph. ,

The following are the graphs of odd functions.

Y Vi ya

et L g
(_x‘_:N' """" (X,=¥) o T |

Figure 12.8 Figure 12.9
Notice that for any point (x,y) on each graph , the point (—x,—y)also lies on the
graph. Therefore, for any x value in the domain, f(x)=-f(-x) or cquival‘ently

=f(x)= f(~x).

Figure 12.10




Solutions MWWMEQMhN

ons and
2 miﬁ]mdwmmhmmwnuﬂ ns
+2is an even function. :
Example 3: Prove that: () flx)=x1 o
(i) f(x)= © is an odd function. g
2
Solution: (1) f (x)=x - ¥
A= (‘_x)z I 10-
. = 12 1 i
=f(x) p—— 2. L TN T g -
= f(x) is even. 0s — h .
(i) f(0)= x z :
fEn=(-2)
=A;f{ ) | Figure 12.12
=—f(x
= f(x)isodd

perties of the trigonometric functions is that of being
i ant pro
One of the import

either even or odd.

We know from trigonometry that: —
sin(=4) = —sin &, Bs{-) = 06, cot(—8) = —cot & |
cos ec(~8) = —cosech, sec(—8) = sect, —

h S 51n9, cosech, d 5 [+

functions. ;
Example 4: Is the function f(x) = sinx —

fx) =sin(-x) - cos(—x)

—sinx — Cosx B
Remember

= — (sinx) + cosx

i 7
cosx even, odd, or neither?’

: The sum of an odd
Because —(sinx+ cosx) #—(sinx —c0sx) function and an even

function is neither even

nd —(sinx + cosx) # sinx — cosx _
A : nor odd.

the function is neither even nor odd.

Mathematicsﬂ}(l
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12.1.3 Periodicity of Trigonometric Functions

Periodic Function

A function fis said to be periodic if there exists a positive constant p such
that. fix+p)= fix) for all x in the .domain of S The smallest such positive
number p is called the period of the function..

All the six trigonometric functions are periodic functions, because they

repeat their values after their periods. This behavior of trigonometric functions is
called periodicity.

\Noke ] S,
If fix) is a periodic function then affx) and fix) + b are also periodic fanctions |
and the periods of all these functions are the same. Can you saywhy?

Theorem 1: Show that the period of sin® is 21.
Proof: If p is the period of sin®, then

_ s8in (8 + p) = sind (1)

for all 8e dom sin#.

Since Oe dom sin 8 =R, put © = 0 in (1), we have
sinp=sin0=0
Thus possible values ofpare0,+n, +2n,.......
The first smallest positive value of p=r, for which sin(6+7) = — sin®
which contradicts (1). Therefore 7 is not the period of sind
Next put p = 27 then sin (0+27) = sin®
Hence 2z is the period of sin.
Theorem 2: Show that the period of cos@ is 2x.
Proof: If p is the period of cos@, then
cos (0 + p) = cosb (1)
for all 6e domcos®
Since Oe domcos® = R, put 8 = 0 in (1), we have’
cosp=cos0=0
Thus possible values of p are 0, £2x, H4x........ .
The first smallest positive value of p = 2, for which cos (8+2m) = cosb.

Hence 27 is the period of cos.

Not For Sale |
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LS| I Example 7: Fipg period
! .,: _;Jé;&éﬂ'j’_'-ﬁhd out for ﬂ-le'i N ) 1

-

Theorem 3: Show that the period of tan

of each function, -
Proof: If p is the period of tan6, then I

i T 1 - o 3 (i) 3sec X
tan (8 + p) = tan® @ Heciprocals of 5in6, cost ang | ; 3
anB. i.e.cosech, secO an ; | :
for all 6 dom tanf 5 tﬁ‘e{cm LR ' Solution: (i) Pperjog of% tan 3 x = Feriodof tany
Put6=0 iﬂﬂ(l}é}we have _.j mis the period of cosech’ ': ’
tan p=tan &= 2L, s \(i))2m is the period of secq - = (- period of tanx is )
g fpﬂre{}o:tn’ s TR 3 3
Thus possible values 0

fﬁ;}ﬂ is the period of cotp

=5 fp=m, it ;- I
The first smallest pGSlllVEB\'ajue P o J ) (i) Period of 3 sec g = Period o qu__scc__'t 5T
5 = tan ©.
for which tan fe*"iﬂ o A . i aase 3
Hence n is the period of ta;ﬁ ’ x : i ( i i
: Find period of 5 sin x. ‘ S T 4 - = = * period of sec x is 2x)
Exlal:l’]‘-' SWc kngw that period of sine function 1s . ' i %
Solution: s
sin x = sin (x + 27) f ; . =3 (27) = 6m. .
e e ! 12.14 Maxunum and minimum values of certain trigonometrie functions
=  5sinx=3S§ i by 2, values of 5 sin x repeats, hence ] - In this Seclion we are concerned with finding the maximum and minimum
It means that when x is increased by 27, i value of a function of the type:
period of Ssin x is the same s that of sin x. ) @ a+bsing (i) a+beosd
TS if £ i a trigonometric function, period of cf (c constant) is the same as | () a+bsin(co+d) (iv) a+bcos(c8+d) "
;ﬂmt?) ;‘ s : | J, : and the rcf:iprocals of the above, where a, b, ¢ and d are rea] numbers.
jmatorl, P 5 : _ Bcft:r_re fiomg $0, we recall that the term a in the above functions allows for
Example 6: Find period of cos » T | a vcrpcal Shlf! in the graph of the functions. The term b in the functions allows for
Solution: We know that period of cosine fun : : . amplitude variation of the functions.
5 cos 6 x = cos (6x+27) Now to find the maximum and minimum for sine and cosine functions we only
e | need to remember that the maximum and minimum for both sin@ and cos@are | |
=cos 6(x+?,'l. : and ~1 respectively, il
\ | Consider types (i) and (ii) above. These functi i ‘ '
. z ce period of _ : ¥p ©. these functions reach its maximum
when x is increased by 26_;5’ value of cos 6x remains the same; hence p when both sing and cos@are at the maximum i o SiRfl=] S cos gt |
T So the maximum of 445 siné=a+b| (maximum of sin@) i
COS-0x is = or —. : :
5 3 7 : =a+b|(1) : |
Thus period of cos 6x is equal to the period of cosx divided by 6. _ i - =a+p| - i
s i i i 1 | F : -
This result holds for o.mer‘tngo.rfometnc ferc;;ons-a sc-then R | Similarly, the maximum of a +bcos@=aq +[b) 2 i
Thus, if £ is a trigonometric 1.1ct10n, These functions reach its minimum when both sin€ and cos@are at the minimum
constant k, period of f{kx) = Penudoff(_x} i.e.sinf=-1and cos@=~1.Sothe minimum of a +bsin@ =g +|&] (minimum of sin@) !
Mathematics-XI #&E|
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“Trigomometric
Trigonometric and Inverse

=a +lbi{—‘.'l)
=a-pl|
Similarly, the minimum

Consider types (
matter because they don

(3)

of a+bc05€=a~lbl i , 4) " :
H In these types the val LIFS oI ¢ an do not
"c;:; :nrt‘ic(::li.e :mplitudc of the function, so we treat these

in simi i) and (ii).

es in similar way as (1) an : ”
tSw-::;ath[)'e:pn'-m:irrmrn value of a+bsin(cé +d)=a+p| A
and the maximum value of a+bcos(cO+d)=a +p| . ®
The minimum value of a+b it (co+d)=a [} 0

a+b sin (C9+dl="_lb|
at, if M and m respectivd)' denote the maximum
y then we have the following formulas,

and the minimum value of
Thus, we conclude th
value and minimum value of th

e
BEEE
Let M’ and m'be the maximu

reciprocals of
m<0, M<0

e function,

m value and minimum value of the

the above functions, then clearly for m>0, M>0 and

e e |
|

kS
1

and :
Example 8: Find maximum and minimum values of the functions. :
(@)  y=l+2sin@  (ii) y.=3+2cos(30-2) (iii) ¥ =73 35m(20-15)

Solution: (i) Herea= landb=2

- the maximum value of y =M =a+}|
~142]=142=3

and the minimum value of y =m =a-|
=1-|2|=1-2=-1

(ii)Herea=3and b =2
oM =a+|bl=3+[2|=5
(iii) Let

and m =a—|b[=3—[2t =1
¥'=1+3sin(28-15)

Mathematics-XI
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Then u =143 =4 and m=1-p ==2

If M" and m' i o~
nd m" are the maximum value and minimum value of y respectively, then

i ol =k 1 1
Mi=—=_ e O
M 3 and m _;__2

Sincem<0and M >0

L pmoserzn.
: |
1. Find the domain, range and period of each of the following function: » I
(i)  3sin3x G) mn%x (iii) cosec2x ! !
(iv) cosdx (v) G6sec2x (vi) % cot ? :
O o 5
(vii) - tanx (viii) %cmecx (ix) secfx 1

2. Find maximum and minimum of each of the following functions:

ST - . :

(i) y..—‘2+Es|n[-3—9+2] (11)}-=5—4sm(|9+30_-:| i
T T e S S AR =
19—10sin (36— 45) 4cos 276 5
i fa ]

12.2  Graphs of Trigonometric Functions

The graph of a real valued function is the set of points in the cartesian
plane, whose co-ordinates are the ordered pairs, belonging to the given function.
For example to graph a function y=f(x), we give a number of values to x, which
belong to the domain of the function, and find the corresponding values of y,
which satisfy the equation y=f(x). We plot these ordered pairs (x, y). join them by
smooth curves or line segments, the diagram so formed is the graph of the
function. &

In case of trigonometric functions the points are joined by smooth curves.
Since trigonometric functions are periodic, it is sufficient to draw graph over a
period. This information can be used to extend the graph to the right and the left,

because the graph will be identical over those values of x which form the period.
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. of sine, cosine and tangen ‘
12_1;i1n'l'he ?;Pﬁc:‘;?mk pretty cjmilar; in fact the main difference is that the
=sgin xand y= !

sine graph starts at (0,0) and the cosine at (0,1)-

a
Both of these graphs repeat every 360 ngﬁi; x
a transformation of the sin graph—it's been s
degrees. Thinking about the fact that sin X = c
= tan x crosses the x-axis at 0, and has an asymplto
every 180 degrees.
¥

nd the cosine graph is essentially
ated along the x-axis by 90

(90 - x) and cos x = sin (90 —x)
te at 90. This graph l‘t:p-catsT

y=sinx

y=CcosX
|
90 180" 270" 3600 *
: -1
y=tanx

b

o’ 180 z-.r 360 %

i Figure 12.13

12.2.2 Graphs of six basic trigonometric functions
(a) Graph of y=sinx,- r<x<lx
Since sinx is periodic function of period 27, whos
sufficient to draw a detailed graph over the interval [0, 2x]; port
over the intervals [=27,0], [0,2], [2x, 4x] and so on will be identical.
Suitable values of x, and the corresponding values of y, satis
are given below in the form of a table. ' .
Values of y for different angles x, can be found by use of [rigonomctrjé identities-

¢ domain is R, it is
ions x of the graph

f}'il‘lg :,r:Sit'lI

Unit 12 ]Gr:ph of Tri
gonometr
¢ 10 Inverse Trigonomctric Functians and Solutions of Trignomotric Equations

Take a set of recta
ngular axes, choosing a convenient length for 30° on the

x—axis and a convenient len.
£th as a unit on the i
; —axis. W i
get the following graph of y=sin x in the imm; (0,2m) R i

¥

14

¥ y=sinx on [0,277]

Figure 12.14

We note for all values of x, =1 < sinx< 1.

: We often call the graph of y = sin x, a sine wave and the graph in the
mu.rv:ﬂ [0,27] a cycle. Extended graph of sin x which is the repetition of the
graph in figure 12.14is given in figure 12.15.

Y

3

1+
X ) /f"_'\!\
-2n -~__° S e »X

-1+

8 L Figure 12.15

(b) Graph of y = Cos x, - 2r<x<2m.
The cosine function also has a period of 27, and its range is [-1.1].
Values of (x, y), satisfying y=cosy are given below in the form of a table.

