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i

T T B e Ny Fo o = ¢ : :
*egf*fﬁ.ﬁg’_@“?ﬂh'ﬁ‘ﬁ’?!‘o_fﬁf_m‘mwe,@. faln e ns Lok i S g g " ’ system. It is convenient to use if you have window: "'“""“_""fh It depends on the platfomm and
JABlEfOE - - v, package 14, 18 or any | indows based operating system (installed maple sofiw. ]
1.1 Introduction 3 Wh,;n o Ig atest pqckagc}. maple soliware e
. Recognize MAPLE environment, 1 Recognize basic MAPLE commands . ! - P Seﬁ'ﬁ-l‘l:‘s started, the maple prompt command (>} is displayed like [>
i, Use MAPLE as a calculator, w. Use online MAPLE help X ] LELY 1€ MTPE OB he #ioa s @ e e
8 i LEDD sz it s MR

1.2 Polynomials

1. Use MAPLE commands for. G [
= factoring a polynomial pandi . : é £ |
= simplifying a rational : : - Hbs NG an cxpression, = simplifying an expression, | e - — — _‘?:_I:
nal expression = substituting into an expression, " f " - j s
3 ' g b e | B E G ew y oz
1. Plot a two-dimensional graph. 1. Demonstrate domain and range of a plot. § :‘ — —_— == |
iii. Sketch parametric equations. iv. Know plotting options. : H Start [\ [ ' i
(A Mamwices B i o 5 -hfé-.ﬂ b.,@ oM.
1. Recognize matrix and vector entry amangement ii. A . g i [ Pt — z 5 ) f
. 7 : - Apply matrix operations, 5 et u 5 |
1k Compute inverse and transpose of a matrix, . | o L [P ... . & [A; ¥
. - [Ty —_— —
3 i SIS - i |
- L

m Intreduction

In the modem age of science and Iccl'molngy. the technical computation has become the heart

- Figure 1.1 Maple start meny

of problem solving in engineering and mathematics. To help us, MAPLE offers a vast repository of ' This Pr.ol;fi:i! character will ; :
i L - 2 r 3z " € show at ey
mathematical algorithms converting a wide range of applications. It is a symbolic and numeric Wwaiting to receive input in the form ofmaplzs:':mujzﬁf T left of the worksheet indicates that maple is
computing tools as well as a multi-paradigm programming language maple was conceived at the When you are finished withthe maple session, you will leave the pro by sel
, ) Zram by selecting “Exit™ under

university of waterloo in 1980. From the first day it continues to be the benchmark software for the file menu (upper left of the maple tools bar) as shown'in Fi
mathematical and symbolic computation. Maple user interface allows us to hamess all the i 5Ty in Figure 1.2.
computational power by using context sensitive means, interactive assistant and task templates. In this 5

unit we will leam how to use the basic commands that will allow and lead us into the creative, dynamic G, e = e TEe
and captivating world of MAPLE explorations. % - ; "EEEE S

Recognition of MAPLE Environment ¥

Maple software consists of three different parts.

i User interfuce ]
It handles the input of mathematical expressions and different commands. User interface also

handles the display of output and the control of the MAPLE worksheet environment. ;

ii. Kernel . )
It is a small collection of compiled C code. The entire kemel is loaded when a MAFLE session
is started. 1t contains those essential facilities that required to run maple and p_erfunn basic
mathematical operations. The components of kemel include the .miaple programming language
interpreter, arithmetics and memory management facilities and funda_mental functions. The small size
of kernel ensures that the maple system is portable, compact and efficient.
ifii. Librasy . i )
It contains most of the maple routines including fum_:ﬁons related to linear algebra, stg}:;l::;; Figure 1.2 |
calculus, graphics and other topics. This library also consists of individual :::tlhulcg!; a;ie tlll o ‘ TR T |

: B ; : i i ted in
packages of routines. All the library routines which are implemen )
ful to leamm the maple A MAPLE command is a statement of calculation followed by a semicolon or 1 colo E‘
: a colon.

programming language that can be viewed and modified. Hence, it is usef i ;
programming language so, we can modify the existing code to produce the required routines. Following are some commands followed by the display ed resulis

NOT FORSALE
-




: INTRODUCTION TO SYMBOLIC PACKAGE, MAPLE
UNIT-

. ify the given results. When you get to “Save the
Enter the commands on your worksheet and verify 1 \
file”, select “Save” under the “File" menu of use CTRL-S to save your working. For

7417

" 24 - m
122 +15%2—%

= Mmoo @
124+ 4%(64+1—10%

- 0 m

if you do not include 2 semicolon or colon at the end of 2 command, MAFPLE will interpret the next command

line as a continuation of the p‘rﬁ‘lio‘ﬂ'icnmmand. s _ LIt e ey

The symbol +. = s [ and ® (or **) denote addition, subtraction, multiplication, division and exponen

i i A peci i ommand, MAPLE first does espnnemiaﬁuns then
4 sifing of operations are spcclﬁed in a co nd,

‘:::'Il:?p'l;lc:liongnd divisions, then additions and subiractions. Ta change the order, we use parentheses.

i Save commands To

save a variable in our current MAPLE session to a file, type the following
—
at the command

L

.
Save yariablename, “F

# - h ®
Replace the variable name with your variable name and replace the file name with your file name, but

kecp.m;::e;:i:ﬂ clcmma.nd saves the variable as & MAFLE assignment statement. 1f the value of your

variable depends on other variables, You must save thc:rn as well. o m; . 5
Y ou can save more {han one variable by giving all variable names oI

Save yariablenamel, ¥ i varhhlmue&. “(ilename.m”; ;

: q ou
Editd ommands: 1f you make 2 mistake in & command oF want to change 2 command, ¥
i iting ¢ g
can go back and edit the command.

(eval commands: MAPLE caleulates fractions (exact

RS i i i ) with the evalf function
| m.' thi :::T:r:re:‘:yoz specify {hat you want decimals (ﬂomng-pomt arithmetic) WY
arithny : ¥ : ; o
(“evalf” stands for wayaluate USING floating-point arithmaetic ).
n a4,
> 29 29 B - h
29
7 M4 a); :
# mq('ﬁ' +39 " 29 >
1276 o

in
4 in the evalf command specifies the number of significant figures you want ¥
t 4 in the &V ] the_ :
1{:':[?7%;‘;:: O'm'l:. {his command, you will get ten significant figures
I f
O T
< mff(}ﬁ +29 729 ) P,
lmsmﬂﬁﬂ

* obtaining the graphing-calculator result arc:

UNIT-1

INTRODUCTION TO SYMBOLIC P VOKAGE, MAPLE

iv. Maple internal memory eleari

: ng command: To clear the intemal memury during a maple
session. We use ‘restart’ command orel

ick the restart icon on the tol bar of the worksheel, €.8.
[ restart

when you enter this command, the maple session retums to its startup state. All the values rescl to their

jnitial values.

V. Enlistment of variables: Use the colon-equal symbol (=) to define variables that is.to assign
values to them. Once you have defined a variable, simply typing its name will show its value. and using
the name in a formula will cause the value to be substituted. For example,

(> A:=125; B=145 g
3 A=25
¥ ; B=145 U
I'P .
If you want to string commands together on the same line, then:
To Adi=58=10C=1%

Ly
e

g

A=5 {
B=10 i e
L c=12 ™ B
> 224A4+4:B +5-C;
-5 id. . 110 ' &)}
B L]
[;, 2 G (10y

mg_'@ of MAPLE as a calculator

You click-start, then select-program <Maple 18 < click-“Maple Calculator” to obtain;
(a)  Maplesoft (TM) Graphing Calenlator Overview

g This graphically s_cienliﬁc caleulator is available for use as part of your Maple(TM) installation
nor via s‘:hWeb Server running MapleNet(TM). The calculator use Maple for caleulations.
n toolbar,

use the “setting tab” to control the basic computation settings for the calculator.

-

o use the “Math tab” to select functions to apply, from basic funetions 1o linear algebra to statistics.
® _._meﬂ:e “Graph u_b" 1o control over how graphs are displayed and what they display.
« use the “Data tab” to control the data used to p

2 directly. roduce a graph or the date you have tabulated

s use {he “variable tab” to control the variables you have assigned and their v
To invelve the graphing calculator, use your mouse to press the “Math b
to apply. This will build up your expression for your in the input
_zession history area on the left side of the calculator. When you are ready w evaluate your
expression, press ENTER. key on your keyboard.

; Alternatively, you can press the “Graph bution”
to graph the expression, of the “data button”, to tabulate values for the expression. ¥ :

alues. {

and select functions }
area, which is just below the i:-.

Differentiate f(x)=x +4x+4 with respect to v ata point x = 2. The steps required for

. N
m Click-Math tab < Click-Calculus < Click-Differentiate to obtain: !

HET FORSALE
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UNIT-1 oy INTRODUCTION TO SYMBOLIC PACKAGE, MAPLE
. = @& N
Diff(D) o e e A R0 differentiation of f (x) with respect (o x and R SO - e
P: the di;ru:q;;:?:n of £ (x) at a point x =2:  arithmatic Operators «.... - s 3
: v
Diif{ﬁ.x*P) .n;-m"““"m”hnmmcw-tm'mﬂnlm’
Diff{x" 2 +d4x+4,%,2) S| | sermenrmann, s st imahe s = 3 A :
i ER 8 r = leul { ‘:: mﬁ‘:o‘mma;umﬂmv.:; " sparant -.:r e
Click-ENT 3 interval [0,1]. The graphing — calculator 4 e el ki HL R Ll By
tﬁ Integrate x+4x+4, with respect o x over the inf i e . vee "= s B 5 apr s 878 SN peTarieal. b brpreeson o #
wh e} [E, TeTe i o T B TR, !
}:’:’i‘“g mﬂﬂ. [ l.-‘.m -mm:.:‘u“zﬁmmrumml—wxﬁh—*lnwmmnh |.:_-:
ek ] i i R o et el rubars, St G e mien infreation, )
; F - e :
Futr b ——— L} L] Fevsiarty, § el W R G P S L Ot 8
I,;,m,(ml},,, __ A: the function % +4x+4, X: the integration of f (x) with respect 10 %, Pt o e g e o k. v
g res Al E § 8 i i1 ==
ot i = 0 and Q the upper limit x = 1 of the ntegral T Thread satety b
11 ey + T aeithmaéc oparatars aw thread nafy wi of Maple 15 N
[nt(ﬁk.,x.P;Q} y e + Pt st Ifernition, s e i Sy e BiEn ot f..
Int(x* 2 + d4x +4.x0,1) 6333333 . frm— Y Examples Using Arithmatic Operators g vy
iculator L =~ Wre ot A e i -0 e o e e e e 5, e " g P S FI-'&
ulato . e, e e iy = T
O AL oo b B 7 O

|

[>? Assistant calculator o sk B Figure 1.4

e - 8 = - -~
= B Polynomials
. GC d@- FiO®s cHv = @ e — e ey

Ssuam 130 -l_;:':'ﬂ g8 —T s ey We are familiar about polynomials since our previous grades. The factorization of a
o ey T — ] polynomial, expansion of an expression can be solve through direct MAPLE commands and context
TY—— MEnus 1
- - mastsfOft e i CHGCOY : J
L ———— rTE = Use of MAPLE corrmands for factoring a polynomial ]
R s et = T, Tha "G R = P — wrm el e - e e — o )
= .- Pan s i b e et et b (a) Commands )
i ;."__".' e == [T ﬂ
i i e = o > fuctor(Z +T-x +12);
i = = — . Oc+4)(x+3) ®
1 e 4 = \\
[ . 1o Thl Pagr x i
3 ) Papn Thst Lisk (b)  Context menu result
i 'u_::'_& ; e You can use Maple’s context menus to perform a wide variety of mathematical and other
; u—--ﬂ . operations. Enter the polynomial and place your cursor on the last end of the polynomial or
i Ca——

expressions and right-click. The command will show you full information about factorization on line
by typing. Then choose the factor option from the open window as shown in Figure 1.5. The context

menu offers several operation to choose form according to the expression that you are using. The

: - hown in the Figure 1.3
Then you will see the unit calculator as 5 above result through context menu is as under;

N 3
WOnline MAPLE help | ed previously. If x
You can get help with MAPLE syntax by using mugiﬁllfgeﬂ:elfehal:yd;;ci::?&:“ﬁﬁm mark : "= "rtzﬂ-z:wu:z .
you have 2 question about a m{mlar commandicyw can q i (x+4)(x+3) al
followed by the name (no semicolon). For example, B o 1 -

[> ? Addition

jon about what the “addition” does and how to use it as sho

x The result is obtained through right-click on the last end of the expression by selecting “Factor” on the ht
er left of the window to close down the Litt

context menus. As shown in Figure 1.5,

NOT FORSALE

ill open a window containing infmmat“
?I; PigI:;: 14. Click on the little “Cross” box at the upp

i . window.