Mathematics-X1
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) 3 ): the gr&ph of )’=’ngx on the interval [0, Z?j'r']. is shown in
Plotting the points (% ¥): ;

' figure 12.16.

.

Lt §

1
T

1200 150° 180° 210° 240° A270° 300° 330" 360°

Figurc 12.16

"

)‘ B
Extended graph of y=cosx is shown 1

n figure 12.17.

P
=

¥ ¥ =GOS x Figure 12.17
Y .

(¢) Graph of y=tanx, 0sxs 7 .
The period of tan x is 7 and the domain is the set R*{xlx=(2n+l)—2— ,neZ}-

: ion is 1°
When .r=(2n+1)%. neZ or x=%90°, +270°...... : the tangent function

and Solutions of Trignomotric Equatien;

Unit 12 IGrlpll of Trigonometric and Inverse Trigonometric h“um;“ Selutions ¢f Triguemotric Equations

defined, at the§c values of x,it becomes very large,in other words it approachesoe.
In ’Eh‘e interval (0, 77 Jas we approach 90° from the left, the e
larger positively, that is, it tends to +eo: and when we approach 90° from the

right, it becomes larger negatively, that is it tends to —ee. Table of values (x, ¥)

satisfying y=tan x on [0, 7] are given in the below table. The graph is shown in
figure 12.18.  ° : .

1
X : ' i . i iR x
: 0 60" 900 120° 1505-7130°
_1- P
Y Figure 12.18
v

y =tan x on [0, 2x]
Extended graph of y = tan x is given in figure 12.19.
¥

i 'y t ! 1
E i G
Xt | | .
= = | fum |
' : i Figure 12.19
¥ y=tanx

(d)  Graph of y=cot x ,- TSXST.
The period of cotangent is also -

Mathematics-XI JiRET)
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Table of values (x, y=cot x on [0, 71

shown i

Extended graph of y=cot
of the graph given in figare 12.20.

y) satisfying

P —————

]
1
1
1
1
1
1
1
1
1
1
[}

y = cotx on [0,7]

x is given below in figure 12.21, which is the repetition

metrke Functhons and Splutions of Trignomotric Equations

is given below, while graph is

Figure 12.20

' { | i\ |
i ! A i.
i 21 1 i 1
1 ] 1 |
| d 1 I
| | | |
| 3 ] ! !
i 1 1 i
i | ! i
: ! : ! X

P n 2m I
I i i i
i T I i 1
i 1 I I
i | I |
' | | |
H T2 1 i I
! | I |
| I | |

y = cotx Figure 12.21

Mathematics-X1
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(e) Graphofy=secx,-2r<x<2n,

We know that period of ;
secant is 2m, table of valu -
[0, 27] is given below. Graph is shown in ﬁgun: 12 22‘ es (x, y) for y=sec x on

i i
. :\
24 ': ',r :
| : \
; 1
1 ! 1 e Y 1
A )
1 i
: 1
X — I
30" 60° 80" 120" 150° 180° 210% 240° z?u* 300° 330° 3807 :
I
e : i
i : y==1
i i
5 a =
1
) 1
) 1
1 )
; : :
¥ :
_ y=sec x on [0,2x] Figure 12.22
Extended graph of y=sec x
Y
1 i 1
[ 1 L]
] T ] 1
1 1 i
P\ 2t : ; i
1 I 1 i
1 ] i k
1 i 1 i
-~ : ‘| | I
K z : ] i
o H \ 4 ] 2‘: ' 3n %
H 1 \ i
i 1 ] ]
) , 1 '
| ] 1
T I ! )
1 ' : »
1 i i I
: b i 1 1
I ' L .
Y y=sec x Figure 12.23

Not For Sale
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ra © L y
_2xsxs2A

Gl'a h O'[ = COSeC X,
y ’ : 27, table of values (x,

Peniod of cosec 15
is as follow

y) satisfying y=c0s€C X on [0, 2x)

¥ " y=cosec x on [0,27] Figure 12.24

Repeating the graph in figure.12.24, the extended graph of y=cosec X is obtained
as given in the figure below ‘1f

U]lit 12 1cﬂph of Trigonometric and Tnverse Trig o

and tians of Trignomotric Equations

12.2.3 Graphs of sinAB and cosA® where A is a positive constant.
In figure 12.26 the graph of y = sin® is shown.

AT Vo 5 O
wzfe ;\/z 3\-/

Figure 12.26
We see that the graph of y = sin has period 27, so the constant A in

y = sin A indicates the number of periods in the interval of length 2x. If y = sin@,
we notice that A = 1. This means that there is only 1 period in that interval.
For example, if A =2, then

y =sin20
means that there are 2 periods in an interval of length 27 as shown in figure 12.27.
The graph of y = sin2@ is the compressed version of the graph of y = sin@ in the
x—direction. :

Ak AAABRARART T
JUVUTTVTFV Y |

If A = 3, then y = sin30 indicates that there are 3 periods in the interval of length
21t as shown in figure 12.28. The graph of y = sin38 is more compressed version | !
of the graph of y = sin 6 as compared to the graph of y = sin26. i

ANAAARAAANDAA.
fvvvvyvvuwvwvkum

Figure 12.28
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On the other band, if 4=+
in the interval of length 2
is the expanded version

period

1
y=é& 2

Figure 12.29
ive constant has

fy =cos@ in the x—direction.

-Similarly, multiplying 8 by @ posit
compressing or expanding the graph o
Thus, multiplying 6 by 2 number g
cosB in the x-direction and shortens

number less than 1 expands the graph

period is given by .
; A

Example 8: Without drawing, guess the graph of ¢

frequency and amplitude.

Solution: Here A = ia <1, so the graph of cos—

graph of cosf.Also in an interval of
length 2m, there is one third of a period.

We have Period = 27"’
i : | 2
2 Period of Cns—s-& = 6= 6
0
F!.'Bqul:l'l.ﬁy = i
r
-~ Frequency of g
3 6

Amplitude of ms—;-ﬂ =1

rse Trigonametric Functe

hen ¥ = 5in—;£—9 me
x as.shown in figure 12.

of the graph of ¥

reater

a5 and Solutians of Trignomotric Equations

ans that there is only half a
29, The graph of

= sing inthe x—direction.

¥

the geometric effect of

than 1 compresses the graph of sind or
its period. Multiplying @ by a positive
and lengthens its period. In this case the

0""}3_9' Also find its period,

! 4 is an expanded version of the

—
Did You Know B
(i) - The periodis also called the wave length-

(i)  The reciprocal of the period is called
the frequency of the functions. Thus

Frequency = 3‘%!

(ifi) The maximum distance between the-

graph of the sine orcosine and the horizontd
axis is called the amplitude of the function
Thas, the functions y = sind and y = cosd have
_amplitude 1. In general, the amplitude of &

i Uni[‘ 12—10‘11»11 of Trigonometric and Inverse Trigo

" periodic function is half of the difference.
 between the maximum and minimum values.

ie Fanctlons and Salutions of Trigno -‘!qlﬂh-

12.2.4 Periodic, Even/Od . .
d and Trans)
cos@ and tane ation Properties of the Graphs of siné,

Insection 12.2
aile i Ay ,fwc_ draw the graphs of all six trigonometric functions. If we
s of siné, cosgand tane, we observe that they have many

~ symimetry properties.

* In this sections we are con ] l
ks : cerned with the periodic, even/odd i
properties of the graphs of sing, cos¢ and tang. e st
1.  Symmetry properties of the graph of Sin#
The,graph of sin# is reproduced in figure 12.30.

SO AT A
R N o

Figure 12.30
=} Periodic Propertics
We see that the graph of sing keeps repeating itself after a period of 21

f(@)=sind
N E
3\-/111:

units. Therefore .
sin(@£2x) = sind

This property possessing by sing is called the periodic property.

by Even/Odd Properly
The graph sing is symmetrical about the origin. This means that if we

replace & by -4, the graph is changed. Therefore
sin(-#) = —sin &
This shows that singis an odd function whj-:ﬁ is in conformity with the
results in theorem of section 12.1.2. This property possessing by sing is called the i
odd property.
(&) Transtation Property
If in figure 12.30, ¢ is decreased or increased by 7, then the sign of f(#) is

changed. Therefore o
sin (@-#) = =sin@

Mathematics-X1
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This property possessing bY

S owing properiies:

Tl TR

i.e. jsin (EZE) i
Thus, the graph of siné
. Periodic property:

A Odd Property:

possesses the foll
Gn(@x2m) =00

sin(-&) = -sinf

<{sin e-m)

= Jsinﬂ
sin(x—8) = sin ¢

Graphs of cos @
ed in figure 123L

Translation Property:

Symmetry Properties of the
The graph of cos 8 is reproduc
f(8)

flé)=cosB

Figure 12.31

(a) Periodic Properties
Like sing, the graph of cosé al
leos(@2m) = cos

so repeats itself after a period of 27

‘Therefore :

This property possessing by cosd is called the periodic pmpcri}'.

(h) Even/Odd Property
The graph of cosé is sy

the graph is unchanged. Therefore

mmetrical about the y—axis.
replace 8 by —¢, _cus(—-ﬂ) = cos®
This shows that cos@ is an even function which is

the results in theorem of section 12.12. This property possessing by
called the even property.
(e Translation Property

If in figure 12.31, @ is decreased or increased by T un
f(@) is changed. Therefore qCEE

it, then the sign of

Mathemmics-}(i

This means that if we

also in conformity wn._h
cosd B

Unit 12 |Graph of Trigonometric ana Inverse Triganometric Functions and Solutions of Trignomotric Equations
. tric Equa
This property possessi
ng by cosé is called the translati
tion property.
Also cos(m—8) = cos|-(7-8)] = cos(r-8) = —cos@ o
je. cos(m—8)=—cosd

Thus, the graph of cos# possesses the following properties:

cos(8+27) =cosf

cos(—#) = cos @

. Periodic property:
. Even Property:

. Translation Property: {Cos (8-7) = —cosd
‘|cos(m—6) = —cos@

Symmetry properties of the graph of tan®
The graph of tan® is shown in Figure 12.32.

AT
f(@)=tand
ix :'2;{_ x T ] = - " =
] - 7 =
Figure 12.32

The symmetry properties of the graph of tanf can be obtained in similar
fashion as in the case of sin and cosf. However, it is pertinent to note that in the’

present case the period of tand is m. Therefore, the translation property of the

graph of tan@ equals its periodic property.

Not For Sale
Mathematics-X1 365




wh-lemﬂﬂnuasoluﬁnﬂ ﬂl'molrk Equatiog,
verse
Unit 12 |Gupn of Trigonometric aad 19 Trige® -

0 are
The properties of-?i_g"f'_a?h..?f,_.tm (E:i:#] Vol
e CRET TR S AN = 2
r.' Pﬂﬂﬂdlﬂltnpﬂt} 4 v (_9) £t ——ﬁ.ﬂg
s R S an (0~ = 1200
"« Translation Property (7= 0) = —tan?

; o 1 i ﬂies Df {he Cosinc.tﬂ) Stablis'
C[ric and pﬂﬂﬂdlc Plﬂpe e
E)l:ample 9: Use the 5)’1'!1]11 h

: T
the following identity. cus[—z- 6] sin

Solution:
By translating the graph of co

the graph of cos® becomes the graph of sin
“That is co{ﬁ'—-%] = siné

4 F 3
1 1 ol = 5| @——
But the cosine is an even function, 5O cn{ = ES’] co ( 2]

T units i . action of the positive 8-axi
s8 by — units in the direc P 5

; Thus, cc{% —3) =sinf

EXERCISE12:2

l 1. Draw the graph of the following functions in the indicated interval.

@). y=2sinx  0sx2m (i), y=cos 2x 0Sx<2%
(iii) y=-44sinx = 0sxsm (iv) y=-cotx -MSXST

: r :
(v) - y=2cosec2x O0<x<2m (v) y=sec n<x<ln

2. . Without drawing, guess the graph of each of the following function
find its period, frequency and amplitude.
0

(if), Ey 2o I (i)

y = c0s 28 . (i) y=sin60

y= cosg—.’?