{ NOTFORSALE
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vag ST MAPLE commands for expanding an expression®

(=) Command
Use MAPLE command “expand” befo

= expaud{{:z +2')-(x3 +4 =30
P62 -3 +8x—6

(p)  Contextment result :
Entre the given expression and place your cursor on the last end of

click. Then choose expand option
(242)-(F+4x-3)

> cxpand ( (x°242) ° (x*3+4°x-3) )3

F+62—357+8x—6

fomad

B P e "
g Pt rmannes e
©, o EnA @ W e

e s %
(= i P=TE TR e
- - = | o
i f iPeatidasa=il
P it s
;_.- m — ! st
| | | .
P _,_.' ]
= =
i ] B 1 = re———
= [ =t .
s —
e | | i .
== N = x
] || | b "
el 0| e .
| P .
g Fpsi .
.
woeoo e Il
o | e B
—t | L .
e el =
P e | - .
| b o
: 1 e b
e e e P

Figure 1.6

C PACKAGE, MAPLE

re parenthesis to expand the given expression.

8 :

the expression and right

from the opened window as shown in the Figure 1.6-

o FoRe |

1 =
NTRODUCTION TO SYMBOLIC PACKAGE, MAPLE

¥ Use of MAPLE commands for sim N
- - i - Br 3 (! ]j i
g for simplifying an expression

f ok
> sfmp!:;&[usﬁ +% __g.];

A

(b) Context menu result

Enter the given expression and

! ve | place your cursor on t :

click. Then choose “simplify™ from the opened window as 51:.10::. i:l::::?'t::f 'TT“DR%IO“ o ight
Sigure 1.7

|
5 (25 +% - ,?3._ -
> simplify ( 25" (1/2) +9* (1/6)-2/3 );
- 3
L 6
A 6
e o o e P i
CY1YT S lh!- Se ATIEE _;;"-;?'i'f obs v WAA @ = B — =
= s[n @=s 2o 20 = =
=

g
¥

| j -
Ir; ;
1

|
IL

Figure 1.7

BB Ui o EATIE ominai tF mpiyings FaboRl exprssion

(a) Command

> simpmja[

*=9
AT+ 12 ]

r44

NOT FOREALE)
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INFRODUCTION TO SYMBOLIC PACKAGE, MAPLE

UNIT-1

{(by  Context menu result
Enter the given expression
click. Then select “simplify” option

and place your cursor on the last end of the expression and right
as shown in the Figure 1.8.

#=9
2+7 0+ 12

s simplify ( (*2-9)/ (2+7* t+12) )5
t=3 = ®
t+4 .

T i 0 = .“:‘_
=g | -.. - s — 4 —— s a— e
m‘:o.,?i ’_‘Lm;_?;".lﬂl s ey

|(j,_;) B L Eus Bl EE

== g 1
- | A b}
| I
|'-"‘"""- | 2 ot )
" = ¥
o ey [
l:-- =31 [ 1 B i s
| et 8 Pt I Ll
[ [ B ey
[T P
e | tesaem
L et
e i Lot
P - '|
- P ]
e 1 - | ‘
SRR v .
ke iy =T i
[ ¥
Cammanans v
[ pm— L} 1
e P B .
IR » !
pp— " I
L . vty Wind2
[—— B 45
e i - — - e
£ ¥ e~
0 | " ’ {5}

Figure 1.8
Use of MAPLE commands for substituting on expression b
(a) Command :
5 subs(r=20,F=2:1+5);
L ; 365 ®

(b)  Context menu result
Enter the given expression and place your cu

click. Then select “evaluate at a point” option as S

rsor on last end of the expression and right
hown in the Figure 1.9 and Figure 1.10

respectively.
224 +5
» eval ( 1"2-2%tH5, t = 20);
365 (10)
K NOTFORGALE

INTH d
ODUCTION TO SYMBOLIC PACKAGE, MAPLE

[
g b
L] -
Py JLA LW [ S —— L
3 Fiesi wiu Fes nm w0 e
| - —_— -
' w1 i
1 Coamers . . li
| L m!
1 [ . i
8 1
4 T i T |
e il o | =
ek (8] [ . |
e | | 1
| I ] . |
flttinems ! § |
e I |
E _’rn_ | | e o #
i " g .
i | == !
o W |
Ho®oo il o |
e @ 1'"""‘-‘-—- o |
kst | 1 C— Y L
i Aty | {
h--l-l—...___i = . |
e Al ] . ' |
i O ——— _ |
Ihl'ﬂ - x
- — i |
Figure 1.9

Wvarssiir pesy ingens
Pie 10 Norm foupi Tosms Totoe fupsonp Pt Spsinbiant Boakt Wesen
.. > e

0SDdb 138 ve aTr

ZO0 +0+ #/005 CHAAE @ —oum

m Graphics
Plot a two dimensional graph \

To plot any two dimensi :
prompt. imensional graph in MAPLE we use “plot

o ] —c - = e,

sﬂ..i}m—@__,_‘m §ig @ 2@ aE = .

s A=zaes " ——._:_.;;"_
m

command in the command

B
b,
i
o
5
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UNIT-A

(TR0 3 | Plot the graph of x+3x+8.

The graph of x'+3x+8 is
dnown in the Figure 111 and 1.12

respectively.
(o) Command

> plai';,xl +3x+8):

120

'
=
0
w
=

> Figure 1.11

INTRODU

To plot a two di
command prompt.
eIl 4 | Plot the graph o

the Figure 113 and 1.14 respectively.
(8) Command

-g. p.'ar(x: +2,x=-3.. 3)- :

11
10

4
c
L B UA OR300 D

Domain and Range of a plot A |
: mensional graph with domain and range. We usc

The graph of x* +2 is shown in

> Figure 1.13

CTION TO SYMBOLIC PACKAGE, MAPLE

Context menu result ! .
‘i’l:llis result is obtained through right click on the

last end of the expression by selection “plots< 2-Dr
plot™ on the context menu.

3x+8
E: fm:;tp!..;t{ x2+3*x48 ) ;

120

100
B0
60
40

20

> Figure 1.12

“plot” command in the

f x* +2 having domain -3 to 3.

b Context menu r_esult e
o Enter an expression or function, ng‘ntD
click on it and select plots < plot builder < 2- :
plot and enter the domain for the expression o

function.

[o 242, x=-3..3)

=: ﬁm {xhx2+z' X = —-3 aw 3]:
11
10

[ - e -

2 Figure 1.14

NOTFOREALE

UNIT-1

INTRODUCTION To) SYMBOLIC PACKAGE, MAPLE

' Sketch parametric equation

To sketch the rametrs ! 11 iy
following el pa e equation in MAPLE. We use MAPLE

Example

“plot” as discussed, in the

) 5 | Sketch the graph of parametric equation x = cos{t) and x = sin(s).
Where 4 <f<4,x=2102andy=—-2102

(b)  Context menz, ppgy

f:é“;‘;" ‘:"I;"'-‘SS"W- or function, right click on it
] ;‘3 PIOLs <. plot builder < 2-D parametric
plotand doma/in for the parametric 1.
p A s
I}' “os(t), sin(r)
La plot( [cos ), sin (i) 1=~ 41

(1)  Command
[> ploti(cos(n),sin(t), t=-4..41-2 .2,2.2);

L

E
Figure 1.15 fy
b .
v plotting options Figie 1,16

The plotti - f :
ohiis e gc otting :‘:]:::i:ﬂ: ‘![I:lt;?‘ below can provide the commands that create 2-D plots. These
used command and are generally available to all Maple commands that

Ecnerate two dimensional plots. The hel, cular comman
detail about the plotting options that aoce;tp;.pasc IR £ g sl
0-;;11::; must be added at the end of the given sequence,

1 use an interactive me i "opti i . mmand
et L thod of exploring the options in the “plot™ col by using the

8  Adaptive

When we are plotting a functio
N over an interval. The { :

controll ' interval samp

iuteml:dm I;ie;?mtf I and “mumpoints”. Adaptive plotting \;'sher: nkd e, tumber of points,
off by setting :hcp:. df‘:i:;mr_repmenmion of the given function. Thisa;ummbmm‘ Euubdmdshu;mw
subdivided at most six[:.imcs opion to false. By default, this option is set 1o trup i be d
s in trying to improve the plot. By setting this opej 0:. t::n;l I:m::rwis are

i 2 s on-negativ:

o Annotation ubintervals are divided, S

: _ ORI, = §
The annotation option allows us to add descriptive text to g 2

plot” in this context means a collection of points that are u.x-:;gdcas a ;Lgpf;i'ﬂ:f::" ¢tl The term "point
ement, such that
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NIT-1 INTROD
: e e ; UNIT-
cated by e dataplot” command. The Lext which 1s_w_;cludcﬂ _mi‘-thcﬂ"ﬂ"-'“l c%plﬂ?;::sé::pcvmm : INTR
vhen the pOIRtes hiovers OVer e plot €l ement 10 which it is associated. An annotation ora » Caption ODUCTION TO SYMBOLIC PACKAGE, MAPLE
point, which Appears henever the pointer i placed over the element: 2
ci -
a Axes This option defines the font fu:l :‘::;n:::: ! .
axes=1 1 over-rides values specified for font. caption, specified i the same mannes 35 of This option
Specifies {he type of axes, O of: boxed, frame, nONE: or normal. _ o Color
g Axes font " i color = n or colour = n
axesfont : This opf is allows us ta specify the color of the curves
Font for (he 1abels O e tick marks of {he axes, specified in the amé manner 38 font. This optien o Color scheme to be plotted.
: Jues specificd for the font.
wuﬂdﬁ:ﬁ pec . T T ) colorscheme =t or colourscheme = 1
= us to apply a color scheme to a surfac :
axis=t of '_;i;lﬂ].'l'_'l-’[ a Coordinate view e or set of points.
; more axes 10 plotting
coardinateview = [ryniyy ;]
werl g i
b,

de information about oné o7
the axis color, locations .©

e

§ tick marks and .
This option is used whe
n the axis coordinates o i
ption has the value polar. Wh
3 en that is the case

xis|dir] opticns allows s 1© provi
then F,..F; specifies the i
radial range that is to be di
isplayed and 2.8 § i
.1, specifies the angular ran
ge.

The axis and @ s
nds such as “plot” and * plot3d”™. For example,

gridlines, and use of logarithmic scales.

With the axis = t option, the information Provic

od for only the direction(s) gpecifie

vided intis applied 1© all the axes. With the axisldir] = t
d in dir (d’-rccﬁun'g. which can be the single yalue at o Cord
wultiple axis|dir] options, with $

cords = ename

option, t is us
(x-nxis}. (y-aﬁs‘} or {zra.xis‘l, of @ sequence of two of l_‘m:sn va 3.1::5. _
different values of diT can be used 1o specity different information for different axes. The c P .
i i cname is one of the choices li
for 2-D plotting do not accept the axis|3] opuien- by defa e choices listed on the
. =k ; i tions. ult. To generat : coords help page. The cartesi ;
The axis information 1 given by t. The Jist £ may contain 00 or more of the sub options the coords = polar opil’.?' ar axes with polar plots, We use '-ﬁsglgf:dlna:es = p;:::m s
g Asis coordinates ) o Discount option zlong with
axiscoordinates =t i ; = 22,
H i i e either €& jan of polar . , unt =1t
Mormally coordinate system 15 used to displey of the axes. The value tcan ; This allows us for ! : ;
: are displayed bY default. 1T 1S polar, then radial and angular axes are generated. This & Filled detection of discontinuities.
filled = truefalse or list
-

Cartesian axes
option is used together with the cords= polar oplion:
If the filled OP‘tiO'll is
The value of '-hlt I:JT::;, utr the area between the curve and the e %
(color, style or mm?l;:imm ‘also be a list cﬂmmi-ms is given by a solid color
- curveitself. This option does options are applied only to the one or more sub Options
s not work with non-cartesian coordin filled area, and not to the original
ate sysiems.

o Filled regions

o Background
e float, A2y as filled
n be the name of an image file, as a string, @ name, a datatype = f1035 ’ regions =

':sh:d\::;:l (:.tfx: ;ranage Toc'lsapackagc, of ag color. A plot cgn have a single packground image © Em%’ﬁﬂiﬂpﬁ@ is set to true, m":;:::: 3
C.Olﬁ[. v . he ucﬂn{gmhfl e g l!:- \"ﬂllﬂ C‘I.lﬂy h," uslﬂg the rﬂlluwmg ;ﬁmnel d h','(l ‘I.ht curves are filled with diffi
If the size option is omitted then the gimensions of the plot can be determined bY {he dimensions of ¥ coordints & : tm“:';’""“l’lﬁl and “listcontplot”. Thi ; . erent
image. 1f the size option ‘s provided then the image 15 displayed with the gimensions of the plot. R il . This option does not work with non-Cartesi
A color may be given 28 a color tools {color] object Of 85 a color string. IT ¢ s a string, then s i ont o-Cartesian |

interpreted as 2 filename. 1f1he file t does not exist, it is then assumed tobe @ color- This optioi def font =1 3