Mathematics-XI 360

g, Also

Unit 12 |Graphorm _
: I p ronometric and Inverse Trigonometric Funetions and Solutions of mp;mmegqm

e Use the s ; —_ . .
ymmetric and periodic properties of the sine, cosine and tangent

functions to establish the following identities.

(i) sin[%-ﬂ-l‘?] = cosd (i) cm{%q-ﬁ') = —sinf
(iii)  sinlr-@) = sing (iv)  cos(z-8) = —cos@
(v) tn(z-8) = —tan@ (vi)  tan(2r—8) = —tan@
4. For any integer k, deduce that
(i) sin(0 4 2kx) = sing _ i cos(8+2kn) = cos@
(i1l tan(@+2%x) = wne (iv) cot(g+2kx) = cotd
(v) scc(#+ k) = seed i\'l'n cogec(9+2.i:ﬁ:| = c.-:;secﬂ

12.3  Solution/graphical solution of trigonometric equations
An equation involving trigonometric functions is called a trigonometric
equation.

There is no general procedure for solving all trigonometric equations.
However, we can solve many trigonometric equations by means of algebraic
methods such as rearranging equations, factoring, squaring and taking roots and
by using the basic trigonometric identities already proved in earlier units.

12.3.1 Solution of trigonometrie functions of the type sin8 =k, cos@=k and

tanf =k
The simplest trigonometric equations are of the form
sinf = k (1) Did You Know 2
cos®= k @ An identity is an equation i.
tan = k (3 which is true for all values of
' the variable. |

where k is a constant.

In this section, we are concerned with to solve these equations, using
periodic, even/odd and translation properties.

In section 12.1.3, we noticed that the sine functions and cosine functions
are periodic and both have period 2, i.e. they repeat their values every 2T units.
Thus, if we want to find all solutions of (1) and (2) then we simply add and
subtract integer multiple of 27 to the solutions in the interval 0 <6< 2. We also

Mathematics-X1 10
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Unit 12| Graph of Trigonometrc . 1o having T 25 its period. Thus to find

¢ function s 219 £ d subtract integer multiple of T to the

ticed that tangen
no 3, e o

i tion

all solutions of equatl |
‘ : i ns, first of all
solutions in the interval 0 <f<n S u‘igclnﬂ-mel.l'lc equanz o dﬁ?d
lutions : . neriods and then find the
gt o 3111 = al whose length 15 equa'l. woits p |

i he interv

the solution over 1 ;
1 pquations-

formula for all solutions of the ed 1

Example 110 Solve the equationsin o=
: PN
Solution: We have sin—" =
itive i d quadrant IL, § :
tive in quadrant 1 an o
?GSI << 2m, one in quadrant 1 and the other 10 q
interval 0 << 2m, s
E?=-%— s ER——= T,

ation, we add and subtract integer multiples of
:]

ngle is 8= Z  Since sine is
o ttie reference 2 6

o the equation has two solutions in the
adrant 11 i.e.

Now to find all solutions of the equ
5¢

e

o T
2m to the s::vluucms —(,rur =

T T
R —:E--—ZJI.-—-+4.?‘I,~—--4.’!. ..........
TR 6 6

gt 2L 5t
58 % _5.'1_2#_ .5_#-.‘.4;':, BT | JE SRS
oFs T RERINE 6 6

These solutions can be written compactly as follows:

= f--i-er n or 3=~5—?£-+2ﬂ' n forn =0,x1, D, ienernsane
6 6
. 1
Example 12 Solve the equationcosf = =
3 x s, the
Solution: ~ We have cos% = —12- <o the reference angle is @ =57 Thus
' ; : d the
equation has two solutions in the interval 0 <6< 2, one 1n quadrant I an
: ST
other in quadrant IT ie 6= i;. or 8= M_i;_ =5

: . s 1oe of 28
To find all solutions of the equation, we add and subtract integer multiples

3 k7 4
to the solutions -:— or T

Not For Sale
Mathcmaticsﬁ){l

r X
i - _?I —_—
8 33 +2r, —=2r, 3 +dx, ——4r
Sk 5Sm 5
o ] T S x
s = _.3 +2r, __3 -2, T...q.ﬁ_ — 4

Thus g=X _5m
hus, 3 ToFD Or (G=silea for n =0,£1, £ 2ccrees are all

solutions of the equation.

Example 13: Solve the equation tan 8 = - £ ;
3

3 i 4 3
Solution: We have tan = ‘{_T, so the reference angle is 6 = -%, The tan®

is negative in the quadrant II and quadrant'[\f, 'Iiowcver. in the interval 0 <B<m,

the equation has one solution in the quadrant [Ti.e. 8 = rr-—:- = i:—
Thus, all solutions of the equation are given by

5_

= 4+2xnforn=0xL£2,......

6

12.3.2 Graphical Solution of some Trigonometric Equations
Recall that the graph of a function is the set of all points whose

coordinates satisfy that function. If the graph of two functions intersects, then the
coordinates of their intersection.points represent a pair of numbers which satisfy
both functions. The points of intersection are called the solutions of the given
functions. These facts can be used to solve trigonometric equations by graphing.
In this section, however, we are concerned with the graphical solution of
trigonometric equation of the type:

. sind = —3—

. cos =0

# tan @ = 26 i
3 . 4

in the interval —i:- $0S—-

The method of graphical solution of such equations is illustrated through the

following example.
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E : aation €050 — 8 =0 in th,
hto find the solution of the ed .
- ap
xample 14: Use gr

"
n L. i =
interval = s8s as cosB=0

Solution: The equatio”

= g et of coordinate ;
Lety=cosd and Y= 9 functions on the same S€ € axes,

must be the 50
two functions as follows:

these WO jution of the given equation.

Figure 12.33

in i : betweel
We see that the graphs intersect at point A. The point lies about midway

0 and -‘%. Thus, we estimate this solution as 0= -";—.

Verification. Substituting the value of 8 in the original equ ation, we o1&

T T
c—as(“]—j =0

Mathematics-xl

" | as accurately as desired.
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of Trignomatric Equations

=% D.’?I—B'iz[)
4

o 22
(' E=_?‘=3'14{Appmx.j]
= 0.71-079 =0 s

= 008 =0
This agreement seems quite good for a graphical approximation.
( Note i )

(1) If the graphs intersect at more than one point, the other solutions of the
equation may similarly be estimated. '

(2) We could have estimated the solution as coordinate pair (g,y). However, the
variable y does not appear in the original equation. Hence, we are .
interested only in values of the angle that satisfy the equation.

(3) A process of successive trial and error with use of trigonometric tables or
scientific calculator would give the x—coordinate of the intersecting point

P

f. Find all solutions of the trigonometric functions graphically.
2 3 ;
(i) sinﬁ':iz_— (ii) c059=--\]—;— (iii) tan6=ﬁ \

(iv) cos @ = (v) tan® = -1 (vi) sinﬂ:.—_é-

|~

124 Inverse Trigonometric Functions

12.4.1 Inverse trigonometric functions and their domain and range

We know that if f: x—y is one to one and onto, then there exists a unique
function g: y — x such that g(y) =% where x € X is such that y =/(x). Thus, the
domain of g = range of f and range of g = domain of f. The function g is called the
inverse of f and is denoted by f".

Thus, fx)y=y=f'=x




Unit

(a) The
Repro

- S ——

. Functions 27 sotutions of Trignomotric Equation,

12| Graphor e Sl

jon e
faverse SIn¢ Fugc;f the sine functior

ducing the grap 3
() | =505

3

v

Figure 12.34
tal line test that any line y
- sin x infinitely many times. Hence the function

strict the domain of y=sin x to the Interval

It follows from the horizon = b, where b lies between -1
and,+1 intersects the graph of ¥

is not one 1o ONE. However, if we Ie

& A1 the restricted function y = §i

l_"“.-' 1]

nx -ZS<x gi; represented by bold

rve in Figure 12.34 is one-to-one an

n with domain [-—%,%] and range [-
and is denoted by Sinx (with capital S).
I is the inverse of the

portion of the cu
1, 1] is sometimes called

This new functio
principal sine function
The inverse sine function denoted by Sin’
function and defined by:

y = Sin”'x if and only ifx=Siny, -1 x£ 1, -—% <ys g
That graph of y = Sin"'x can'be obtained by reflecting
the restricted portion of y = Sin x about the line y = x.
The reflected graph of y = Sin~'x is illustrated

in bold portion.
Note [ ) Y— =

principal sine

I l};"".yijsriﬁqxnwmw.ﬂm-y'- 1s the'angle between -
—and E (both inclusive) whose sine is x.

72
P'MSUPB[“ﬁPt I that appears iny =Sinlyisnot! ‘ a2l Figure 123

an exponent ie. Sinlx# —. 2
[ S~ Sinx. l‘

PL b
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d hence will have an inverse.

Unit 12 crep

Inverse Relation of Gener.
eral Sine Fun
ctions

Generally y = sinly iy ¥
¥ SNk pives (he relation defi d b
ine

y = sin"'x if and only if x = gip
= jl"

for-1<x<1,yem

hl:— ari 3 i P
VArious Vﬂ!ues Cll)llll'led fU-I d paﬂifular] ¢
| represent

the angles for which :
X =5in y and
- are called \h
inverse va i : ¥
; rse values of general sine functions, Since I:g o] =3
Gk ) s iy
omain of sinx is not restricted, sin'x is not ; : >

This can be proved by vertical line test el e i U
Example 15: Find the values of G

(@ sin (%} L) sin'd)
- - " 2
Solution (i): Figure 12.36 shows the graph of
y = sin”"x for y € R. The line x=1 cuts the
graph at more than one point shmzving that sin”'x
is not a function. However the infersection of y = sin~\x

P e ovi v values of sin™ (=
and x — pr = jari i
p ides the various valu 5l 1 .IJ )

Hence from the graph in Figure 1236 the solutions

of y=sin™ (]_)are
2
i
L st
b 6 +2kw,keZ or )r=?+2krr.kez
: s
Le.ye [—6-+2krr,ke z} U {%ﬂﬂk}r.ke Z}
(i)  Only one of the above numerous values satisfies the equation

]. Looking at

]

) 1
= Sin-1¢ Ly, dhot 4 ot
¥=Sin"'(); that s, the value which lies in the interval [—

@_1'*1“”;‘

i e, R 2 1
the graph again A is such a value. Hence y=Sin~' (= )=¥y=
?
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n (with cap? ital A

d for Sin™"-
g inverse functior

is som.etlmfrs use

ponding inverse re‘lauons

after evaluating {heir COITES
(1), we seek

(i) Lety= Sin

Solution: 2
is 1. The}'ﬂIﬂ{"+ <n

the values of ¥ whose sine 1

e values , the solution of

a.,neZ}

_"v:--:..}*m e e

_ 6l e
e e

Out of thes
T ol ?_‘..E]
y=Sin"'(1) s 3 el-33

i =sin” (é) are
(i)  Similarly the solutions of ¥ =51 2

1U {2%+2n:z, ne Z)

[i;-+2n.rr.nez

However, y=Sm"{£) where ye [-

e 1
' (iii) The general solutions of y=sin L(—E) are

ye {—% +2n7m,neZ} U {—?—gf- +2n7}
iaqrs Tera i
However y=Sin"'(-5)yields y=—"¢
Important Results. The relationship f ) =yandff &
every inverse functions gives us the following important results.

. . g Fid
Sin ™" (Si =y if-—<gys—
in” (Siny)=y if-—<y< -

Sin(Sin~'x)=x if -1<x<1

omotric Equations

15

The notation A si i the followin

act values of U
| Example 161 Find (1¢¢ 3 i) Sin" =)
@sin"@ 6 sin” (7 2

for the general sine function sin(y),

i
——'—]1sonly y==-

3

— x that hold fof

Unit 12 |G"ph of Trigonemetric ang Inverse Trigomom
ﬂﬂ:hm“'m -
o of Trignomatric Equations

Example 17:  Find (i) -1[ 3
In-jtan (—) (i) Sir
Sin?| tan ™
] in [tan : ]

Solution; (i) We know that tanl"r__ : A
s

Let y=Sin"|tan 3%
[ 4 Jthen y =Sin™ (-1)

By definition Siny=-1,if-Z < <ys

(=]
::u m[::i

Thus y is an angle in the interval -E RN
al [ > '?-] whose sine is—1, it follows y = _%

i) Let y=Sin"|tan = B
( y = Sin [tan 3 -‘ Astan; =3 and 3¢ -1, 1
Hence no values of y exist which satisfies y = Sin™ (+/3)

J : i
Thus the solution set of y = Sin™"| tan E] is empty.

() The Inverse Cosine Function

In figure 12.37 we reproduce the graph of the function e

{(r,y) | y=cosx,xelR-1<y<1) 1

Because every horizontal line y = b, where b lies between -1 and +1 intersects the
g_mph of y = cosx at infinitely many points, it follows that cosine function is not

one-to-aone. ¥
| /_\ _— |
) " o% = is I
2 2 ]

Figure 12.37

However if we restrict the domain of y = COSX 1o the interval [0, 7] as illustrated
by the bold portion of the curve in figure 12.37, we obtain a decreasing function i
that takes on all the values of the cosine function one and only once. This new {
function is called the principal Cosine function and is denoted by Cosx(capital C).
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Groph metric and 19VEPE i
Unit 12|ropb ot Tsen i .
aq Ve
The principal cosine function 1S I l:c;md i
i -1 is
The inverse cosine function 5 L :
y= Cos™'¥ if and ouly if [ i
_] gx$ 1,an0 = = . o
s e sine function. Using g.cm.r.ﬂ propertics of inverse
Arc €0
This is also referred 10
1 biain o st
functions, W¢ OC (Cos -1 gy = Cos (ArC cosy) =X if |
as (Cos ™
=y if0SYy ST
Cos™ (Cosy) = Arc €0 (CosY) =Y if 0 =Y s
: : (Capital A) is sometimes used m.a‘leu‘d of Cos 1
N '-‘0“ rﬂ:: cosine function can e found by reflecting the bold
7 o 'm;‘_ the line y = The resulting curve of y= Cos™ x is show
i i 21381n y=2X
portion of Figure 12. : ;
in Figure 1239 in bold portion-
y
A
=14 i ,
—
1+ _b'* " e
G -3_¢ gsxsn

Graph of Cosx and Arc Cos x

Figure 12.38 v Graphof Cos=
‘Example 18: Find the exact values of : -ﬁ
- =1 us -1 1 - __.1_ £id | (___,_._]

(i) Cos™ 0 (ii) Cos (ﬁl (iiiy Cos™ ( 2 ) (V) Cos 2

Solution: (i) Let :.'=Cos'10. we know that
y = Arc cos (0) if and only if

cosy=0and ye(0, 7]

Conseque.nlly, y= % and Arc cos (0-} i %

p
Mathemalics-}ﬂ 316

Figure 12.39

g

Thus  Cos™' ¢ 1

(i) Lety = Cos™ (-

y = Cos (—5 ), we seek the angle whose cosi !
reference point in the first quadrant js £ i . e
Hence for negative sine w X

e Sine we go to Il quadrant by finding supplementary angle

oot - 2
)-JT—E'-—E—E[{L,T]
Hence Cosy.—._l g é\r_

g v= 3

Thus Cos~'(-Lyo 2%
( 2) 3

(iv) By definition,

ot

y = Cos ™' (-X2), if and only if
NE]

CUS}'=~?randUsy <r

.
The reference angle (Ist quadrant) is 5 But for negative cosine, y lies in the

second quadrant (as 0 <y £ 7).

Thus .‘l’zﬂ:—E:EE

AR R
Hence Cps™! (—ﬁ) = o7
2 6

Example 19: Find (i) Arccos (Cos2) (i) Cos (Arc cos 0.5)
(iii) Arccos(Cosd) (iv) Sin(Arcsin2463) (v) Arccos (cos 4)

Wwhere the angles are measured in radians.
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gt P

mus[ Pay atte
ctions.
eise function and 2 radians

Unit 12'|chptdw-vrrﬁnmmn r
l these values We
and their inverse fun
are inv

gtion to the ranges of

Solution: When finding
inci . nometric functions :

?Slnupasli:-l:g:.:rc cosine and Cosine (pl'iﬁCIPaU
is between 0 and T Hence
: Arc cos (Cos2) = 2 radians
(i) Let 8=Arc (Cos 0.5), then

Cos 8 =0.5 and by substitution

Cos (Arc cos 0.3) = Cos (8)=05

Giiy For Arc cos (cos 4), we see that cosd (gene : :
radians in the third quadrant and therefore cos4 15 negative. The Arc

n) of a negative value will be a second quadrant

ral function) has the angle 4

cosine (inverse functio
angle.
Hence Arc cos (cos4) = Arc COS (-0.653644)
' = 2.2832 radians.
(iv) (Arcsin2463)isnot defined, since 2.463 is not between —1 and +1.
(v) Principal function Cosd is not defined as 4 does not lie between 0 and 7 .
Hence Arc cos (cos 4) does not exist.

(¢) The Inverse Tangent function
The graph of tangent function shows that every horizontal line intersects

the graph infinitely many times, it follows that tangent function is not one-lo—one.
Yy

!

1 L
e .
1 : ! ’
| | | ‘
1l 1 [] i
1 ' : ‘
s 3::1 . l! l II =
- T 0 1==:: }11;!. n
Vilva
} !
! 1
| [
b ' i
Figure 12.40
- Not For Sale
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leads to the defi

nition of iny
: Crse tangent .
The inverse tangent function Taq-! gent function

is defined b

s _}'j’:'[‘an—l . :

x=Tany, where —o< < <o g *if and only if
L y‘:_

The or: 7
graph of Tan ™ x can be obtained as before by refl

b : ectin inci
function in the line y = x as shown below: y g the principal Tangent
EKI 20: i ‘
ample 20: Find the exact values of et
. =1 L : 3 :
(1) Tan (31} [:1[) Tan =] (_Jg) . = '_,-' iy = Tan"'x
(iii)Tan (—2’5 ) , . ,.-"V ST
Solution: Let - s i
H y=Tan 1 (0. ZEH /_/3'-‘? ik
We seek the angle y, LI y< = /L,:-
: 2 - ,ff 3]
whose tangent equals'1, i.e., ¥
¥=x =
Tany =1 .fﬂl'—%{}'ﬂ:-i ;: Figure 12.41
= y= ir.. = 2
4

Therefore y =Tan™ (1)=

N

(i) Let y="Tan ™"
y=Tan (—*f-’: ). We seek Ihea.ngieywhere—g <y<Z
PR

whose tangent —/3, that is

Tﬂn }':_ﬁ . _';1{)"{%

Th g . r
e reference angle in the first quadrant is = Since tan (- 8) = - tanB.
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—
Uit 12| amenarmssomec =7

T
Tan™ (”‘76} 58

Hence Y=

(i) Tan 5
l -"-an
the angles in the tange between = 5
37 . ;s not defined-
Hence Tan { —i-} is no

e21: Find the exact value of

mpl :
e g -1 _"E} (ii) Cos [Tan ' (-1l
(@) Sin (Cos™

1
iy Sec (Sin“l) (iv) cos [Tan (=]
5 y gle, ¥ € [0, 71 such that

2 Weﬁmlﬁndﬂlﬂﬂn
Jution: ()
Solu ? 5
s
3 =Zc0 )
or :,I':CUS_I (_'_} = y- GE[

Now Sin IIC:L';S'1 —‘Zr} = Sin(y)

x T
=sm(—-)=%

Tr

_2 Zfor which

(i) Lety=Tan" 1(~1). We first seek the angciye( ,2}
LAY

Tan}*:—.l :y=—4-e( )

is the
g LW d because Cos 15 t
Nov{;\ Cos (Tan™ (-1)) = Cos {:,r? = Cos (- 4) is not define
principal Cosine function whose an gle must be in the interval O to 7.
Since —1:- [0, ], hence Cos (—%} is not defined .

jtion ¥
Gii)  For Sec (Sin™ 12) ,let y = Sin ™ lz::smy= ]5' then by defin

Mathematics-X1

Unit 12 | Graph of Trigonometric ang :Inwm‘l'ﬂw.mmlel?unmuu:ud Solations of '
. - Trignomatric Equations

is the angle in the closed ing, Fe fF .
erval [-E' —2-] such that

Hence Seo(Sin™ 1)< se0(%) 2 _ 205
3

ﬁr:
iy e
-1) by

Here cos® is the general cosine function,

- (iv) Asinpart (i) Tan™

Hence cos [Tan (=1)] =cos ( ) = _:f?;,
J3 2
(d) The Remaining inverse tr:gnnumetric functions

The inverse cotangent, inverse secant and inverse cosecant are not used
very widely. However; we list their definition as follows:

(i) y =Cot x, where 0 <x< 7 is called Principal Cotangent Function
which is one—to-one and has an inverse.

y = Cot ™' x means x = Cot y , where 0 <y <r and
xe (—-:-r.", +w)

(i)  y = Sec.x, where 0<x<z, x= % is called the Principal Secant
Function which is dne—to—qnc and has an inverse.

y =Sec™ x means x = Sec y where

O<sy=<n, y#% and |x| 21

(i) y = Cosec x where -—';-s.r < %. x#0 is called the Principal
Cosecant Function, which is one-to—one and has an inverse.
n n
y = Cosec ™' x = Csc ™ x means x = Cscy where, -— <y < 7 and |x| 21

12.4.2 Domains and ranges of principal trigonometric function and inverse
trigonometric functions
For - convenience, the domains and ranges of principal trigonometric
functions and their inverses are listed in the following table.

Mathematics-XI




S —— |

L ——— : yS—l,)’ 3 |
e | e -, Z1-(0)

D, o %
. ek i1
o B xé-1,x21 ye [—E, E]_{O}
L ENT
].=sec“'x x<-1,x21 ye [0, ?3']'-{5}
y=Colx l_;E(':" ), yeR
:y:'{':‘-.'nt-"'.r xeR : ye (0, )

Example 22: Evaluate: (i) Arc sec 2 (ii) Arc sec (—2)
(iii) Arctan(3.5) (iv) Arctan (-2.3)
Solution: (i) Let @ = Arc sec2, which is an inverse function. By definition.
4
(=

Sech = 2, where 0 [0,7] - > }
We Know that  Sec 53!_ Dishiele [0, #]

e % i [} (5)
(&) Let 6 = Arc sec(-2). This is an inverse relation not a function. Theref

Pl pele
there are infinitely many values for 6. Since secd i negative, the referen® e
lies both in the quadrants (II) and (I whichare ©,=7 _i;. = —;
4

ez—_-;r+-—:‘§”‘

Mathematic

Unit 12] Graph of Trigonametric ang =
Ly l'hﬁmm&mmlm- =
Muuwm

Hence, adding the mu]tj :
PIES Of Il -
0eZiomz 12 periods of secie. 27n, we got
Tl —__ 3
3 ' 3 T, nisany integer,

(iti)  Arc Tan (3.5) is an inverse function whose solution must e in (_” T

Ty

: e ‘
Since exact values for Arc tan(3.5) are not known, we put a calculator in radian

mode, to get
Arc tan (3.5) ~ 1.2925 rad.