- Capﬂoﬁ have been sp:c:gfcit:-: f:?::f the plot title, caption, axis tick mark Y

Er it of the form [family, style, ize), font, captionfont, label font, or et and axis labels if no values
The value ¢ can be an arbitrary expression- It can also be a list consisting of the caption followed : ont options. The value 1 is a list

the font option. The default is ne caption.
W@ﬂw NOT FORSALE)
’ 14
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UNIT-1

i Symbol. It can also be any font
v i ‘Times, Courier, Helvetica, or LIt als
I:::‘-; :Il:l;:;:gn;;} ﬁr::: s:res:rl;f Ef,z example, Times New Roman and Calibri in Windows. The first

il italized. :
letter of the family name must be capl man, bold, italic, bold italic, oblique, or beld

be omitted or onc of re _ ' or bo
:::fiq:i!u’(;'l::f;:'!;:::?am?ly does not accept a style option. The final value, size, is the point size

to be used.
a Gridline
gridlines=truefalse .
ines i i 1dli drawn. The default is
i = true or gridlines is provided, default gn-:!llnss are : E
;ur?;'::ngel:d—lmfgse.lf the m:lsg option is also provided and contains a gridlines sub option, then that
option over rides this gridlines option.
a Labels
labels = [x. ¥] . . E
This option specifies labels for the axes. By default labels are the names of the variables in lllu' wriginal
function to be plotted, if these are available otherwise, no labels will be used.

o Label directions
labeldizections = [x.y¥] e I
i i i irection i i inted along the axes. e values
This option specifies the direction in which labels are print ;
of x and y should be horizontal or vertical. The default direction of any labels is horizontal.

g - Label font

™

labelfont =1 ) )
The font of the labels on the axes of the plot, specified in the same manner as font. This option.
overmrides values specified for font.
o Legend

legend =5 y e
1f the plot command is being used to plot multiple curves, then s can be a list containing a legend entry
for each curve. i
o Legend style

legendstyle =5

Since the value s is a list consisting of one or more sub oplions. The sub options are available for .

the legendstyle option include font = fand location = loc. The location = loc sub option allows
us top, bottom, right and left for loc.

o Line stvle

g linestyle =1 i
It controls the line style of curves. Theline stylevaluetcan be one of the following
names: solid, dot, dash, dash dot, long dash, space dash, orspace dot. The default value
of tis solid. The value t can also be an integer from 1 to 7, where cach integer represents a line style,
as given in the order above. :
g Num points
numpoinis = n ; '

Specifies the minimum number of points to be generated. The default number of points is 200.

15 HOT FORGALE

'Symbui for points in the plot, where the value s is one of asterisk, box,

UNIT-1 INTRODUCTION TO SYMBOLIC PACKAGE, MAPLE

Plot employs an adaptive plotting scheme which automatically does more work where the function values do
not lie close to a straight line.

o Resolution

resolution = n
This sets the horizontal display resolution of the device in pixels. The default resolution is n=800.
The value of n is used to determine when the adaptive plotting scheme terminates.

@ Sample

sample = [I]
A list of numerical values which is to be used for the initial sampling of the funetion. Normally, the
function is sampled at additional points, To restrict sampling to only these values we include
the adaptive = false option.
o Sealing

sealing=s

It controls scaling of the graph. The value of s is unconstrained by default, which means the

plot is scaled to fit the plot window. The constrained value causes all axes to use the same
scale,

B Size i ' .

size = [w, h] .

We use this to specify the size of the plot window. We can set the size of the plot window by

specnfymg_ the number of pixels, a proportion of worksheet width, or a ratio, such as a square. the

golden ratio, or a custom ratio. :

o - Smartview :
. smartview: = truefalse

This is used to determine an appropriate view of the plot data, The plot command generates data
based on the range provided by us or on a default range if this is not provided. When the
?martview- true option is provided, a view that tries to present the important regions of the data
is computed. To show all data computed, use the smartview = false option. The default setting

of smartview is true. This option is available for the i

: plot command and onl ;
not points, polygons or text. ST es e
o Style

style=s

The p&?: style shquld be one of‘ll'!le, point, point line, polygon. or polygon outline. The names in
paren :@es arc aliases for the opho_n values, The styles line. polvgon, and polygon outline all draw
curves by interpolating between the sample points. The point style results in a plot of the points only
The default style, polygon outline, draws any polygons as filled with an outline. The polygon .ﬂyle:

shows the polygons with no outline, whereas line draws the ol :
line style is a combination of the point and line styles, polygons as outlines only. The point

-] ﬂy_mbol

symhbol=g

diamond, point, solidbox, solideircle, soliddiamond circle, cross, diagonaleross,

16
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-] Symbol size
symbolsize =1 :
The size of a symbol used in plotting can be given by 2 natural number. This.does not affect the
symbol POINT. The symbol size is 10 by default.
o Thickness
N thickness =0
This option specifics the thickness of lines in the plot. The {hickness = n must be 2 non-negative
number. A value with 0 produces the thinnest line. By default the value is 1% :
-1 Tick marks
Tickmarks = [m. n| _ :
The values m and 0 specify the tick mark placement for the x-axis and y-axis respectively and can take
an integer specifying the number of tick marks, a list of values specifying locations, @ list of equations
each having the form location = label, a name, ot 4 spacing structure.
o Title
title=t : :
We can give a title to the plot. The yalue t can be an arbitrary expression. The value t can also be 2 list
consisting of the title followed by the font option. There is no title by default for a plot.
a Title font
' titlefont =1
1t specified in the same manner as font, This option overrides values specified for font:
p  Transparency
transparency =1
This option specifies the transparency of the plot surface. The transparency = t must evaluate to 2
floating-point number in the range [0, 13. 0 means "not transparent” but 1 means "fully
transparent.” .
o Use units
useunits =1
This option, with t set 10 true, indicates that \nits are part of the function and should be included in the
axes labels. The value t can also be a list of units. Y
[ View -
view = [xmin...Xmax, _1-mln+..ymaxj :
View option indicates the minimum and maximum coordinates of the curve t0 be displayed on the
screen. By default it is determined by the smartview option: if smartview = false is given, then all
plot data will be displayed; if smartview = true or the smartview option is not given, then the plot

structure will be analyzed to determine a reasonable view of the data which allows you to see the
significant features of the data.

.. If the same option is provided more than once, with different values, then the final value spﬂdﬁ:d i
generally the one used. '

ii. All above options are available for the Standard Worksheet interface.

UNIT-1
; | INTRODUCTION TO SYMBOLIC PACKAGE, MAPLE
RTLalR, 6 | Plot the graph of see(x) and give the title as;
title="Graph\n of Secant Function " ;
titlefont = |" Times New Roman*, 20]

B plot(sec(x), x=-2 .. 2 m, title=
i m, title = Graph of Secant Function®, titlefont = [ "Times New Roman",

_Graph of Secant Function”

-1x in - 3 0
_A3=n K T
1 2 1 * T
-2 4
x
-4
-6
-5
Figure 1.17

This example uses the following axes and graph properties:
title="Graph\n of Secant function" .
axes = framed

style = point
symbol = asterisk
symbolsize = 20

tickmarks = |spacing (Pi), default]
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T UNIT-1 INTRODUCTION TO SYMBOLIC PACKAGE, MAPLE
o S, (b)  Using Paleites

5 r -3 »

. Matrices

e %

The command will show you full in e
Recognition of matrix and vector entry arrangement

formation about matrices on line by typing: [ > ?matrices

Use cursor button to select matrix palette. Click- “matrix” <click-choose(for the umber of rows and
columns of a required matrix) <click-data type (to select integers entries of the rows and columns of a
required matrix), then finally click-"insert matrix” and press ENTER key to obtain a required matrix.

142 i
w)  Command e o > |2 3 4| '
| > with(linalg);  LUdecomp, QORdecomp, Wronskian, addcol, . L4 b i
Selmids, JordanBlock, LUdecomp, ;
[ BlockDiagonal, G.‘mm 8 :u e backnib, band, basls, bezout, blockmatrix, eharmat, 23 4
ddedrow, adj, adfoint, angle, augment oncat, cond, copyinto, ]
i, ol olesky, col, coldin, colspace, colspan, compantof, concs ol s S
t‘flﬂl"Pﬂt‘-d Icur‘l :fcﬁm'm delcols, delraws, det, diag, diverge, dotprod, ug{.‘nvt;" '
it veclors, eigenvects, entermatrix, equal, exponential, extend, ffyausselim, ‘Applying matrix operations A
eigenvalues, eigen . usselim, gaussjord, geneqns, genmatrix, grad,
fibonacci, forwardsub, ﬁobﬂf:::f- .;Id M; ihermite, indexfinc, innerprod, intbasis, (a)  Matrix addition
ite, hessian, hilbert, Iranspose, S > with(linalg); : g
Mdﬂmar_d' I!;}m:s:fmﬂur r's.:nem, Jjacobian, fordan, kernel, laplacian, leastsqrs, linsolve, [ BlockD & |, GramSchmids, JordanBlock, LUdecomp, QRdecomp, Wromicfm:. addeol, (1)
A N inor, .min.'m!y mulcol, mulrow, multiply, norm, normalize, nullspace, addrow, adj, adjoins, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat,
B e f-.;u. potential, randmatrix, vandvector, rank, ratform, row, rowdim, charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinio,
orthog, Permianen B sealarml,singularvals, smith, stackmatriz, submatrl, subvector crossprod, curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvals,
rowspace, rowspai, 1rejy + sylvester, toeplitz, frace, (PANSPOSe, vandermaonde, veepolent, eigenvalues, eigenvectors, eigenvects, entermatrix, equal, exponential. extend, ffgausselim,
sumbush.snupmﬂmagm“. Y ' fibonaeei, forwardsub, frobenius, gausselim, gaussjord, gemegns, gemmatrix, grad,
vectdim, vector, wronskiar ) B hadamard, hermite, hessian, hilbers, htranspose, ihermite, indexfunc, innerprod, intbasts,
r" X=matrix(3,3, [1,4,2,2,3.4,3,4 B 42 inverse, ismith, issimilar, iszero, facobian, jordan, kernel, laplacian, leastsgrs, linsolve,
: - matadd, matrix, minor, minpoly, mulcol, mulrow, multiply, norm, normalize, nullspace,
X=|234 orthog, permanent, pivot, potential, randmatrix, randvector, rank, ratform, row, rowdim,
546 rawspace, rowspan, rref, scalarmul, singularvals, smith, stackmatrix, submatriz, subvector,
L s sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, transpose, vandermonde, vecpotent,
> Y=marrix(3,3, (5,3,4,1,2,0,9.3,71); . vectdim, vector, wronskian)
} 3) > X=Mairix([[1,2,3], [1,3,0], [1,4,31]);
. =120 v 123
|22 x=|130 @
s Z=Mmatrix(3,3,11,0,1,2,3,1,0,5.11); ! .. 143
i @ [> ¥:= Marrix([(1,2,5), (6,3,0], [1,4,3)));
L= _2 3 l 125§ T
1 =630 @
(> = (1,23} L Skt
1 ® > matadd (X, Y);
e=|2 248
. 3 : 760 @
g 286
= L.
>
pe={11213) ® [>
r=[123]
i NOT FORESALE 20
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UNIT-1

(b)Y  Matrix multiplication

ith{linalg); ; ronskian, addcol,
> E:? In;f:'i:;‘: ag;na-'. GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wi an,

. ch
addrow, adj, adjoint, angle, augment, backsub, band, basls, b:!ﬂ#. Wﬂﬁbﬂ;‘;‘? '"-'-"1:::,
g, s g o diag, diverge, dotprod, elgenvals

., eurl, definite, cols, rOWS, v ¥ "

ﬁ;m luses, efg;nifon, eigenvects, enfermalrix, equal, spau e: ;;r:::; r.r;:r;i.' fg;me.'rm.

i, forwardsub, frobenius, gausselim, gaussford, ge 3 . grad,
{::::ﬁm. ?:m.-re, hessian, hilbert, hiranspose, thermite, indexfinc, innerprod, intbasis,
inverse, ismith, issimilar, iszero, jacobian, jordan, kernel, laplacian, leastsqrs, J‘;nxoi'w,
matadd, matrix, minor, minpely, mulcol, mulrow, mudtiply, v_mm, normalize, nullspace,
orthag, permanent, pivot, potential, randmatrix, randvector, rank, ratform, row, rowdinm,
rmpa:m. rowspan, rref, scalarmil, singularvals, smith, stackmatrix, submatrix, subvector,
sumbasis, swapcol, swaprow, sylvesier, foeplilz, frace, transpose, vandermonde, vecpotent,
vectdim, vector, wronskian]

(> X = Marix([[1,2,3],[1,3,0],(1,4,3]]);
12 3]
X=|130
143
(> Y= Marix([[1,2,5), [6,3,0], [1,4,30]);
125
y=|630
143

-:- mudtiply (X, ¥); s
16 20 14

19 11 'S
28 26 14

=3

L=
(e)  Uslng Palettes

123 125
> |130|+|630
143 143

248

760

286

B simplify [ Matrix (sid = 18446744074594159542) +Matrix (%id =
18446744074591159662) ) 2 g

760
s 286

21 NETEeRSALE
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)

@

@)

“)

To obtain the result simply right click on the last “matrix” then click simplify or press ENTER.