(iv) By definition of inverse tangent function —£< Arc Tan <= Using a
calculator we have, Are tan (-2.3) ~ —1.16

Example 23: Evaluate: (i) tan [cus“L(—lz]] @) L'm[Cos"(—l]]
2

(iii) Tan [cos ™! (-é)] (iv) Tan [f:os-'(..%;.]
Solution: (i)  For cos™ (--%J, we sec.k an angle whose cosine is {—}5}.
The reference point is % But cosine is negative in the II and ITI quadrants.
Hence the required angles are (H—%} and {:r+%), Adding the period

2nz we get, cos"'(—%]e [%ﬂnﬂ}l}{%’ﬂnn},nez

Now tan(%+znﬁ)=tan(%?5>=—ﬁand m(%’fﬂnn):m{%)ﬁﬁ

L lan(cos"‘(—%))ﬁan -235 U {tan %}: {—wﬁ.*’\ﬁ}

: 2
(&) CUS_I(—';':I=AFC Cos(—%]=2;ﬁre [0, 7] But ran(-?)=-1‘§ ‘

Therefore tan (Cos"t{}%)) = {Jﬁ} only
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(jii)  Again cos™ i:-")- ['——"’2“"” U{ = 4207)
T
2z At o

But since 5 and also = v ).

53

3K f principal tangent function. Thus
. Neither —3— nor == could l:ue the argument of princip .

Tan (cos™ (—«)) does not exist.
(iv) Similarly Tan [Arc cos (——-)] =Tan (—-—’Jls not defined.

Example 24: Evaluate

. o |28
(i) Arc sin(sin]—?'sﬁ) (ii) Arc_ sin (sm-s—)

; 297
(i) Arc cos (cos E%?{} (iv) Arccos (cos 7)

o
Solution: (i) As 1—2—3 3 [~% ,E] , it follows that

=5
oo ARk, %
Arc Sin (sin 5 ) # 5

12 g m., . 2m
However, since sin ( Tﬂ y=sin 27 +? ]=sin —5—

and-zie [_E +— ] we find that

5

2
Arc sin (sin Eﬂ--) =8in™ (sm—)F ?ﬂ
(ii) By definition of inverse relation of sine function
Agc sin (sin 12—”]: %

(iii) . Arc Cos(cosz—ﬂ) ;2'3

7

becausc% [0, 7.

Mathematics-X1
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But

Hence Arc cos (cusg—?i) =i
7

@ lies between —n/2 and 0. If angle @ is constructed
in standard position, as shown in F:g\m 12.42, then 5inf is found to be —

chce

Evaluate the following inverse relations of general trigonometric unction

cos 2= are n T
)§——— =CO8§ L 8 :
7 ( -31'-]- 7 ) _ms? and—_;e I{Lﬂ]_

(iv) = By definition of inverse relation

i s of general sine function, we see -
29 Y
Arc cos {cn:hs.-—_:'E ) exists when 1
Arc cos (cosgﬁ )= s 1

: : 7 7 oMe T X

Example 25 Find the value of sin[Tan™ (-x)], x being -

a positive number i :
~ Solution: Let Tan™ (-x) = 0. Then tan 6 = -x, and ' Figure 12.42

sin[Tan™' (=x)]=

V1 +.1:z -
1+ x s

EXERCISE 12.4

arc cos (—-J—:) (iii)
Compute the foliowmg expressions

(i) arc.cos [tan %1 (ii)

(). arc ‘iiﬁ{ 1.) (ii) arc tan(—

3 r 1 ‘:__ : :
Sin[Tan (‘_fin o

= . -4 o
(iii) Sr‘n[.arc. cos[%ﬂ (iv) tan [arc ws(-s-)]
Find the exact value of each expression.
(i) Cos [Sin“%] (i)) Tan [Cas"%]

() Cosec [Tan™ ()] () Sin [Tc;n"(—l.}]_ |



12,43 Graphs of Inverse trigonom

” ric Identities :
m?“ﬂmm Arc secant, Arc cosecant, or Arc cotangent functions,
thl o5 : ct values are not known, since most of the calculators or computers
when their exa

ed for these functions. For this purpose we introduce the inverse
31::: gcr;gmﬂzlﬁuncﬁons The procedure is summarized by the following inverse
of t )

identifies:

A 1
= [ T e
i o S (%),x;eﬂ 2. Sec”'x = Cos (xLx?t(}

1
= P I 1
3, Cgt"_r:’['an"l (-}__—) ,x=0 4. Cot™ x = n+Tan (x) , X<0

5. Sin'(~x)=-Sin" (x) 6. Cos™\(—x) = n—Cos™'(x)

7. Tan'(-x) =—-Tan™'(x) 8. Sin"'(x) = % —Cos'(x)

Proof. (1) Let y=Siﬂ_1i. x#0 D

1
Siny

= s‘m}r=l 20 = =X
X
= COSEC}’=I = }-=Cosec"x (H)

From (I) and (I) Sr‘n‘l(-l—]=Cosec'1x
X

Similarly (2) can be proved.
y= Cot”'x  where x>0 (1IT)

= y=Cot'x, O<y<ap =Cotx=y,0<y<m/2
= UTax=y, Ocy<al2  =Tanx =1y, 0<y <2

" Mathematics-X1 L

Un

it 12 |Graph of Trigonometeic lndlmwmmmmm&mw { Trignomotric Equations
a

= x=Tan"'(1ly) where x>0 (Iv)
From (II1) and (IV)

To prove.(5), let
= -Sin~" (x) . V)
= y=SinT@® = x=sin (-
= xr==S8in(y) = Siny =—x
= y=8Sin"(=x) (VD)
From (V) and (VI)s Sin™! (=x) == Sin ' (x)
Similarly (6) and (7) can be proved. Finally to prove (8)

= .1
Cot™'x = Tap™ (%),x>0

T o sl
lct9—2 Cos ™ x (VI

. = F
ie. Cos™'x = 5 -0=x =Cos(% - @), for 05%_953

o "SIy NS SR '
Now 0 EE- —08< 7 implies —ESEIS-Z— and in this range for 6, Sin0 exists.

Hence from (5) x= Cos(f——B]=Sin 8, where Be [--E £]
; 2 gt

Now x=Sin8=0=Sin"'x (VII)

Substituting 6 from (VIII) in (VII), we have Sin~'x = 2 Cos”'x

Example 26: Solve the equation  2Sin~"x — Cos ' x =
Solution: The given equation can be written as
T

28in'x~Cos'x + LG +—=x
2 259

2| &

ie. 28in'x 4 SinTx= 7 ['.'sin" .r=§-ccs'li

or 3Sin"'x=m

A
= Sin~'x =£ = = Sm£= ﬁ
3 3 2
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% 4 2 ot
Example 27: Evaluate Cos (Sin™ 5" Cos™ %) without tables or a calculator. |

g -3 :
Solution: ‘Let x =Sin“’% and y =Cos ™ r then

Sinx:é4 and Cos y =% Where x and y are in 1st quadrant.
We have C‘os-(x +y)=CosxCosy-Sinx Siny.
We know Sin x, but need to find Cos x, where

Cosx = y1-Sin’x ,as Cos xis +ve in Ist quadrant
16 3

3 -8
Again we know Cos y but need to find Sin y, where

Siny= 1-Cos? y, Siny is +ve in Quadrant 1

9 4

) 25 5
Therefore Cos {Sin 5+Cos E] Cos (x+y)

=Cosx Cos y - Sinx Sin y

i 5.3 4.4 7
= e K == B = ——

i TR T 25

N

Example 28: Evaluate Sin(Arc tan % — Arc COSE )

4 ;
Soluﬂongt u=_Arctan% and v=Arccos§, =

=

then Tanu = l and Cosv =i
2 5

T s
As Tan u is +ve, and u.e [_E'_Z_] hence u must be positive L.e.

ue [0, E]. Similarly Cosv being positive means v € [0, % ].

We wish to find Sin (u — v). Since u and v are in the interval Figure 1243

- - . Mathematics-XI

and we may construct right

angled triang| :
These triangles show that gles for u and v as shown in fig 12.43.

Si“l_l: ] .Sinv—i
V5 =3

2
Cosus=
Tg.etc.
Hence,
Sin(u - v]:SinuCosv—CusuSin v
1 & 231 4-6_ -2 _2f5

‘\[_5\’-_5 5J§=3_E= 25

"Example 29:  Write (i) Cos (Sin™' x)

(i) Cos (sin™ x) as an algebraic expression.

Solution: (i) To simplify, lety = Sin~'x Then Siny =x for ye [ﬁgr_ i’_]
279

We wish to find an algebraic expression for Cos (Sin™'x) = Cos y

. T
Since ye [-—E,-Z—J, it follows that

Cosy= +41-Sin'y =
Consequently, Cos (Sin™'x) = 1-x*

(i) Let y=sin™x, —1<x<1 which is an inverse relation
=& = sin y is not a principal function. Hence its argument y is any real

number of the set IR . Consequently. Cosy = i\h -sin*y = +y1-2

or Cos (sin"'x) =++1-x*

Example 30: Express tan (Arc sin x) as an algebraic expression in x if -1 <x< L.

Solution: Let y =Arcsinx = x =Siny, ye[- E %]

Since tan (—%) and tan (%) are not defined, we seek to find

Mathematics-XI
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T T : 4y Py)
—— = —-—, =] forwhich —-1=x=1
m?fm’:"Efz‘z);[zzj _
,; LT
@i  If xis positive then ye (0, 5) . Y
: . ¥ o =0 1
Figure 12.44 (i) shows the triangle for y. 0 i
(li) If xis negati\"'e, then (i) .
ye (-g,-:]] and the triangle for y is shown in Figure 12.44 (ii) 0
. i r L'
; e Figure 12.44
From each of the triangles, 4 y’j =r? {sm}' = }4‘? =X ]
2 _ L2 o2 o222 yf2
S cis Sl bl e e 1)

=  x=ryl-x?as x is positive in
both the cases whether

ye (0, £) or y E‘l:—izr', 0) negauva 1fx15 negatwe
2 o
y PR i e N
tany== = i.e. tan (Arc sin x) = =
o : 7 -4 rl-x* 1—x"
Example 31: Verify the identify
1 Cos™x= Tan™ Lok Y |x|-=:1
1+x
1 I-x
= =l 1 —y=T o i [Dt o
Solution: Let y = Cos ™' x, we wish to show 7 an Virx

. ‘ y 1-Cosy’
By half angle formula ~ Tan = = f-—
4 % 2 1+Cosy
Since y = Cos ™ x and | x| <1, it follows that | Cosy|< 1 and ye (0, 7 )

Consequently % e [0, %] and thus Tan %.‘: 0

We may drop the absolute value, obtaining Phi e 1-Cosy = 1-x
: 2 1+Cosy l+x

Mathematics-XI .391-} ;

_ tan(Arc sinx) itself is|
posmve if x is positive and

e [Sm".ﬁlr-l-Sm"B:' i

2 -Sm ‘A Sm"B Sm"(Axl'l Ag'_.:B.