0]

@
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MVerse and transpose of a matrix®

(a)  Inverse of a matrix

> with{linalg);
[BlockDiagonal, GramSchmid, JordanBlock, LUdecomp, ORdecomp, Wronskian, addcel,
addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat,
charpoly, cholesky, col, coldim, colspace, colspan, companion, concat, cond, copyinio,
crossprod, curl, definite, delcols, delrows, det, diag, diverge, dotprod, eigenvals,
eigenvalues, eigenvectors, eigenvects, entermatrix, equal, exponential, extend, (fgausselim,
fibonacci, forwardsub, frobenius, gausselim, gaussjord, genegns, genmatrix, grad,
hadamard, hermite, hessian, hilbert, hiranspose, ihermite, indexfune, innerprod, intbasis,
inverse, ismith, issimilar, iszero, jacobian, jordan, kernel, laplacian, leastsqrs, linsalve,
matadd, matrix, minor, minpoly, mulcol, mulrow, multiply, norm, normalize, nuilspace,
orthog, permanent, pivot, potential, randmatrix, randvector, rank, ratform, row, rowdim,
rowspace, rowspan, rref, scalarmul, singularvals, smith, stackmarrix, submatrix, subvector,

sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, transpose, vandermonde, vecpatent,
vectdim, vector, wronskian ]

> Xi= Matrix([[1,2,3), [1,3,0], [1,4,3]]);

123
X=|130 @2
L 143
> Yi=Marrix([[1,2,5]), [6,3,0], [1,4,3]]):
125
¥Y¥=1630 (&3}
e 1413
> invi= inverse(X);
3 3
e
£l =L 1
ey g @
rL N A
L 6 3 %
= inv:= inverse(¥);
b 7. -4
26 39 3
3 1 s
| -= .. 3
e 13 "3 13 ®
o ) W |
L 26 39 2
(>
NeT FeRGALE
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UNIT-1

(h)  Transport of a matrix

= . kian, addeol,
: E;:‘ZE:E::S;:;MJ' GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian,

7 blockmatrix, charmat,
addrow, adj, adjoint, angle, augment, backsub, band, basis, bf::“';pmm’ il
’ cholesky, col, coldim, colspace, colspan, companion, e
mg} curl, :i'qﬁnife. delcols, delrows, det, diaf ;;:ﬁ?; : ; A '_,ﬂ'gameifm.,
ahih f enfermalrix, equa s ;
emﬂﬁﬁﬁﬂmarsﬁ:‘::gn&gamﬁﬁm, gaussjord, gemn.s’,. genma:;x:mﬂi
{r:;:mur:f. hermite, hessian, hilbert htranspose, thermite, ";d&:ﬁ::;, u;;:::rpu;am, ;;mlm:
inverse, ismith, issimilar, iszero, jacobian, jordan, Icemef,l apm ’;omﬂm ,Wmm
matadd, matrix, minor, minpoly, mulcol, mufrmu. multiply, ; m;” i
orthog, ’permanent. pivot, potential, randmairix, randveclor, ran.k,. m;ﬁ;rm,m ;,,E,m,,,,.
mwxp::ce. rowspan, Iref, scalarmul, singularvals, smi:h.sa‘acbnarm,ﬂ.;u m::ndg, mpme";
sumbasis, swapcol, swaprow, sylvester, toeplitz, trace, [ranspose, va ; vec
vectdim, vecior, wronskian] i »

:’ i Matrfx{[“- g 3]. [, 3, OL [\.4,3]]]-

123
X=|130
143
-;. i — Mai‘rix{[['l. 2, 51— [lﬁ,3.D], [1'4‘3!]:‘;_
; 125
Y=|630
1 43
-;. frans = transpose(X);
111
trans:=| 2 3 4
303
.p trans = transpose(Y);
161
trans=| 2 3 4
[5 03
(>
23
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UNIT-1

() Using Palettes
Inverse of a matrix

To obtain the result through context menw, Right-click on the last end of the matrix by selecting

INTRODUCTION TO SYMBOLIC PACKAGE, MAPLE

! ;
“Standard operations™ and then right-click on the “inverse™ to obtained the inverse of a matrix. f";:
=
Ny
s b
34 i
s LinearAlgebra: ~MatrixInverse ( Matrix (wid = [8446744074459047686) ) \
=2 1
2.4 )
2.
Similarly,
Transpose of a matrix X
To obtain the result through context menu. Right-click on the last end of the matrix by selecting
“Standard operations” and then right-click on the “transpose” to obtained the inverse of a matrix. i
123 i
>|426
351 |
—[> LinearAlgebra: ~Transpose { Matrix (5id = 18446744073883260558) ) ; ,
& 143
.95 @
361

Determinant of a matrix

To oblain the result through context menu. Right-click on the last end of the matrix by selecting |
“Standard operations” and then right-click on the “determinant” to obtained the inverse of a matrix.
T
=1157
294 .
| = LinearAlgebra: —Determinant { Matrix (%id = 18446744073883262118) i+

-114 3
>
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Function )
1dentify through graph the domain and range of a function.

Draw the graph of modulus function (i.e. y=|x[)and identify its domain and range.
Composition of functions i
Recognize the compesition of functions,
Inverse of composition of l‘ungl_i:ms ' ;
Describe the inverse of composition of two given functions.

scendental functions ; % — h .
Rw;gnizc ;Ilé:brnic. trigonometric, inverse trigonometnc, cxpnnmll:al. logarithmic, hyperbolic (and their
identities), explicit and implicit functions, and perametric representation of functions.

feal representations
Displ: hically:
l:t;?:?;llzeilly defined functions like y = f(x), where f(x) = &% a‘,l logsx, loge x.

x ¥ e
the implicitly defined functions such asx +)P =a’ and = +F =1 and distinguish between graph of a

i, Find the composition of two given functions.

function and of an equation.

the parametric equations of functions such asx = af,y=2arx=ascch, y=btan®.

Y x when 0£x=1,
« the discontinuous functions of the type y = ol WhB 1552

MAPLE graphic commands for two-dimensional plot of: e .
I_l'sean c:pusfir:: (10r a function), = parameterized form of a function, »  implicit function
by restricting domain and range. )
Use MAPLE package plots for plotting different rypﬁorﬁnwnm_u.
Limit of n function -
Identify a real number by a point on the number line. .

d represent : _
?eﬁ:;:imm:sl, . closedinterval, «  half openand half closed intervals, on the number line.
Explain the meaning of phrase: o
«  xtends to zero (x—0), «  xiendstoa (x—sa), «  xtends to infinity (x—2)

Define limit of a sequence. v. Find the limit of a sequence whose nth term is given.

Define limit of a function. : :
State the theorems on limits of sum, difference, product and guotient of functions and demonstrate through
examples. ;
Important limits ] )

Evaluate the limits of functions of the following types:

©-a" x-a I]'
. T_T chen f " [1+- witen x—hoe,
o W x=a =
! e =1 1+x)"—1 sinx
. (]1,:}:‘ x-+‘; J;p,ﬂl_x'a [l (—Lx)—.md—x—uirerl x—0

Evaluate limits of different algebraic, exponential and trigonometric functions.
Use MAPLE command limit to evaluate limit of a function.

Contipuous and discontinuous functions

Recognize left hand and right hand limits and demenstrate through examples.
Define continuity of a function at a point and in an interval,

Test continuity and discontinuity of a function at a point and in an interval.

Use MAPLE command iscont to test continuity of a function at a point and in a given interval. .

HOT FORGALE

UNIT-2
FUNCTIONS AND LIMITS

dislingug;: ::227?: offﬁunctmn and its !il‘flit is fufadarm:mal idea to us, in the study of mathematics that |
i ulus from a]gcbraland trigonomctry, In this unit, we will revise the concept of function Faen

'm unit-5 of grade-X1 mathematics and then develop the concept of limit which is the funda e@‘{"ﬂ
building bleck on. which all the calculus concepts are based. . :

: il
Functions Y
Function are constantly encountered in mathematics e m #nﬂ )
au'd are essential for formulating physical relationships in r-: & 1'
science and tu:hltulogl;y, In our routine life function is very The three animals Zurain owns bc;‘crc
useful g Zurain like all kind of animals. He started he started his collection,
collecting them recently and already owns 3 animals. He
_plans on buying every month accordingly, of each type of animals.
_Lel *x" be the number of months have past since Zurain started
o_cll!ccl;ng animals, Let 'y’ be the number of animals Zurain owns. How ean
we write a function in terms of x and y7 :
Iy . = E ! g { ﬂ
To W&Fﬂ]ﬂﬁlﬂﬂlﬂn,atvetybegmmng, when x= 0, Zurain has not bought any \;" _‘ 1
new animal, he owns 3 animals so, v = 3 animals Peter G L '
; = d ) er Geitav Lejeuns Dirke
hﬂﬁﬂle:mu:coﬁrs; m:nm. when x = 1, Zurain ms 3 animals, plus the 1 animal (1E05-1859) e
Ju .ug_ t. He now owns y=3 + | animals Peter Dirichlet was a
_ Similarly, after the second month, when x = 2, Zurain owns 3 | 9™ Mathematician
animals, plus the 2 new animals he bought after he started animals, .H Hhds, Jmis rlomly
3 - HEDOW | conwibutions in the stud;
owns »y=23+2 animals of math i :
R : mathematics such as
: a e tion will be y= 3 + x where, %’ is indl fent number theory, mechanics
variable and 'y" is dependent varigble, and analysis.
A AR : He was the first person
restrictively. It s defiaq aer - Used in much the same way, butmore | %ho gave the modem | |
. ljiemﬁglhun of function in
“If a variable ¥ ‘depends on a variable ' ‘ exact _I
. e x"in such a way that each . {
one value of ' then we call it 'y'is a function Flns y=;‘_"{.'r;) " value of ' 'determines by :
i 1
T]:omain fmd range of a function through graph Sy
. e dn!nam and range can be identified by the graph
¢cause domain refers to the set of all input values = - :
values shown on the x-axi ; e : |
x-axis. The range refers to the set of al| H !
values. Which are shown on the y-axis. Consid : lnutput & 5
Figure 2.1, - -onsidet the graph given in ~ I
This is 4 graph of the function f(x) = ] 3 H
x+ ul H
Its domain is (—0,~2)\(-2,e0) and range is (—=0,00u(0,%0) Figure 2.1 Lu

Exg A i i |
Find the domain and range of the function whose i

graph is shown in the Figure 2.2

domain of the function is ve [-6,2] vertical '
s »€[0.4]. Shown in the Figure 2,3

Here the horizontal extent is —6 1o 2. So, the
extent of the eroh is 0 10 4. So the range of the function i
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Figure 2.3

Figure 2.2

e omain and Fange can be greater than the Ei\’eﬂ\ra]u;
. on of the graph the
the given portion

ani .ts ai“ allﬂ ram v
GI Eph l)f mﬂd“l"s ﬁll‘ll’:‘ﬂﬂﬂ (i'e*f I‘rn d I. dom g'?- -
i ﬂ'&ebmff .‘.’.l'jl?rmilm with in the ﬂb\sﬂhﬂg value .l}'mhah i call !
“A function that confaing an

ﬁfm,"T fﬁﬁ:ﬁ’;’;lm we have studied that the absolute value of Sl
n

y T 1; _-: e
a number is its distance from 0 on the number line. Il i 'Ei

Ifthe graph continuous beyond

The parent absolute value function can be written as (x) = x| which '_5

£ i x20 . SEELY au

sl B ly choose snmel 1
i i 0§

h the above absolute value functions simply chos
I:lugel:ﬂfx and get the values of y then draw them accordingly. . \a
x|4]3|=2]-1]of1]2]3]4]| Domainvalues =0 =5 g 500
vyl 4] 3]z2]1fof1]2]3]4] Rangevalues Figure 24
Now, plot the points . i ¥

In general, domain of f(x)=|x|is (~==,22)and range is [0,==) but the graph is v-shaped graph
Figure 2.4 shows the graph of f{x)= x|.

In any absolute value function for vertical I?';:ﬁlaﬁu_n-uff(x} = x| )"Eu can use the function g)=fE)*h
(i) When A > 0 the graph of f{(x) translate *A* unit up o get gx). g :

(ii)  When h < 0 the graph f(x) translate ‘4" units down to get g(x). (x~fJ
"hisiscallod venical ransltion. For horizontal ranstaion of f (x) = x | you can use the function £(x)= /

(@) Whea k> 0 the graph of £(x) will translate ‘£ units to the right to get g(x).

(i) When k<0 the graph of f(x) will translate *k’ units to the left to get g(x),
This is called horizontal Iranslation.