3 Co.s' 'A+Cos 'H li'?.r:r.';'I (AB—

1-x

; Prove some i Ty
formulae of inverse trlgonomemc funcho mportant addition ang subtraction

e ——

_— S

Let x=SinT'A * = S
=4 3 = i1
nd ¥ Sin B = sf"y =B

Since Cos”x +Sin’x =1, 50 Cosx = 4= Siny = 4. A2
For Sinx = A, domainis |-Z, Z| iy whi ine i

main is { > 7| in which Cosine is positive, so
Cosx=1-A%. Similarly Cosy = +1-B* . We have
Sin(x +y) =Sinx Cosy +Cosx Sin y '
Sin(x+ y) =Sin xCos y+ Cos xSin y
= Sin(x+y)=AVI-A* + BVI-B® = x4 y = Sin- Y(a1-4% + BVi- B*]

= Sin"'A+Sin"'B = Sin” {A 1-A

——

313’)

1

- e

Pmof of thiS formula 1s similar to (1), so is left as an exercise

LC[ x= Cos A= Cosx=Aand -COS'IB = Cos y=B

We have sinx=+\1- Cos’x =1 - A? :
For Cos x= A, domain is [0, 7] in which Sine is positive,

S0 Sin x=+1-A% Similarly Sin x=+1-5
Now Cos( x+ ¥)= - Cos xCos yaSr'u xSiny

| = Cos(x+y)= AB_JI_ T I-B' = x+y=Cos" (AB--JI —A1- B‘]
= Cos"'A+Cos™'B= Cos“l(AE—u' -A*V1-B )

Mathematics-XI JREY




Unit 12 |Gﬂphr Trigonemetric and lnnm']'i-lzn‘l'on;dﬂ:: Funetions and Selutions of Tri

4.
5
Let x=Tan'A=Tanx=Aand ¥y =Tan™' B = Tany=B. We have
Tan x+Tan y A+B B ip ot AT E
Tan(.r+y]-—-——-———-.—_bi"a::(x+ y]_ —5 = Tan™' A+ Tan™' B =Tan —

1 Tan.r Tm: ¥

e e

ET “A-.;'mrls = Ta" 1‘1 . ;.
Proof is left as an exercise. '
Example 32: Show that 2 Tan™A=Tan™ - f’; -
Solution: Put B = A in the inverse trigonometric formula

: " .
Tan™'A+Tan'B=Tan™ it , we have
1-AB

A
Tan"'A+Tan'A=Tan™ =Tan L-z-—-;
-A-A 1-"A
: 8
Example 33: Show that Tan™ % +Tan™ % ~Tan™ 5 =§

" Solution: Using addition and subtraction formulae for tan™ , we have

Tan™ 2+ Tan™ 3 e [Tan" 3 +Tan” 3) _ran L
4 5 19 4 5 19

33
— =
=| Tan™ ~Tan' —
l—=x-—
15+12
=| Tan™ 20 —~Tan '-3;
o2 19
20

gnomotric Equations

Find x, if
< sl L
!) S = = —— : e
( e (i)
-'Show that
et - Fin :
(1} Sln X+ Cos™x= 5 . ﬁ,i) Tan™ x+ Tan™ L _T
Tl

Evaluate. (i = —Cos i i e
valuate (1) Sm[ COSIS ) Sm[Arccns%Ht}'r

© Equationy
; 27 ’
e 27 8
=Tan' 20 _ ———
[ Tan™ Z=1g, 11 19
20 Lol
51— 33 11 19

‘-Tﬂ' |‘————g,i___

, 425
29+216 1 e =Tan1= 2
200 4

Gi) sec(Arctanx)=vl+2 GV tan(Sin7'x) = —=

4

Show that (i) Cos (Sif'x - Smy}— (1-x0- }']+I}'
(i) Cos (2 Sin™"x) = 1-22, “1<x<+1

{iii) 2 Arc Cos x = Arc Cos (2x>-1),0=x<1

{(iv) Cos (Arc tan x) = for x=0

1
_-»J'].+.'«:1

Express the following in terms of Tan™'(x)

@) Sin"'x (i) Arccosx (i) Arccotx
Verify that:

@) 2Tan"'( ) + Tan™ (——] = %

-

o 15
( el _ e r2y=Cos M (—
i) Sin (85 )—Sin~ ( 5) Cos (1?)



verse Trigonometric Functlons and Selutions of Trignomotric Equations

v
Tan’ N #_%.'C-b' "(1—“-{] ;

I+ x

HCox a3 )T (o)

{_‘!‘"]:_-J. X+ ‘t"}’z.q'zle

gonometric Equations
contain trigonometric . functions are called

have an infinite number of solutions
n. For example the equation sin8=0

12.5 — Solutions of General Tri
Recall equations that

trigonometric equations: These will generally

due to periodicity of the trigonometric functio

has the solutions: 8 = 0, &7, +2, #3m,... which can be written as: 0 = k7,
where k is an integer. In a trigonometric equation, the unknown may not be the
angle itself. For example in cos(2x+1) = 0, the unknown is x while the angle is
(2x+ 1).and the function is cosine. We first use the definition of inverse

~ . trigonometric function to get the angle (2x + 1) and then solve for x to arrive at I
the solution of the equati.on* B '
When a trigonometric equation contains more than one trigonometric function,
trigonometric identities and algebraic formulae are used to transform such

trigonometric equation to- an equivalent equation that contains only one

trigonometric function.

12.5.1 Techniques for Solving Trigonometric Equations
Many trigonometric equations can be solved by methods already known. The |

" following examples illustrate by these methods.
1. Using Factorization. [
Example 9: Solve tan’x + secx- 1 =0 in [0, 2n)
Solution: We have, tan’x+ secx—1=0
Sec’x— 1+ secx—1=0 using id&ty 1 + tan’x = sec’, '
or tan’x=sec’y -1 i
— Not For Sale
B - . Mathematics-X1 JREG

(secx +2) (secx — D=9 B
secx=-2" or gec actorizing
X = . "

1 Pnnciplg of zero prodcks

cosx = — 1/2
Using the identity cosx =1/secy-

5 or cosx = |
x=2m3,4n/3 orx=q .

> ;
All these values check. The solutions in [0, 27) are 0. 2
2 ' EIG and 41'&’3

Example 34z Solve . 2 sinxcosx— siny= ()
Solution: 2 sinxcosx- sinx= () _
= sinx[2 cosx— 1] =0 (l)

Equating each factor to zero, we get (ii)

sinx= {j

(ii)
or COSX = — )

2 ‘ (iv)

The equation (iii) sinx= 0 is satisfied b el
2K Y 0and 7 giving the soluti
{2k} U {2k, ?T-_IEJI],wherckl,szZ. s o

Thi.s is all even multiples of 7 {2k;7 } and odd multiples of 7 {(2K
which can be simplified to (k7 , ke Z). 2+ )

The values of the x satisfying (iv) in the interval [0, 7] are: 2 and (27 E) 2L
3 o

v 05x= T

k T 3
(k7 ) U {(2k7 + E}U{—;ﬁ +2k7 ), where ke Z

2. Using trigonometric identities

[‘l‘ : e 11 ¥
“Ximple 35: - Solve 4 cos? x + 4 sinx—5=0,0<x<27
Solution; ' Z s
? luﬂll- We cannot factor and solve this quadratic equation until each term
Vo . an cos” x in the first term
ves the same trigonometric function. If we change the s* x in the firstt

to 1 - gjp2 , : =
sin® x, we will obtain an equation that involves the sine function only.




Unit 12| Graph of rigonometric and Javerse Trigonometric Functions and Solations of Trignomolric Equations '

4coszx+45inx‘5=0 1 at
4-:1—sin=x)+4sinx—5=u . cos’x=1-sin'x

4 — 4 sin’x + 4 sinx — 5=0 Distributive property

_4sinx+4sinx-1=0 - Add.fland—s :
multiply each side by -1

5, 4sin"‘x-4slnx+l=0
(2 sinx — 1)* =0 Factor
2sinx-1=0 set factor to 0
sinx =2
x = /6, S1/6

: ; 1
Example 36: Solve sin2x cosx + cOS2X SINX =775

mplify the left side by using the formula for sin(A+B)

Solution: We can si

sin2x cosx + cos2x sinx = %
sin(2x + X) = ;%
sin(:ax) = %

First we find all possible solutions for x:

X 4+ 2kn or 3x =3!Tn +2kn

+2—l3{3 or x:L—l-’r%’Eﬂ .. Divide by 3

*3x= k is any integer

EREN

x=7

]

=1,if0<0<2n

posite sides of the equal sign, and then
to write the

Example 37: Solve sinf — cosd
Solution: If we separte sinf.— cos0 on op
square both sides of the equation, we will be able to use an identity
equation in terms of one trigonometric function only. '
sinf —cosb =1
sinf = 1 + cosf
sin’0 = (1+ cosf)’
sin%0 = 1 + 2cosB + cos’f
1—c0s?0 = 1 + 2cosd + cos 0
0=2cosd +2 cos*®
0=2cosf (1 + cosb)
2¢c0s0=0 orl+cosf=0

Add cosf to each side
Square each side
Expand (1 + cos0)’
sin’@ = 1 — cos’®
Standard form
Factorize

Set factors to 0

- Mathematics-X1

cosf=0 or

: 0 =mn/2, 3n/2
we have three possible solutions, some b

: s =

i : hich
squared both sides of the equation in step 2. Any Tay be extraneous because we
. lime we raise both

cosfl=_ |
o f=q

tion to an even :
Bqluz:‘l o i ok hpowe'r' we ha\r"E'- ihc WSSlblllly of i sides of an
solutions. 1st check each possible solution in gur o lplmducing extraneous
Checking 8 =n2 Checking 8= ur original equation.
sinm/2 - cosm/2 =1 sin - cosx = | : Checking § = 3n/2
1- ? = ; 0- (—-1} =l ; sin3m/2 =cos3n/2=1
=1,tru » -1-0=
= is i i i I=1 true - :
g=m/2 is a solution 6.= 7 is a solutio, =1=1  fike
n ¥

0=3n2i _
3. Using Quadratic Formula 3n/2 is not a solution

Example 38: Solve cos2x = 3(sinx-1 ) for all eal values of x.

Solution: c0s2x =3 (sinx - 1) gi
1 -2 sin’x =3 sinx - e
o X ' sinx—3 double angle formula
- 2sin"x+3sinx-4=0 quadratic equation
i _‘-3& O-@R=4
e i use quadratic formula

Si['lJ‘.'::?’-—l-T\'_'I'ﬁ

sin x=-2.351 or D.SS—I 8
The first answer, — 2.351, is not a solution, since the sine function must range’
between — 1 and 1. The second answer, 0.8508, is a valid value.
X=sin” 0.8508 + 2km,  x=m—sin" 0.8505 +2kn
In radian form,
X=1-0175+2kn x=2.124 +2kn
Example 39: Find the general solution of the equation.
S i sinz.x + 3 sinx —2=0
: quation is quadratic in sin x, we get

i =3O8 _ =355

Not For Sale
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- d A Reduction Identity

" functioni.e. acosd + bsind =c¢

mumemwmﬁmu;ﬁﬂmhm of Trignomotrie Equations

: 1
= sinx = E.-—Z.
1 i 1 —
1,1], it follows that sinx= 2 has a solution but sin x = — 2

1,1].

sinx € [—
has no soluuan because -2 € [~

T S .
et is sausf‘ed by the reference angles s and T in the

The equation sin x =

interval [0,2r]. Thus the general solution set of the given equation is

{E +2nm) U{%’i + 2nm}, where ne Z

Applications of inverse trigonol
graphing to study the behavior of some wave functions and also in calculus and

space sciences. It involves an identity to reduce the form of a trigonometric linear

where a,b,c are constants, either a = 0 and b#0

Example 40: Solve the equation.

ﬁcos& sin@ =0 (i)

Solution: Compare the given equation with the expression

a 5sin @+ beos € we get, a=-1, b= J_

(ii).
a N b
Wolknow that r=aP+ B2, cosdt = i SN = T
NE]

I b
= r=2, cosot=—— ,5In0L = —
2 2

Let —siné + J3cosf =rsin (6 +0)

The reference angle for o is 3 but since sin o is positive and coso. negauve, the

angle x lies in II quadrant.

T 2 . :
Thus @ =(z-7)+2n7= ?’Hzm, neZ (iii)

Substituting (iii) in (ii) gives
=  —sin@ +4/3 cos@ = 2sin (6 +0)

metric functions are very useful in

- 1. Solve each cquauon giving general solutions,

12 i Graph of Trigonometric and Inyerse

F'"“"mlndsﬁmh“m 3 i

—'231n(9+___) S
= 0+o=kz s kez

= =k __23
E T'znﬁ.nez

or 6=_2%
3 +m’rtmEZ

e e
aBml= PMEOZ PR TS nr e

CEXERCISE 12,6

: 3

e, e @ sinx=2
‘(i) tanx =—f3 ) (iv) cos(20-"Fy=_1

2
(v) sa:cE =-2 :
5 (vi) 4dcos’x-1=0
2. Solve gach equation. Use exact values in the given interval.