=

Graph the fnliuwing absolute valye functions and -idcmify its  EEEEE

domain and range: J(0)=[3x~4 £ ééé
From the definition of absolute valye function, the given ‘5
function is =
23X 35459 i
flx)=
~(3x+4) if 3x+4<p
(]
The inequality 3z + 42 ¢ i satisfied wh 4 ;
Chever x>0
r sand3x+4 <) Figure 23

e et = m

UNIT-2 FUNCTIONS AND LiMrTs

e 4 L
15 satisficd whenever X<=—_|If x=—3,y = 0, s0 the graph will consist of two lines that meet at

4
[--5.0 J Use the tabular form to obtain the graph of a function: 3

SOy =3x+4, 3x4 420 S =—(3x+4), Ixsdcq

x —‘—; 0 _| x —i;- =3 i
¥ 0 4 _] ¥ 0 5 !

This function has a domain set (~e<==)and range set is[0, o).

[ZZ77 Composition of Functions™

Composition of function can be described as a progression of “genting” and “dropping” “off". A
function gets ‘x* does something for it and drops it off. Then another function goes along and gets the
drap off, does something for it, and drop it off once more, This pattern may proceed more than a few
functions. Suppose a composition as a progression of car rides. ‘x' boy is picked up by the first car
function transported to a required location and dropped off. Then another car function come and pick up
the x boy at this new location transports x boy to another location and drops x boy off.

mugntﬁon of composite functions

Consider the function A(x) whose rule is h(x)=[x".To compute h(4), you first need to find
x'=4"=64and then take the square root to obtain I = J64 =8.50 the rule of k{x) may be rephrased
: h(x) = flg(x)) (i)
Here g(x)=x" and f(x) =/, We may think of the functions f(x) and g(x) as being
“composed" to create the function #,
In bther words, when the output from one function s
form what is known as a composite function,
“Wfx) and g(x) are the two Junetions, then,
Junction whose values are given by p( f(x)) for all
ofg).”

used as the input to another function, we

@ composite function or ¢ omposition of g and fis the
X in the domain of fix) such that fix) is in the domain

ESEERN3]) Let /00=20-1and g(x)= BT, Fing each of the following:

fa). g(f(4) ). flz@) fe). flg(=2)

a. The function f(x) forx =4 is used to obtain f{4)=2(4)—] =
B/ (@)=g(1)=\3(7)+5 = y25

b. The function g(x} forx = 4 is used to oblain g(4) = ,5{3)+35 =
S(g@) = r(17) =217 -

e fig(-2)) does not exist, since -2 5 nat in the domain of g,

7.Use f(4) 1o obtain;

VI7. Use 2 (3) to obiain:

NOT FORGALE
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w Composition of two given functions - Mverse of the composition of two given functions®
BTN 4 ) Let /() =4x+1and glx) = 2" + 5. Find each of the following: EHEIII 6] Find the inverse function of /(9 = 3¢~ s,
(@) g {f(x)) (®). ff.g(x)] mﬂm f“mﬂﬁﬂfﬁ} takes an output 3¢ - § in response of input 1. The inverse function must tak
a. Using the given functions to obtain: z _ anoutput tin response of input 3¢ - 8: i
g(f(ﬂ):g(dxi—])=2(4:+I]’+5(4x+'l) =2(16x" +8x+1)+20x+3 FXi=B) =i =
=32 +16x+24+20x+5=32x" +36x+7 Ifz=3/— 8 say, then = z+8 & : . : SiE
b, Using the given functions to obtain: - . ks these values in equation (i) to obtain: ,"’(z)=T
flala)=f2e +5x) = 4(2x" +5x) +1=8x +20x+1. Put t as its argument instead g i . 1+8
This example shows that /(g(x) s not usually equal to g (/). - e — foread of st cbten theiaverse fanoion of /(0=3¢-3: /=232
; i ST, = - =
Air pollution is a problem for many metropolitan areas. Suppose that carbon monoxide - .ILA. o fc.l;(-’t;:e lerhﬂ? an:';(x)- 3x and h(x) = f(g(x)).
i i I ber of people according to the following information: FApress . ollowing functions
lrmuspanied 2 & ik SRR (@). hx) ®. £ @. g'x) @. Kz) -

a.Inresponse of f(x) and g(x), the function i(x) | b. In response of f(x), the inverse of f(x) is:

8

100,000 . 1.41 g i "
200,000 1.83 e 2l )= f(g(x) x=f2x+3) |
300,000 = 2 < = f(3x) wg(x)=3x | x=fYz), z=2x+3= ,;=.(z_;3l
05 - =2(3 y
| 0,000 2 : i [2=3 =5Yz)
1 500,000 .72 =6x+3 [ 55
l i formula for the average daily level of carbon monoxide in the A
i Funhersmd:es show that a refined form t B b ‘ 2 =f(x) insert x instead of z
oty airis L(p)=0.7/p +3 . ; » ) G .
_ 31 Further assume that the population of 2 given metropolitan area is growing ﬂIMO'f‘ms to the i mfm of gx), the inverse of g(x) is: | d.In response of h(x), the inverse of h(x) is:
i formula p(t) =1+0.02,where t is the time from now {in years) and p is the populalfcn. (in hundred x=g"(3x) =i NGRS 3) is;
] Waisands). Based on these assumpti_DIIS, what level of air polltl(iﬂﬂ should be e.xpemed ind 3"#3-\’59 E g_.{z)) e e _ i
The level of pollution at time t is given by the composite function: 3 xujNa), zmbrid = x:-(‘:—;?'_).
- z =]
Lip(n) = L(1+0.028) = 0.7,J(1+0.027)" +3, (o pUpeTROMRE: ., 55 0 387G ; B3 . ke
The air pollution expected in 4 years is obtained by putting £ =4 in equation | £ e P g )
L{p()) = L(1+0.02°) = 0.7J[1 + 0.02(4)"]" +3 = 2.0 ppm 378 (%) insert xinstead of = | x=3 P
(PN =L( ) ‘ ] N 4 ; I == WNx)  insers Xinstead of z
m— Inverse of composition of functions mmx_ B
. a
“Let y= fs) be a function of . This function takes a dependent variable y in response of independery range ofissues that could ot be iy s w8 Before the development of calculus, there were a wide
variable x. The function that takes x as dependent variable in response of y as the independent is then cél not know how to measure the speed of differcnt nmi:::‘n';enqmmm that was available e.g. people did
the inverse function of f(x)". m']'"‘"'d‘"“ desired to calculate the area under the m:@g v ':hs'nng ever time. Another effective
i ion i =y (i) , | Well understood, but they could not provide n - Beometry. trigonometry and statistics were
The inverse function is denoted by x= /" (») mathematicians of his . ecessary tools to address St
| d g 1 If £ (x) is not one-toa-0& ik md mmm'm the credit to the ancient Greeks for discovering ﬂl':nl issues. Some of the
1 The symbol /™ (y) means the inverse of fand does not mean ? then f(x) does not have a2 B P cenmn:;umm Gnnﬂ::dm\:“&h von Leibniz and sz, [saqe :ﬂ‘u& Ba:ltmp::gg:
_ : 2 pis - - According university of L i
For example, if y = f(x) is one—to-one function, then the inverse inverse function. e muuiu': But LN= ﬂx‘i.‘“w! that the variables of x 4'.':3 ) mﬁ:ﬂﬁ:ﬂ;ﬁ:ﬂn:dmnw beld different
of y= f(x) s the function x = "(y) formed by interchanging the independent and dependent variab ;- mathematioal science for avalysis but Newtor taap b 5¢ With time. Leibniz e et
- xand y for y = f(x). Thus, if (a, b) is a point on the graph of / (x), then (b, @) will be a point on the graph - : being geometrical seicnce. =

the inverse of f(x). The domain and range of y = f(x) are also _\'alid for its invérse functionx = £ MM :

: 29 mmwﬁ ] - o 3*_3-_;___"
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UNIT-2
; i jon, domain and range of /.
1. Read the graphs and write the function, . 3
i b. 2 .
|- T T — 1 L - - 1 J|
‘Lﬂ*—-f"r;};’ AN } 3 4 i
N ts rasaiisiiets
H -EES 1 :
\ &
|
) 7 - :
f
[
2 ¥ i d 1T
Tk A 1 E 2
_“:__..i? SHEE L. / it T
e , 3
e gt EEEHEHT Ii
x-.i;;i-zﬁfu . Il ulx X - 3 0, : :I_ [] TQx ¥y
¥ ¥
v 5 Draw the graphs of the following functions.
i & 2fx-3 b, 4|x=3+3
i e 53r+7]-2 d. 204x+3+1 : ]
L % Find the composite functions (g (x)) and g (f(x)) of the !I'ollowmg T';'c":,m
A flx)=x+1, g(x)=2x b. f{x)=sinx, g(x)=1-
6 FRea: g(x)zliﬂ 0. f()=sinx, g()=2043
s x+1’ -x : ia
4. Detenmine the inverse function of (g (x)) and g (f(x)) for r.hg follsc)m:nzgxﬁlwmns :
0. fix)=x+35 glx)=x-4 b. fx)=2x+7, glx
x+5 . _f(x)=x+4, g{x)=21‘-—4.
e fix)=2x-4), glx)= T ; ——2 :

UNIT-2

m:anscendenta! Functions

“Functions that are not algebraic are called transeendental functions,

The functions, such as all trigonometric functions, hyperbolic functions, exponential functions and
logarithmic functions are called transcendental functions.

FUNCTIOMS 5D LIMITS

A polynomial P (x) is a function of the form fx)=P(x)=a, " +a_ " 4.4 aye +a,x+a, (i)
with n is a nonnegative integer and Ayr @y aeens y, €,y are constants. If @_ 20, then, the integer n is called
the degree of the polynomial. '
The constant @, is called the leading coefficient and the constant a, is called the constant term of the
polynomial function. In particular, the polynomial (i) is goingtobea

constant function by putting s = 0: Sx)=a,

lincar function by putting » = 1: Sx)=a,x+a,
quadratic function by putting # = 2: Sflxy=a,x* +ax+a,
cubic function by putting n = 3: flx)=ay’+a, s +arxs a,

mkeeog;niﬂon of algebraic, trigonometric, inverse trigonometric, exponential, ™
logarithmic, hyperbolic (and their identities), explicit and implicit functions, and
\\.  parametric representation of functions
L Algebraie functions
A function f(x) iscalled an algebraic function if it can be construc

(such as adding, subtracting, multiplying, dividing or taking roots) s
rational function is an algebraic function eg

ted using algebraic operations
tarting with polynomials. Any

; : -
fx)=x+5 g(x)=3x+4x-7 and ﬁ(:]:ﬂ—fi—r—g-
ii.  Trigonometric functions g ;

“Trigonometric function are the functions that describe the relationship berween the sidey and
angles of a right triangle ",
Any trigonometric function include one or more of the following 6 trigonometric ratios.
(!J- sin(x) (ii). cos(x) (i) tan(x)
(i), ese(x) (V). sec(x) (vi). cot(x)
These function has completely discussed in grade (XI) Mathematics,
Hi.  Inverse trigonometrie functions

“Inverse trigonometric
trigonometric function.
These functions are used to get the angle with any of the trj ic rati i i
3 gonometric ratios. Inverse
functions are also known as “Arc S el

: . ¢ functions™ particularly these are 6 functions such as:
(i) Are sine(x) = sin"'(x) where xe[-1, 1]

(1i). Arc cosine(x) = co5(x) where xe -1, 1]

(iii). Arc tangent(y) = tan~'(x) where xe g

(iv). Arc cosecant(y) = ¢sp- '(x) where x 2lorx<s=1
(v). Are secant(x) = sec- x) where x> orxs-|
(vi). Arc cotangent(x) = cot'i(x) where ye R

Inverse trigonometric functions are widely used in the
navigations,

NoF FORSALE

Junction are simply defined as the inverse SJunctions of the basic

Inverse trigonometric functions
are also termed as, cyclometric
functions, arcus functions ang
anii rigonometrie functions.

field of physics, engineering, Beometry and
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LNIT-2 UNIT-2 FUNCTIONS AXD Lisgy
c . < . : : ‘ : .
1 < . i ication in many areas of science and engineer; . -
- ;1:2':\::3;:;:“:;]' I;-;::c;::n kekifriny: llil.uielﬂl 1nsxlm'1mmcf rrmutEl erials, laws of cooling, mdioactlil!i : Interestingly, the value of expression (1) is never close to 1, but seems to be approaching a number
i il ntial function in¢ expa )
. Areas which utilize the exponentia

closeto 2.7183. 1 fact, as x increases without bound, the value of expression (") approaches an imationgl
number that we call e, The irrational number ¢ to twelve decimal places is:

. - €=2.718 281 828 459

{EXampig 48 ] Cholera, an intestinal disease, is caused by a cholera bacterium that multiplies exponentially
by cell division as Eiven approximately by

. N_A;Nnel-l“l'

. decay and the discharge of a capacitor.

U dris a prositiee e i, el an NN tig|
N O " L L

Wl

o st of ail peal [T

ot VeI

i ;o
We require the base to be positive and to avoid imaginary numbers such as (-2) ;

: " With Vis the number of bacteria present after t hours and Ny is the number of bacteria present at the starg i
lude b =1 as a base, since f(x)=1"=1 is a constant function. . (¢=0). If we start with 25 bacteria, how many bacteria (to the nearest unit) will be present in
We conclude b= 1 ; fal. 1 hour? 5L 3hours?  fc) 4 hours? S Interpret :
e Use the amount of initial bacteria Ny =25in the xpe 2501386
i Bk diea Eiven equation to oblain: =256\ (i), Ny=25 10000 B i
Ifa and b are positive real numbers, @ # Ly “  The bacteria ata time ¢ = | hour is obtained by putting o | AL | 1] .
\ Yoo (o= | O] o2 ii. @ =a"ifandonlyifx=y £=1 in equation (i); I T !
L g =a™ o= ) = @) = a3 | = ' . N=256"0 =09 97 puteriq - T I
b ; ' & The bacteria at a time ¢ = 3 haurs is obtained by putting & —J-—f——'——_ﬁ - i
iii. Forx#0, g'=p"ifondonlyifa=b oy : - = 1= 3 in equation (i); ? T T . |
o PP Y T - ; : N'=25¢" = 1590 pacteriq i
" Functions : : - ; .
Base ¢ Expon “"f" P "; it can e for the exponential function y = 5%, which ones are the most useful? € The bacteria at a time r= 4 hours is obtained by putting i
RSNl passiile baves iy leulator, you will likely see 10" and €”. Itis clear why base 10 would =4 in equation (i): ; |
koo weh‘::ixmui-:a bﬁﬂ'syﬂcm. But what is e, and why is it mclu;lad;ls a_ba:;'-: N=25¢"* = 6392 bacteria 3
important, because our num i The reason for this is & : clude that th ti ia i
::::l::fsoml:lthat base ¢ is used more frequently than all other bases combined. o, e canclude that the Popalation of basteria 1s

: anced mathematics take Srowing when time £ ey
i certain esses found in calculus and more aﬁv i cmat s
centain formulas and th?frflf.ultts,;i is :mdpl?'rﬁs is why yvou will see ¢ used evtensively in upremh m:';]t v Logarithmic Furictions
Femeilpnlie fh:m I| :srid phenomena. In fact, its use is so prevalent that you will often hear pe
formulas that model real-wo £ 5

: R like 7t ) it cannot be represented i Ay e
‘ ‘2 ial function. The base e is an irrational number (| > . ok Koot s b B S
kel ?’5 I'h::m?ne:l;:criun IE':-.Inowever e can be approximated as closely as we like by evaluating study of sound. The deptrs S ey in e
exactly by any finite decima " 3

sound, is based on a logarithmic scale.
i s ' ) _ Until the development of computers and calculators,
e (H l) (i logarithms were the only effective tool for large scale numerical
x

- Computations. They are no longer needed for this, byt

itstill plays f

ion (i) ds x increases without bound? The MU0 role in many applications,
for sufficiently large .L. 'w:::; f{;al;!:m: ;:a::; :value of expression (i) ; . For illustraﬁo_n. ifw: sg'tl with the e.xpolwn.ﬁalr ﬂm:rhon y=r
Fesulis drs sumdnarized iy defined by y=2%then the Interchange of the variables is giving the
3 R : > inverse of y =+, E
men i | Wea ' '
ﬂg R <11 We call this inverse expanential function, the logarithmic function #
o e : - with base 2, and write this as: y=log:x ifandonlyif y=7 i)
10 il 2.50374... : : © o "The funverse of EILexpencnial g '_J.‘;!_J.i_'w‘f.'.'.f 3 faguritimic fisiction, Fop b>0amd ey’
1&'_ :; — 3.70481... » the Joparithmic -funcion !'n_:.' y= Ini_g.u-\'w-icirh i% equivalent o X= Lt .
— 271697, The log to the base b of x is the exponent 1o which b must be rqj i i
:m B e e the [ogarit!u-nic Funclinln is the set of all positive rea) numbc-j: whi‘?:: t?f::‘:;".i}%g:rl?':;:
: ] e o find e corresponding exponential ﬁ.mcl:?n. Obviously, the range of the logarithmie function is the set of a1 real
100000 2.71827... Use binomial theorem numbers, which is also the domain of the comresponding evponentin] function,
mmn_ﬂ - e —— value of e. Typical graphs of an exponential function and jis mverse, a logarithmie are shown in the | igurg 2
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UNIT-2

“. -
Common Logarithms are logarithms wi o
"Log x", which is read "the logarithm of x", is
raised to produce x 7

Example

Common Loparithms irbase 10: = log, means PR

the answer to the question” to what exponent must 10 be

59 Evaluate the following logarithmic hmtlTs:.ﬁ_ i
{a). log 10000 ih). log.01 fc). log 2
This is equal to: log 10000 = logl* = 4logl0=4
This is equal to: d
1 i =9
= log— =log(10)* =2log10
= ].Og 100 IIDE'( ]

The common logarithm is alse
called Briggsian logarithms and
the natural logarithm is also
called Napienan logarithins.

log .0

I SRR |
¢. This is equal to: log\ﬁa =log(10)z = —ilogil.'l_- 3

b scarural Logarithns
Natural Logarithms are logari
*In x", which is read "the el-en of
produce X7

thms with base e: ¥ = Inx means &=x i _
. is the answer to the question” to what exponent must ¢ be raised to

y=log, x means b’ =x ‘
b", is the answer to the question” to what

" y=log, x ", which is read "y is the logarithm of x to the base

power must b be raised to produce _

[Toaritmic Nofation T
Common logarithmic: logx= lﬂg_mx Natural logarithmic: 2 x
warithmic-Exponential Relationships
L%mﬂi:;:i = }F is equivalent to x=10"
Inx=y is equivalent to x=g’ .
i Logarithms = e
Ff' cfc a'::" :::5\"::- positive real numbers b#l, and p and x are also any positive real Tum i
: ¥ - = =lo g
i log,1=0 ii. log,b=1 iii. log,b'=x V. b =, }D_ v. log,MN =log,M "
viii, log M =log,N, M =N

vi. log,iﬂf—ﬂng,ﬂf-lugﬂ vii. Iog,M"splog,fU

i ing indi ' tial functions:
Find x to four decimal places for the following indicated exponen

fa), 10°=2 ). €=3
'l : b- er= 3
a lo'=2 .
logl0*=log2, logof both sides Ing*=In 3,3 In oli' both ]a‘ldes
= =In o Ine=
xlogl0=log2, - logl0=1 xlne " -
= x=1.0986

x=0.3010 _
ST alas, 11 | Two people with the covid-19 positive visited the campus of Peshawar Univ
number ofays T that it took for the corona virus to infect n people is given by

10,000 n
T(n)=-l.43lu[ e ]

How many days will it take for the virus to infect a. 500 people? b. 5000 people?

RoT FORSALE

ersity. The

'35

UNIT-2 U
FUMCVIONS ARD LIMITS

The number of days T that will take for the flu virus to infect n people is given by
T(n)=-143In [1—"’"{’—"‘2]
4998n
The :lum?e)r of days that will take for the virus to infect 500 people, is obtained by puiting # = 500 in
equation (i):

a T(5M1=—-I.43m[

1)

10,000 - 500 9500

————— |=-143In| ——— |=-1I. :
4998(500) ] 3h[249m) 1.431n(0.00380)

=143 (~5.57275) = 7.96903 =8 days

; 10,000 - 5000 5000
b T(5000)==1.43In | ———— |=—] 43 In| ———— |- 1
o) {4998{5000} [mmoo] ""31"[4993]"2-”"‘2‘@*

wvi. Hyperbolic functions and their identities

In physics, it is shown that a heavy, flexible cable (for example a power line) that is suspended
between two points at the same height assumes the shape of a curve called a catenary, with an equation
of the form y=§(ef+g‘f) [i)

This is one of several important applications that involve
combinations of exponential functions, In certain ways, the functions we
shall study are analogous to be trigonometric functions, and they have
essentially the same relationship to the hyperbola that the trigonometric
functions have to the circle. For this reason, these functions are called
hyperbolic functions. Three basic functions are the hyperbolic sine
(denoted "sinhx" and pronounced "cinch"), the hyperbolic cosine (coshx;

pronounced "kosh”) and the hyperbolic tangent (tanhx; pronounced Ha.ngi_.ng cable
“tansh"). They are listed as under: Figure 2.8
e g™ £+ S - -
sinhx= , coshx= =& =& —E+e
3 x 5 tanhx =g cothx—-el_e.,
cosh” x—sinh® x=1

cosh(x+ y) =coshxcoshy+si:ﬂ1xshﬁ1y
sinh(x + ) =sinh x cosh y+cosh x sinh o
The name "hyperbolic functions” comes from the fact tha i i
e > t the functions sinht and cosht play th
same role in the parametric representation of the hyperbolic x*-y=1, as the rigonometric ﬁmcnl'ln:ishi
and cost, do in the parametric representation of the circle x? +yi =
Eliminating the parametfer t from the i joas3 cost, i
: : parametric equations x = =
to obtain the equation of the circle: 4+ yi=cos’ts m‘anc,l’l =1 g i :
& Similarly, the equations x = cosht, y= ginht
ar¢ the parametric equations of the hyperbola Squaring these equati i
T R d
the first to obtain the equation of hyperbola: »*— ¥ =caosh? Esinh?::jn PR e
vii.  Explicit and Implicit Funciions
So far we have met many functions of the formy=f(x): p=x*+3, y
Ify is equated to an expression involving
in terms of x that is in equation (i).
Sometimes W:! hn\;& ﬂi‘l_ﬂ‘-lllﬂﬂm Wmhﬁs.r and y but it is impossible to write itin the form of y = £ {x):
y=x" =) +sinx-cosy=1, s:n(x+y)+e'+e"_—.x’+y’ i) i
In these cases we say that y is expressed implicitly in terms of x, \

HET FORSALS

=sinx, y=e"-2x i)
only x terms, then we say that Yis expressed explicitly
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‘ Implict foncilses: ' 25
The following curves are mm:eled.;liﬂm:ghz :r_lplwnl i (4 y’)’ L 4;{3’— A
o, The Bifolium curve: (F+y) =4x . Lemniscale curve

F '!“m,n{])mam R e 1 8 fD I 4 [ ] x
. 3 =0 d. Os&md o ioceles 6-x
[=3 o xty 2

Fl 2
.. . ¥
H inge curve:  —+=5=1
e, Cardioid curve: (+y)E= ey ¥ El'ulrpss A

i x’_j_=1
g Hyperbola curve: A

i tation of functions
i ;;.ai‘::l}:;;;mr:f :1:2:'31 1o define the variab
each functions of some other varnable, say £ "

TR A gl A e s
The domain of these functions f(7) and g (1) is some interval D_._Thcvargable tis called a parameter

and x=f(f) and ¥= g(t) are called the parameétric equations.

les x and y in the ordered pair (x, ¥), 50 that they are

UNIT-2

ii. (.rn|:-||ic:|ll_\ representation of f (v} o

m To hand sketch graphs of cquations such as
y=2ory = 2" simply make a tables by assigning

LSERTIER, 14)Sketch the graph of y=2", o o

FUNCTIONS AND LIMITS

mt::g::sltox. plot the resulting points, and then join these M4l B
points with a smooth curve as shown in Figure 2,11, T —
o
=2

X -5 | (1] 1 2 3

y log|as [TV | & 1 |3 :
S TSR T

x -3 -2 i | 0 1 5

yol B | o4 | 3 I | 05 [ 0.03

It is useful to compare the graphs y= 2+ W i
fultc ¥ and y = 2" by plotting both on the same set of coordinate
p a:;es as shown in Figures 2.12, The graph of f(x)=5", b>1 shown in Fizure 213 looks very r:l:gh
like the graph of y=2" and the graph of f(x)=57", 0<b<] in Fizure 2.1 looks very much like the