(i)  (sinx)(cosx)=0 ,  0=x<360°

(i)  (sinx)(cotx)=10 2 ; Osx<2rm

(iii) (secx—2)(2sinx-1)=0 . 0<x<2rm

(iv) (cosecx-2)(2cosx-1)=0 0<x=2x

3. Find the solution sets of the following equations.

@) cosO=sind (ii)tand=2sind (i sind = cosecd

(iv) 40032(%] =3=0 _(v)sinx cosx = g (T Ch Rh 2.2
4.Solve the following equations. _ .
(i) 2sin’x-3sinx+1=0 () oot =

2 2 2
(i) cos’x—sin'x=sinx (iv) cos 2x + cosx +1 = D

: 3
(v) 1-sinx=2cos*x (vi) tan’ = Esec_x

(viii)sin6 + coso=1 -
Not For Sale

Mathematics-XI

(vii) 3 - sinx = cos 2x




('} Solvc sin 4x cosx + cos 4x sinx=—1 for all radian solutions.

@ §+~25—" ® e Ze @ 2+ Tk @ T+ 3k
4 -'...:(u) Tan 1/3 —Sec™! (-2) is equal to
i ‘) n (b) —n/3 (c) n/3 (d) 2n/3
¥ IfSi'x =y, then '

(a) O<y<n (b)—n2=y <w/2 (c)0O<y<n (d) -n/2<y < n/2

_ sin (Tani' x), | x| < 1is equal to
»r i x 1 : X

hotpls [ -~ {b} c = ! (d} =
. [a? V1= x? N/ ( }\1'1+ % m afl al

(v} Tan™ {i)- Tan"(x_yj is equal to
! Y x+y

1a) X T L 3
@ 3 ®) 3 ()7 - (@ =3

2. Find the period of each function. ;
FEIAE : : o 3
(1) —2cosecm x (ij) 6tanmx (i) gcos[-—"_?—_a_—]

g, 4

3. Solve the following equations.
(ii) sin‘x+cosx=1

- (i) sim2x=cosx
“ 4. Prove the following.

- S

(iii) coecx= \;'3_‘+cor,=:

() 2Taill§ S_'% (ii) Tan-ﬁ—+Tan%~Tdf{%=7j
. -1 ] 35 mot 1 =1 1
(iv) Tanﬁ+Tan6—Tan 3 Ta 3

Not For Sale
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‘,\|]H\"'('I'-";
ey =

B @i D

NRAETE 5T i L e AN i S 5 .
b % i . 2 = d
—_ — 4b i Q i :

== @ V2+)+(2+1)

@z-ﬁqﬁi
i-m—f oo D 1+

) -

EE o 4.1 4 19
Y —+—i, Real part x=—,Imaginary party =

— 29 29 29 29

& 3 1. 3 I inary party = =—
L “E—;I, Real part = maginary part ) 2

S

= F4

. 1] 2t tias
"ﬁ\ ﬁE—E:‘, Real part .\:—E,huagmar} |l

Alathemates Nl 401




2_p?

g & - dabi e Aa __—4ab
< » Real part= —and imaginary part = ————
B Arry @y aby S P

g , ~ 1, Real part x=—land imaginary part y =0

_ Q = +308i Realpart = 5 andimag:‘narypar:=3—08-

169 . 169 169 169

I:‘XERCISE ik

g z=-2490, w=2-6i @ z=d—jw=1-j @z= 1, w=3=2i

Q(‘z+2}|"z }+31)(z 1=3i) @ (\r¢+w”_z)(ﬁz-—\f¢j
Q (2 + 2i) (2:—2:')
-Yes, it is-a solution @ —-21-— f‘} %
R RENE A o @+—+ i3 @) -21£i5
@ 0, Eiii«f?_: @ 1, —Z—i-i—i\@

@fr (2=2) (z+0) (z=1)

ijﬁ
2

In-: BE: B %+%:‘ 7. Ny WERET

@ x- [g i :ﬂ Qx:[s s 3]

} Au=—4,A,=
B A, 9=6An=6Ay=2A,=1,A,=51A1=_14

B @—12 ng @ 21 Q-il EQ—ZQG
@ @ Singular 0 Non-singular Q Singular E A=0,%t2

% %x=—l Q}::U,-—l @x:ﬂ,—g
' [1

15 =10 =2

R

1 =% . 53

R
= 2 2
| 8 8 8]

EXERCISE 2.3




Answers sinehnt -
St A ] [ 2. 4 5 Sl
2 2 “hant SRR g oy A S
Q2 S | @plo 2 o/ @1 1 0 S
s < 7% 1 LR s i
. 3 5 .
1”274 T4 3 3
3 5.
gt T3P
1
> b @H-z—b
% 11
ety L &_
2 SR yk=b
L3-8 Ll
2 2773

Q::;:-—?., y=1, z=3 ﬁ x=2, y=-2, z=3
x, ==, X, = "'t, X, =1 e >
BN @ ivia couion @ - : : | UEXERCISE!312)
1 - E E - - - - = - !
I=1, m=3t =t %=t 0 @ +7 € 15121 & 100167 @ 5 & i
|

: & Fasls M T
> : 3- 4-
G EBOT O3 QT
Ll PEUSTIRN . e
Length of AB =2~J'2_9,unit vectorin the direction of AB= _5_,'+ _\% j

L -4 BB Q components; 3, —3, magnitude 3v/2

@ components; 4, 2, magnitude 25 @ components;3-2, L, mﬂgﬂimdﬁﬂh_d:

5y

ﬁ . Q 2b @ 2¢ | Q components; — 1, —6,—3 ,magnitude 46 Q QU=1: 1)
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Answers _ _
@ = 56)9@(12—5)0 P(.2.8) I. 27— 4]+AE

s
10 Dnema_lly--jH-s-Jr +§k' Externally—3i+3k (11,

‘lﬁﬂi‘fu No real value of & n z=-3

-9 915 QIIQ-IZQ?.Q
P
-. i I—B‘J—EI’C
Ex 9 90° ‘ 73" (approximately) Q
_26 0 27
. Qm"f}' h. el

mo; 0
EXERCISE 3.4

m o 2 g Q _i+367+22% -
. = ]
B —=(=i+7j+5k) ——(-25i+3j+13k
254‘3 0 F_gog,( i+3j+13k)

QY v @ ivin @ 38i+4j-18k
mO: 05

@ i Quiii € S-iF
S5T+6]+2k B -
Ol MY @ =

(approximately)

T*—fu mwurk 6 units m 12 units

Mathemalic

RO —— __

@.3@%

[ A :REVIEW EXEHCISE 3 (LA _
m0.0. 0.0 8 8.9.9.
mi—-gﬂ 27 - ‘Ilr—3J' . BB o n =

W -1

Esq:mre units. (I V3336 square units.

"EXCERCISE 4.1

% % Finite @Inﬂmtﬁ 9 Infinite 9 Finite
@--@wssm D isn @ llL
- 9 27

B @m - €3.2.3.2.3€ 33%%%

8 € 15101051000

0 1,8,28,56,70,56,28,8,1,0,0,0

- 2 2
® .0
T 2
1,6,15,20,15,6,1,0,0,0,-

_Iv‘l'.llhcm'utius-}{l 407

& o014

- —— T

2 ®w1+1+3+5+7+9° -1+2-4+8- 1602 23 +...




15
-920,23,25.29 15 0 6——?5- m 8

Qﬂnes nmem“& 16 515 182‘?&_:;, ,_%,%,;l 1

l-‘” E;g nn=26 4.
ﬂ k:l , the sequence is 13, 19,24, ..one “ '37‘2’ i

el 3m Misus [l 45 hours $ 18500 @ 15
Q @—III Qa +b2 BB 014 23 32- :

. EXCERCISE 430 :
s -

m 920‘1’131111: -29 , sum: -200 Q 11" term: = , sum: o

Qaﬂ=50 ; S, =442 0%1 =60 ; d=5;n=21

——

2
ang; :19:5?- Q n=15 ;d:; LA = 12375
o 6. 12.16:16,12,8 [ 2.4,6,8:8.6.4,2 B -2

B Gn-4) 21078 - Rs.280, Rs.260, Rs.240, Rs.220
O 576 feet Rs.465 340 EEE f: T; El%
EXERCISE/4/4
1-951545 135, 405 Qs _4,2,- 2
Q;-l——— Bl -2 B 2% m 1
B =13 20005 B ) 20200292 @ 36036 &

=

._3(2w_.]) 55 @ um

-------

64 463
Q = QF 4+222 P15,
6,5, =511 @ a,=3,n=6

11 - 8 18 97 41
B 421-,—; 5=8 O € - — — -
@: 51 I"“}_ ﬁ%n Ds P
s 1-— [ 18.12,80r8,12,18 [EE 2 N7
24 1. 24 24 27
F g =— == —+—+ B 20— fr
12 RS = 1 2

EEE  Rs. 16384; Rs. 1073741823 3

== mu@?

T S L /‘_\ = #“:‘?‘*1 T e PR N
=26 £ 13 == gt 51 7§ ll 13

B < A=2925H=291,6=29 € A=-111H=-1168,G=136

16, 24

a

-y
X

QF A=x,G=%|x*-y H=-
5433 3§35

2373173947

190 0 0 0:0: 0 O
{ ‘@rﬂ:?—n

D ti=-1 @s ——m n), Sy =35
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o
B =180 19 o 517

| 2

_ and nth term is 6n-1 - 156375
and 18 (o) 18, 6 and 2 B 25 B 196.575 feet

o O O
n[n+l] (n+2)° @ 271(ﬂ+1;(2n+1)

9 [4;11—1
L Q ,;(2;13—”} Qn(]ﬁn’—lﬁn _on+3) [ 33x100x101

o n
- 50% 3333 - ?i(?l;'U “ E(2J11+3H+7)

(n+1)(2n+1)(n+3) A m—ﬂ___(rf}{ﬂ SO +54n+25)

n
.
n‘—(nﬂ](n +3n+l) 0 4"” 4-n( n+1)[n —u—l]

1-(3n-2)x" ! 3x[l_— x""}

i+l
mG: -1 @ —— T
- 1-(6n-35)(—
22 @ ra-L-2 @O0

147x 8% 9 = i
.-___(I_x)i (1“3)3 n n2 n 9 m 4

_Gafl- (-x)""]
(1+x)

sxmnsm‘ 3
IE '3r12+l;%-.n(2n2+3n+3} B 312+ nn(n+1)?
B 35 L n(nt ) nes) [ 3 +2;Ei15{3" ~D+2n
. 32" -1);32™ -n-2) u 5+ +27, ii‘_f—l+2'fn

n H :
EA 65 O oL
- 2(3;;4-2)

n-1
- 4(n+4)
ﬂiﬁﬂ EWIEXERCIS

—P NN N ' @a@a

B W - SUCHEDCDN . F1- B2 'ut? 7
-z (l=2)

-% n(n® +4n® +4n -1 @ nin -+-])(3n +5n+1}
n+l

: #%:-. n (u+1} (3,. 1) @ n(n+1)(4n+11)
T 4 . T

& --n(n+1)[3n  23n434] & %(4;5 _1) o %(n1+3n+5}

——

1
» 2An~ ”"'TF

2(1—?—)

——  (n+Dn @252 Qﬁ

6. - &? (n+D)! (n+2)!
@’2 6l G0 i 82 3, D! _2@6 @Jg

5 g ey 1‘ '. b LE 5 ~U 5
B 20 30 %3;60 -ﬁn & & s
n 40320 m ‘5040- 120, number of even numbers is 43 - 0125

c- T Rt B —



A 3360 Q e
150 [ 37800 szn

5 Ea
’m . ,ﬂ'??l- :

e

-

T

o e A

REVIEW/EXERCISEL6) ]

mﬁacﬁaﬁ

......

@'b 1+ 7xy+21x%y? +352°y +35x%y* +21°y* + 7255 + 57y
@ —1~1:y3+5y2 +10y+10+i+%}
@56%3 @ -C, 25 .2y @ 6x° & 2268 Qams
2 e 2"
ﬁ;& =G 9—1140 Q p kel @ ‘gC"E
B %ma‘b’ @ 15";0? » and 5:23 a @ -252x"y°
There is no constant term. Q'}‘Qd Q 242

@ 24° +20a°b? +10ab® T, = -885735 To=—"c,12°4"
€ (EXERCISE 7.3

5 o Q 1- 1.‘r+ix1+i"} e
: 9 g 16




B ooy Bl —sssi0 [ 2+
EXCERCISE 8.1

QDomamf R Ra_ngef R

Q Domain f=R— (—4,4) Range £=[0,) 5.4 Q
Q3x+15 Qz 5xgl{x_4]*- Q f"{x):ﬁ @%ﬂﬁ

Dom(f)=R-{3} Dom('f":-;_R {1}
Range(f)=R—{1} Range(f}:R*{S}

x+3

@
®

I s T I ]
mn |
mEL 1
___I__u
- L
iy E
1
e L -
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_ By changing the values of b in the quadratic function, the axis of symmetry of the

graph moves in the x-direction

m /_‘-:',e‘:?»\fcncx: (0, 0), y — intercept: 0, x — intercept : 0, Axis : 0, opens upward

ﬁ‘ Vertex: (0, 8), y — intercept: 8, x — intercepts: £2, Axis: 0, opens
“ downward

@A Vertex: (3, 4), y — intercept: — 5, x — intercepts: 5 and 1, Axis: 3,
— opens downward

@ Vertex: (- 1, -= }, — intercept: -3, x — intercept: 1, Axis: 1, -3,
—~ opens upward 2
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Answers

(6,-2), (3,0), (4,0); unbounded

Fhei=1= =l g

||.|||||:£:?
Y
Pt

F

&

o N 8 E} : bounded
5T [E' 3]‘ (2 2

[EE] (-6,8), (5, - 3); bounded
Ty

ANSWETS

s it

(0,0), (2, 0), (1,4, 0, 6)

i

—

(0.6)

5 m’ X
(5] {3.0%%;{ o 4 ?}a
[3. l} [E. 3]. (0, 4), (0, 3)
_ . 2 2 5 5§

B @ Maximum value is 12 at the corner point (6, 0).
B @ Maximum value is 20 at the corner point (0, 4).

- @ Maximum valuye is 50 at the corner point (10, 0).
—— Minimum value is 4 at the corner point (0,2).

Maximum value is 84 at the corner point (0, 4).

== Minimum value is 7 at the corner point (1, 0).

. Maximum profit of R, 1140

if 16 bicycles of model A and 10 bicycles
of model B are produced. :

Maximum profit of Rs. 14000 if 200 units of
Product B are produced.
T —

product A and 400 units of -



Answers
Maximum profit of RS- 1760 if 8 lam

- ofmadellaal'ﬁi’md uced
REVIEW EKERCISE 9 S5

mo: O OO0

] 24
24 at two different corner points [T

ps of mudel LI and 24 lamps

- Maximum value of zis
[ Rs: 112, when x=2kg
- Maxlmum value of zis 600 at A (120

y=4kg

,0) and R (60,30}

nso® € ° @cc—s?flﬁ ‘b sin25° & s
I € sins9° € cos30" T7 <« «»

4
-2?—] and (5,% P

: @tanzsﬂ A_‘@:_"@$2+J§ ‘ﬁ?‘Z—J?_’ f:*x 243
2 T & 24
6\!--&«,"- erh.r"“o *_——2;‘_‘%_‘*—5 o2

063656 -ASB@_—S&A@Q—SS

--65 —_ 65 —— 65 N
4

“Q‘Yﬂn(9+¢]wharesin¢=3§.Cﬂs¢=g and r=5

“ . 2 8 15 2

i ys:n(6+¢)wh¢resm¢=ﬁ.cos¢ = and r=17

2

05 ¢ = —— and r=+29
cos ¢ /5]

stin(6'+¢)whercsin¢=%,
1
in (6 here sin ¢ = —, = — and y=+2
@’ysm( + ¢ ) where sin ¢ = cos ¢ \Ean ¥

EXERCISE 10.2

-5 12 -3 -120 119 -120 g A
13’13 12 2169 _ﬁ!ﬁg ﬁ 119 -

: @ o " cos5x—cosTx /% [sm 1?8"—%]:166”] @ — (sin A + sinB)

&nswers -

4P 3 CcosProosQ  25in40° cos3® € 25in50° sin2
.
ESIHE "‘%ZC{)S—CO

27 = -"“Wm'{a""- Ty :
s b

ll 2=3,b = 3\!_,3 60"6‘%}3—57? ¢=136.6, a=22.7°

@'a*Swf—b 52, 0= 450 m«ﬂ\a 62°,b=7.44,c =156
@a_essm«zzsgc 2423@#*»5:_332“ B=178°

ERE 24.30m ¢ 52.9° BB 353m453m-1143m
- 189, 3m% 61.4 fect IR 7.265cm

. XERCISE 11.2
Il@m =60°, B=30°, y=90° Aa 25°, B=123% c=152

@a =408,b =166, 8 = :%OAQ 90, e A S

yad= 449?8




RN S { _5573° a-—..106“20’,b=159.c=140
; o . - 5-3
Qa “3‘83-16"2 357 5

° No triangle possible
oo B
@ :- 1551, p=3°%" yo 1A
' °37"
Qb=409.0{], a=22°39, 7=46° 59' “Qa 96
50.7°, o
Qﬁ=8ﬂ°(}'38'97=3?°55 o AT g

o s & A= o 1
ﬁ a=4.0°, f=316° y=1444 Q o el =P P :!
' ]

Rl 7.9cm, 14.8cm il 1879km apart |
26, y=12°17 ﬂ 72.9cm _‘
EXERCISE 113 : 3

The answers are in square units.

m O - i A & O 5o 74P 64 & s gﬁﬁ_&»?eﬁs_z :
® s & & o & 137365 @ 27307

Pl =224, y=82%’ B &s.1125 N 787 ¢ e :
EXERCISE11.4 e

mo :- SUI—IOTQR 145, r—ﬁ-r-ﬂlém Area = 209m’

n Q33,0?dm O 1:.v0n B 35.7V3 843
REVIEW EXERCISE11

T XXX

a=43°17, f=64°

53 Answers

Bl Q-1 -2 y=2% Q No triangle possible.

S e S T e T 4 R Ml P e

@a459°43 f=857,c= 104 Qc 40.68, a=81°4Y, f=41°17
@ a=1474, f=70°39, y=85°56 € o = 42.8°, b=s2, c =847

& 7=17.5%a=1705,b=133 -642?@43? O s

«@%— 33.03% 57.1cm, 20.84 cm 253m i 165.3ft: ‘Blls78m
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@ reict 7, Fregeney . AT XERCISE 125
§ Period % ,  Frequency %‘ Amptitade 1 m A&\h‘ % ‘r . *‘%4 'ﬁDoes not exist.
Q Period2,  Frequency —;— Amplitude 1 -/f'“* Sinx = Tan™ J__ up s
9 Period4,  Frequency %' " #mplitade 1 ' @‘ Cos™'x'=Tan™ m , 0<x<1
EXERCISE 12.3 7 Tdiaii e - @Cm *=Tan [i) O<xes R T3

P 3 : ‘
LA, Y 9_=—+2nrr nez .
e - o 0=

?r .
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= i =k =
o T S L T A R S5 ES Sttt -\nf-'w' =50

".Q{%”’k”}u{%”‘”} kis any integer. @ { +krr} keZ Q {3"'2’"”} U,{ 3 +2nﬂ}U{%+2m}, s
) -:-. d : ; - . . E '
: Q g %’r”ﬁ PRIy ISR : Q {-2— +2m}r}U{lg+2m;r}U{l 16’“»'4. zm,;} m is any integer.

% 4z 4 bz, 4 o |
s Q ge{g +§k;r,k EZ}U{ 5 +3_kmk EZ} @{E +2k;rr}'U{-5-§- +2k:z}, k‘isany integer.

: Q {%’.FZ,W' ﬂez} U{'s?+ 2n, HEZ}U{——+ nm, ne z} { +2nm, ne ?} @ No real ‘solution. @ {E+2kﬁr}U{ 2k ], k isany integer.
5 i
6

-0 o o0, 1800, 2700 € 2 2 @ £ 2. = B @ REVIEWEXERCISE12

a2 ; m@ @wﬂ@ & O-m
.” L4 EO’{ *””} {‘4_."”’_’} }U{+2kn}U{5—%2kﬂ§EzQ

3 Q {M}u{%+zm}u{-’f+zkr}. keZ .
: 3 2%kn +-—}u Qkn ), ke z@ {uﬁz—“} keZ
Q {f+ 2kg}u{-§+ 21:::} k any integer St 2 3ufie
; 2
i C(z 117 [57 L6 keZ h
Q {_4_4;”, U s e Uy 5+ Ak U Hdkap, keZ The Authors
3 . : d
Q {E—ﬂm} U{_{I_ } neZ ' E Prof. Dr. Gulzar Ali Khan (Retired)
: ! 6 3 : 3 Gulzar Ali Khan received his B.Sc. from Government Postgraduate College,
- yr 4 Bannu in 1975, and M.Sc. from Gomal University, Dera Ismail Khan and Leeds
e — is any integer. : : N ;
Q { ”""r { +2m?r}U{ +2m:r} i y g University, U.K. in 1977 and 1981 respectively, and his Ph.D. from Birmingham
University, U.K. in 1986 all in mathematics. '
_Q{ +2kﬂ} {?+ Zkﬂ:}U{E*‘ ch.’f}, k is any integer. : Dr. Khan taught at Gomal University from 1986 to 2000. He joined the
University of Peshawar in 2001, He remained Chairman of the Department of
Q e <G T ; A Mathematics. He has published many research papers in his field of interest. Dr.
— Khan has been a member of the Advisory Committee, Ministry of Education,
Q {£+ Zmr} U{S_x-'- 2””} U{3_ﬂ'+ 2nm } , nisany integer. Government of Pakistan, Islamabad in the subject of Mathematics. He has also been
= |6 6 2 . amember of the National Review Committee (N‘RC} on mathematics, Dr. Khan
d 1sn0w retired.
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Khyber Pakhtunkhwa Textbook Board
Phase - V, Hayatabad Peshawar

Phone: 091-9217714-15 Fax: 091-9217163, Website: kptbb.gov.phk

Prof, Dr. Islam Noor (Retired)

> 18 ; ot o
i< a retired Professor of Mathematics of the Unwers:t_y o
wilrgaitisgety a; degree from the same University in 1972. He received TEXTBOOK FEEDBACK FORM

Peshawar. He obtained M.S from : .
M.S & Ph.D degrées from Temple University (U.S.4) in 1982 & 1984 respectively. = s :
emarks —]

Dr. Noor has published numerous papers in. ati nal
journals. He was a member of HEC curriculum committee for revising B.Sc, 4 years

B.S and M.Sc. programs. He remained Chairman of the Department of Mathematics
twice. He has organized seminars at Bara Gali campus, University of Peshawar for PRI TP P Do

college teachers to cope with the changes madeinthe

reputed national & internal .
- | Overall the book is interesting and user friendly,
e

2. | The language and content of the book is age / grade

syllabus of F.5c. &B.Sc. | punctuation errors.

3. | Content is supported with examples from real life / culture,

Prof. Dr. Muhammad Shah .
Dr. Muhammad Shah did his M.Sc from University of Pe:::hawar in 19_98. He did his % | Coments 7 1oxts are suthende and Udated.
Ph.D in 2012 from Quaid-i-Azam University Islamabad in computational Algebra. : __ ;
In2010, he was awarded IRSIP scholarship of HEC for Birmingham University, UK. J 5. | Pictures / diagrams / graphs / illustrations are informative, |
Dr. Shah has been teaching Mathematics at postgraduate level since 2002 in relevant and clear if not, then identify them.
different colleges of Khyber Pakhtunkhwa. He has been the Subject Specialist of ? B. | Activities, projects and additional work is suggested for
Mathematics and Computer Science of Khyber Pakhtunkhwa Textbook Board since reinforcement of concepts |
2014 to 2017. He is the editor and reviewer of several textbooks of Mathematics : : .
and Computer Science. : 7. | Assessment achievements are thought provoking and |
e C comprise cognitive, psychomotor and effective skills, i
a'.’ Y - | 8. | The textbook is easy to be covered within academic year. |
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