: : fion:
“ [ff (1) and g(1} are confinuous functions ;{Sdmm'-"er tonan fn:!erval o meﬂ. i graph of y=2"%.
x=J0 ond  -Y= - , w T :
are called the parametric equations for the plane curve generated by 1_11= set ofgrdmﬂ pairs in ﬂltellplav:. : i : ot
)= G0, ) =(/(, 8 ) ) S A [l I P e
TG T aph of the parametric functions (x(), N =0C-r20) forallt., = ] V[ o
FETTTIES, 2] Sketch the graph P . : BE T 1T
’ :on of all points (x, ¥) with - - ] I e
msﬂph is the collection 0"«’- L T = L ,irz ; ——Il'jj::;b-_":‘i-'-ﬁ" fold— ;_r- ] i
x-3-r..v='2rt‘wmffaemmlwmsoft‘- nclli e )5 U T 1
120 72 .0 =GO SN s mEy I REECE iG] R
(=1 = &OXN=22) Al AT . N f e e e
=2 = GOHN=09 " o T HH s # e e
The plot of the position vectars 1, =(3.0), 4 5(23:}”1 :'—I:L"‘) s NEm N o - -"i' g |
the 1fienre 7 l!d!\'@iﬂpﬂdﬂmﬂﬂ linepaﬁllgl whcdpipes Wil L_:EJ' = = = ]
: : : : 5 1 M| T =
= (-1,2) and passing through the point p (3.0) Figure 2.9 - Cr e
s v ’ T U 0
 mpeEE - 0 ¥ L 4 Fr L.l
" Graphical Representali ':m LT mms Figure 2,12 ke
Ko s classes we have leamt that grap L ] : . gure 2,13
mmwm ofinhlizw .;mﬁtlo: dmr‘tln:i" vlls'um;nlﬂﬂlﬁ' the given ::—:E L The _glt‘aglhs in Figures 2.12 and Figures 2,13 suggest the following important general a5 of
data sets, The data is ingested into the grap e curves, bars and slices on the o -] exponential functions that are summarized in the box below: .
then represented by the different symbols. Like, S o o 7 H ‘ '
chart : ; . & =1 ]
(a) Graphical display of explicit defined functions like I e P
y=fx), where f(x)= ¢, a" 10ga %, logex . ok R Basic properties of the graph of f{x)=5".b> 0,52
i. Graphicdfly representation of f{x)=¢* ¢ B ¥ L. All graphs will pass through the point (0,1).
EE 8] D e graphsof Figore 2.10 5 A A S 35 P
VP E e i e 3. Ifb>1,then blincreases as xincreases. 4. IF0<h<], then b* ek it vlasaies

g g e
m Use a scientific calculator to create the table of points. Pl 3
these points and :henjc-in them to obtain the graphs of smooth curves 1o the Figure 2,11:,_

The domain set is (—=2,29),while the range setis (0,29).

g
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il Graphically 1'|."p|.'l:l-1:nl'.1.linll of log o
E?i'f.l'i“‘l.’!!. .m Sketch the BIﬂFh of ¥ =log, ¥ . ;
We can graph y =108:% by plotting X=2"
i ir of nu

are equivalent. Any ordered pair o
upz?!.enﬁal function will be on the grap
function if we interchange !
Far example, ordered pawr
satisfies equation x=2"

(3,8) satisfies y=2"

wand log X

bers on the graph 0 2
r h of the logarithmic

the order of the components.

i
%

FUNCTIONS AND LIMTg

since they
h of the

and (8,3)

and
0.03
[ x | -8

=7 =log
The graphs of ¥ =2 and ¥ 2
=6 Sketch the graph of y=log,(x—2).

We can graph y= log,(x—2) by plotting x—2= ar.
Any ordered pair. of numbers on the
function will be on the graph of the

since they are equivalefnt,
h of the exponential
lg:;Eritlinﬁc function if we interchange the

components. ' .
The graph is shown in the Figure 2.15.
Sketch the graph of y=In %
We can graph y=Inx by plotting x=

Any ordered pair of nurnl;_lcrs [
logarithmic function if we interchange the order 0

The graph is shown in the Figure 2.16.

x are shown in the Figure 2:14.

n the graph of the exponential functi

order of the

¥
Figure 2.15

. since they are equivalent. )
: \ on will be on the graph of the

f the components.

If we fold lhepapualmgthedashed ling y = x, the

hs match exactly.
Th:;sl?ugy=xisalineofs)rmmewfwlhcm

graphs.

B T e € A
e -

A e
UNIT-2 - 'g_. ;
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(b) Graphical display of implicit defined function such as x? + ¥=a’and i:.#i =1
and distinguish between graph of a function and of an equation i

BETOTIEN, 18] Sketch the graph of x* + 37 = 9,

30 a0 AL
mThis equation x2 + 3 = 9 is an equation of circle having » sl
radius 3 with centred at origin (0, 0). |
Rewrite the equation x% + 7 = 9 as o = i
y (x=0) +(y=-0) =% s
The standard form of equation of circle is  (x—h)Y +(y—k)* =¢* e ;
With centre (4, k) = (0, 0) and radius r=3 3 Il
S0, this is a circle of radius 3 centred at origin (0, 0). i
Figure 2.17 is showing the graph of x* + )7 = 9, Kigues -1
R o, J"[I“_i.,_%..]
[Ei i 19| Sketch the graph of —+=—=1, -t -
Sy o EEEas
@D The equation 7675 =1 is an cquation of ellipse. e aCEm——E
Fil I Ll PN
Compare it with the standard equation -E;+i—:=l net=at-b s u'r" 2 '-I[ it I-":r ¥
I |
where, h=0,k=0a=16=4,b=v9=3 and c =69 = V7 e mmmama
50, Center: (h,K)=(0,0) o i
Foci: (htck)=(£7,0) ¥
Vertices: (htak)=(+3,0) Figure 2,18

Co-vertices: (h, ktb)=(0,+ 4)
Graph the center, vertices, foci and axes on the graph paper as shown in Figure 2,18.

I The students will learn more about conic in unit 8 and 9.‘[

(¢) Graphical display of parametric equation functions such as x = ar’, ¥=2at;
X=gsecB y=>5btan 0@ ;

S ETTTIEN 20] Sketch the graph of the parametric function (x(1), ¥(1)) = (3%, 4t + 3).
To sketch the graph of the parametric equation, Let’s mak: i
%oﬂ gt equ s_ e atable to get the idea of the shape

t -6 | -5 | 4 = = 5 -
af) | 108 | 75 | 48 | 27 = 3

2 3 3 5

6 |

0 3 12|27 ] a8 75 [ 108
L2 | 1|13 | g f 8 | =1 [T 5 e iz | a7
P TN o i Uil
x= 3t 4

e (i)
o (J'_'Ej 1
4

= _l.l_ﬁ.(y? _6y+9) =’-“=%U= ‘_.Gy+9]
This is a right opening parabola, its graph is shown in Figure 2,19,

NOT FORSALE

| S -—_:,l__-____i_

Figure 2,19

£

I

&

e
=

i

-'! =4




UNIT-2 FUNCTIONS AND LIMITS :
UNIT-2

|
4 :
F 21| Sketch the graph of the parametric function (x(t), y(1))=(3.cos (1), 2.sin (1)) for 0 S 1< 2,
To sketch the graph of the parametric equation. Let’s make a table to get the idea of the shape Emh‘ MAPLE paces-r FUNCTIONS AND LIMITS
¢ o
| and direction of the graph. - : E e E[x pression (or a fu ncﬁon}ummands %3 m:di"“““"“al plot of ~ B
= implicit . para sk=
R TR O[O ] et
: : : w ¢ following example, the procedure to use ; EE
_.‘4 o= hc ¥ 15’
3 ) | 3 2.12 0 212 -3 =212 0 2.2 3 - Fu:rT'! maple commands to dravw the graphs of the ;?avﬁc r:ﬁ!*mmnds isillusirated,
y | 0 141 2 1.41 gL | <14 | -2 2 ] ) m‘ : ction f(x)=—(x+2)’, with domain [0,-4], e
T H). Parametric function (x{r), ¥(t)) = : i
Now, convert the standard form by shmmau“s_ the parameter. &.g. - from—1.5to 1.5. iy = eetheing) fre 25035, sivm 151013 and y
x=3 cos (t) = x*=9 cos’ (9 (i) fe). Animplicit function x* - y* 51 x from
y=2sin (9= =45’ () w0 ST The command below will 4 ~Sto5andy from-51o05.
g & = > Zplots will show }'D'LI full detail of plotting expressions/ ok
4 From (i) and (ii). -§-+—4-:cos’ () +sin’ (f)=1 e I . functions on line by typing:
d 2. pf 3 Jo = g Content M
So, the formula of ellipse is -+2-=1 where a=3,b=2. [“fﬂ""( ;"“1 \¥=0.-4); TP :
1 ’ = : -1 -(x+2 (
J Thisis an ellipse, which will be discussed in defail in unit-9. : (CATIN 1} kb s odk » el '
i (d) Graphical display of discontinuous functions of the type ,:'/ | \\ ' 43 To
x  when 0=x<l - , ] 2 ; I“—Z— -—f-—-—B\—.. -1
Y=1x-1 when 15x<2 / i | \~.2
i / I = ~ I'
: W Graph the compound function: | v . \.\3
‘% 3-x If x<-2 e £ .q' 1
o Six)=yx+2 if -2€x<2 X' S x ! Figure 2.21 |
1 i x22 : = (2 6 b. * Command L> Figure2.22
m ; ‘: : _—F H - - Conrext Menu
i - 4 N " ' > Plot{ [cos(1), si - sin(1
b '+ st fon =35 frx<-2ocbamast _F_mi-g“m o o 1), sin(1), r=-35.3.5], |'> in(t), cos()
i of points: .13, -1.5.1.5); | sin(r). cosit)
& e ke e J ()
= i 3 2 S sre plof[sin(s), cos(n), =-35.3.5))
5= - A . i SRR EEARE N AL ) . g
it S 6 5 e HHEE 1
3 - ot = —pa & - 1 I T ” El
& b. Use the function f(x) =x+2 for -2 x<2 to obtain a set of points: TS R a2 ] A 1
- S D o EmmmEamE 5
x = 2 A function that defined by P e -
7 more than one equation is o= SHAHE T
3 Fit) g - called compound function- : £ e ‘f T : L
¢ Use the function f(x) = 1 forx 2 2 to obtain a set of points: | R =3
i x 2 4 ® Figure 2.23 s =
s . > :
b - il 1 1 This graph is obtained thro . r o Figure 2,24
A : : ugh right-click ! :
; Builder < 2D . . on the last end A
' Parametric Plot" on the context meny, of the expression by selecting "Plots < plot

Use these tabular points to abtain the graph of a compound function in Fi
. gure 2.20. "
| (157 FORGALE

o o  NOTRORCALE b




UNIT-2
c. Command .
5 plots{implicitplot)(¥* =y — 1
x=-5.5,y=-5.5);

»> £ =y =1

AL EUA

> Figure 2.25

A g

i

FUNCTIONS AND LIMITS

cunle!l Menu

g1 W

> smar-'p!allr,.vl(": -y =1)

> Figure 2.26

the expression by selecting "

UNIT-2
b. Command

[> plotsfanimate]
(plot3d, [cos(1*x)*sini*y), -
x=-m.w,y=-n.x),t=1.2);

FUNCTIONS AND LIMITS
Context Menu

[> plots(:-animate)(‘plot3d, [cosit*x)
*sin{1*y), x=-nN.X,y=-N.K,
labels =[x, y,"™]], t=1.2)
t=1.

> Figure 2.29 I g

Figure 2.30

ed through right-click on the last end of
y " on the context ment. :

This graph is obtain
Plots < 21-Implicit Plot < X,

. B
WI\_'!AI’LE package plots for plotting different types of functions

Look at the following example the
: : i tions.
Use MAPLE commands to draw the following functi
ExampleNy
m (@) f(x)=x —b,x from—1 to 10andy from =5 to 5. i
{b)- (e(e), Y0 — cos(ex)sin(py)), ¢ from 110 2, from -7t ::—1 c,bJ; ik
d-'he‘mw will show you full detail of plotting packages on
The comman

o B e

g imate
. {. > 5 p.!urs[arllmd dl Context Menu
1] £ Comman o
;‘I'f-.-' :b-Pi'ors[animEfC](P'!“"' [ =& ot iy 2 =-10..10,
}v#; x=-10..10], g,:_-ss,.s ; ‘;pla!s[:-ﬁm'mam]{'ﬂof'. [x"—b.x -1
L:':i I b=-3. — labels= [-‘:‘lm'ﬂI g::gs
;"53 0= - =
& 1 i s e
; R = T
i e BeiEses
£ — i
T ) s
=— QEESUSERE
- Figure 2.27 . > Figure 2.28

This graph is obtained through right-click on the last end of the expression by selecting
< Animation (choose 2D-Tmplicit Plot)" on the context menu.

43

procedure of plotting the functions using maple paf:kage is

nplots < Plot B'"w

NoPFOREME

This graph is obtained through right-click on the last end of the expression by selecting "Plots < Plot
Builder < Animation (choose 3D-Implicit Plot + Parameter) " on the context menu.

L. Revognize and write the type for each of the following functions:
a. y=asin®x+x b. y=T7x'+3x"-4x+5 ¢ y=arclanx-7
d y=log,16+7log,(x) e ko Je g y=+/x-8
: ; g,l_e-\.‘.l
A sealed box contains radium. The number of grams present at time t is given by Q(r) = 100"
where f is measured in years. Find the amount of radium in the box at the following times:

a =0 § b. =800 €. 1=1600 d. r=5000
€. How did you guess from the above results?

Using a ealculator and point-by-point to plot the following exponential functions:
o h{x)=(2");[-5,0] b. m(x)=(3"%;[0,3]c. N= &;[0,5] d N=e":[0,5)
4. Using a calculator and point-by-point to plot the following logarithmic functions:

a. y=hx b. w=-Inx ¢ y=2In{x+2)
d. y=4In(x-3) e y=dinx=2
Sketch the following parametric curves:
a. (x(e) p(0)) =(3-1,21), 15 real number.
6. Sketch the graph of:

-2x 2

P4y=36 I p=

b (x(e). ¥(0)) = (4 cost,~3sinr)

a € b. 5:“' e o4 o 4
e logy(x+5) [ log,x* 2 loge(2x - 35)
7. Sketch the graph of:
L X +pi=4 b, x*+y*=16 c. f‘—w-f-: d .‘ﬁ...y_!-l
25 9 ST T

5 Use maple commands to plot the graphs of the ﬁu.;clicns givenin Q.1.

R

=TT
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UNIT-2
il

e = CIUNET=Z7 0 o
Limit of Function - . iz o
The algebraic problems considered in earlier sections dealt with static situations: i« hest) [ R : FURCTIONS AND LIMITS
What is the revenue when x items are sold? g 'T. T e e gl 5 —
How much interest is camed in 2 years? 3 he graph of the interval [4,%) is as under: " PER TR W
Calculus, on the other hand, deals with dynamic situations: «— | } i " o
At what rate is the economy growing? ¢ The BT P “SE o 6. —t—t>
How fast is a rocket going at any instant after lift—off? . B oC 'mcn'alj'z’ 'J is as under: y a-e _.zg.z S
* The techniques of calculus will allow us 1o answer many questions like these that deal with rates . I | é, S o
" = e ¥
of change. ' . ‘.35 Them: : . x4
The key idea underlying the development of calculus is the concept of limit. So we begin by — Usf ‘:’“mb“-llm‘rto indicate the istterval notation: -
studying limits after explaining the location of intervals on the real number line. ! ¢ 4 : 8
T T 1
menﬁﬁcaﬂon of a real number by a point on the number line 4 F 2 -Am 0l Aqm 2 ; e
The various types of numbers used in this book can be illustrated with a diagram called a number ). & : . o o Cres o 4
line. Each real number corresponds to exactly one point on the line and vice—versa. A number line with - o g b B = | 4 B ITEE 2 Tt b e S '
several sample numbers located on it is shown in Figure 231 By SR T 3' s s : g é i .E- .
: ira o s b ey - 9 10
2 1 3 e o |
£ 3 42 - (c). ;
«— } } jo—r>—» |-o—1 1 — i P § g
B (R TR il TR S 4 | * S "R Y ¢l L) s
Figure 2.31 2 m £k e Sl e -1 =0 1812 &y
= . The given hs indi g e -
"Representation of open inferval, closed interval, half open and half agesyr o #aphs idicato the Sxfjowing imlegaalss
“ closed intervals on the number line it B B b4, T : e foo=1]
ts is called an interval.” : N b m&lgtjogﬁrgs?‘ .hln G - —
2 e T Fay M e S

“4 set thal consisis of all the real numbers benveen two poin i .
indicate an interval on the real number line. “0‘x tends to zero (x> 0) .-
- A

A special notation will be used to 1 ¢
For example, the interval including all numbers X, where.—2 < x < 3 is writlen as (-2, 3). The i

ﬁ'xtends_tog, — : » o s
S L 04(x—a). o xtends tv infinity (x— =)

theses i]ldicatﬁihﬂ-lthImmbCI-—}md 3 are not included. .
1f—2 and 3 are to be included in the interval, square brackets are used, as in [-2, 3]- The answer to the phrase x tends to “0” is'easy to : =
The chart below shows several typical intervals, where a <& i b Tnb se that the value of a function y = f(x)= -4
I i Explanation very close to * "05¢t to a single real number “2”on both left and right si x-7
nequality Interval Notation o “0” on both left and right sides of “0" : m.d right sides OF 27, wohen £ [ 8 aibes
o asx<h {a,b): Closed Both a and b are included: : approaches to “0” or x tends to “0” and is denoted « T Hhis situation, we are in position to say tha
o asx<bh [a,b): Half open/Closed a is included, b is not. L=z, byx—0, when f{x) tends to a single number * Ja
o a<xsb (a,b): Half Open/Closed b is included, a is not. Sl xtendstoa(v—oa) Frosa o : £
o a<x<b (a,b): Open Both a and b are not included. “The answgi- ke I...‘.. y — P v e
Interval notation is also used to describe sets such as the set of all numbers x, with x2 —2. This : $ 10 "a” (a is any real number) is easy io see that the val :
interval is written [~2,%9)- ; y=flx)=2 2 -a® i S of a function
UL, 24] Represent the following intervals on number line. _ ﬁ::ﬂ::“ﬁﬂ and closer to a single real number “Za“mf';:gh.] v § &
: @. =) ). [4=) (c). [-21] - 45 ;::r::cllm ': .1"" b both lefi and right sides of “a™, helﬁ,;;:d-nglr_[ sides of “24", when x is a
¥ e Py AR “"ld is denoted by x — a, when £(x) te ag.?'f!lﬁflu?, we say that x approaches
5 1o show that? . ik, x tends to infinity (v —bee) - ..y . ' single number “say L = 24", .

The answer to the phrase x iends to “infinity* s ehs?h.:n :cé*ﬂ\ t‘ ;
R ) o

a Start at -2 and draw a htavy line to the right, as in graph: Use a solid hole at

is itself a part of the graph.
The symbol e, read "infinity" does not represent a number. It simply indicates that all num'!’j
greater than —2 are in the interval. Similarly, the notation (—2,2) indicates the set of

numbers with x = 2.
. . NET FORSALE

the function Sx)= 3x +12
x4+

#

= —

R T
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infind cither side of 3 mumber say 3. n gy
gets smaller and mu,m;wmummﬁu:. : “Il)'l-=3"whm,,::
situmiun.wesaylhalllwﬁmhnﬂ:)sﬂuhm single numbcr :
from either side. "
Limit of a sequence X
L is the limit of the sequence .
g e given £>0, § =L forn2l (

3 CONVETEES, OF Convergent. ik .
el sirhinpri i mmmﬂwwmmum
§f*L’ does not exist, {5a) divugﬂsuwm-t |

lim{s.y=L & L as n— =

These [ i
W Limﬂotaupﬂﬁwlﬂn‘“h”‘
n+2

Let § bcam.TngﬂMfuﬁtcwmnfﬁkmmwemﬁmplumum

i \crms considering i 3 posiliv - '
of n into the general foem of the sequence. We will get the scquence oy

integer.

—_— — __.._.-,,..___—__—_,,.—_

“r {uz'
e FRRRL J s f2
.-

>: Inmeabuvc;nqqm“m

itasnﬁmclianlhat_mmlyhv.c
integers plugged into them. This

" is an important idea wmlulm ot
us lo do many things K .
sequences that we can A
compulte by-usinguﬂmnmnds.

© To graph the sequence (S} we [——=$
plot the points (m 8,) as nranges
over all possible values on the

i we noliced that as ° .
] graphreprcscnﬁngﬁmHmufhgwuupm.mew !

We then
mcmmnfmsqmwchmﬂcmwmmmmwnlmm
zero is limiting vahwnt‘unqw-ditmu:m;
hs_ﬂm-”?—:ﬁ
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UNIT-2
FUNCTIONS AND LIMITS

10, 26 | Represent the sequence on one dimensional space whose nth term s s, =

@SB The scquence (s} in terms of function notaion is s(r) =~ whose domain is the sct of
non-negative integers. ‘I‘heﬁmc‘lml values of 5 (n) develop

I edmm e g mai)=20

2 S | n=s()=32 -

L S5=3(3)=40 .
40 ot Ty a8y = AT o

The one dimensional view on a real number lin is shown in figure
: 5, & 5 555§

If lima, = L and limb, = M, then the limit exist are the following:
(). lim(ra, +sb,)=rL+sM Lincarityrile () lim(a,,)=LM  Product rale

.[i-ill-._!i.."i.':-"=£.u-=ﬂ | Qutieatrile (). lmga, =YL  Rootrule

_ 3'1_; Find the limit of each of these convergent/di

s .| 8n. n+n'+2 4
o), {;;3} S {.M.M:”} @. {0} . -
i Lol fard =
Ilm{a.]-:luujn—
el B Some of the sample points
=i n(8) L B near n = infinity are:
- Y hm =y n lim(-1)"
a| l+— Sl =
n n 1 =
: ; 10 1
- L]J:s LIS 100 1
1+— ! o : 1000 1
2 oa - 10000 1
Hmsoe,il;xewquﬂmei:m\rugingms. 100000 . 1
o ot 42 : :
et ".1J_|‘+n’+3
: s 152
g0 n [l+—1+—]
b =]imn+n,+2=‘ n n
T L)
"1 nn n

NO{P . RSALE!
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UNIT-2
; . sidlbiey 40 g o
Joci e ) paslsigy 300 03
L5 o S O = e
=ln=T eduas @ gl o 3 w0
-—+-—]+—, —t—t—
ot (o2} (),

In the above cxpressmn the numerator tends t0 1 asn — e, but the denominator approaches
to 0. So, the quotient increases without bound. Hence, the s.oqucnce is divergent.
c. Let g =(-1)
lima, = lim(~ 1y
The sequence does not approaches to any specific number. So it is divergent sequence by oscillation,
The nth term is always either 1 or 1. It is 1 when n is even and —1 when # is odd.
b :

Limit of a function

“Let f (x) be a finction defired on an open interval X C'omain.‘ng x = ¢ (the value f (c) do not
needs to be defined)
The specific number L is called the limit afﬁmcnwlf(x} asx —» cifand only if, for every £>0

i ol | (x)-L| <& when ever, 0<|x~ .-:1#..8"_

This dl:fmlluu is also known as the couchy definition for limit.
1 Usually I|m|t of a function is written as lim f(x) = L and read as “Lim cff{x) asx— cisL”

there ex

This is nemthzr desirable nor practicable to t"md the limit of a function by numenc.al approach. You must

2z

be able to evaluate a limit in some mechanical way. i :

aarkils b 21 dami 3

meorems on limits of sum, difference, pmdur.t aml quohut ni' functmns and) :
demonstrate through examples = ° : bt o j

Let f(x) and g(x) be two functions, for which lim f{x)=L and ||m g(x)-
i The limit of the sum of twe functions Is cqual to the sum of their limits
|“ﬂ[f(-f} + g ()] = lim f(x) + lim glxy=L+M
AT O 28] If f(x)=x"+2x+3 and g(x)=x—4 then calculate lim[ f{x)+ 2(x)]
- Cflx)=xt+2x+3 i
Tglx)=x-4 (i)
By adding (i) and (ii) Flx)+g(x)=x"+3x-1 (iii)-
Applying 1_!321 on both sides of (iii).

lim{f(x)+ g(x)]= ]j._:g(x‘ +3x=1) 5 .
‘=limx’ +31i_|:|21(x)—l:i_1':;(l) =4+6-1=9
Hence, I1m.[f(x)+ g(x)]'?

ik The limit of the difference of two functions is equal to the difference uflhclr limits
Irm[f(x) glx)]= ]lm S(x)- 1|mg[x] L-M i

Example NI R f(x)=x-7 and g(x)=x"+3x+2 then calculate Iriﬁ[f[x}—g(x)]

m Since, f@=x-T (i)

g(x)=x"+3x+2 {ii)

4o | o7 FOREA

If f(x)=K, where Kis any constant thas
lim /()= lim K = K (constant rule)

!rme @ k lim /() =KL (multiple rule)

ms‘mm Sx)=x-4

UNIT-2
By subtracting (ii) from (i) T e
S(D)-gx)=(x-T)-(:2 +3x42)=x-7- -3~y "D mmabp
2 ==a' =2x-9 =L(x* 42 +9)’
y applying Jlm on both sides of equation (iii).

() el S

mu(x)—g(11]=i‘m—(x +2x+9) =~lim(x* +2x+9)

=~[lim e+ 2lim e+ lim )| =~14249] =12
Hence, lim[f(x) = g(x)]=-12

fil.  The limit of the product of the functions is cqual to the product of their limits

Im'l[f (x).g(x)]= [hrn f(x)][hm g{x]] LM
Ex
““]PILE If f(x)=x+5 and g(x)=2x~4 then caleulate lim[ f(x).g(x)]
=)

m Since, JS(x)=x+5
8(x)=2x-4
By multiplying equation (i) and equation (ii).
J () g(x) =(x+5){2x~4) =2 ~4x +10x-20 = 2% +6x-20 1.
By applying lim on both sides of equation (iii). >

i)
(in)"

IijTx) g(x)] l|m|_’2x=+6:-—2.0] 2llm{x2)+ Elun(t) hm(2l]]
2% _2(’9)+6(3) 2{)-18-!-18-20 =16
Hence, [im[ S().g(x))=1§ bovuran

v The Hmit of the quotient of the functions Ise

lmit of the denominator lunnn-nm 'l'-'"' to the quoticnt of their limits prnﬂund the

fiy]_lims(x)
[8(-*)] lim g(x) Mwhemg(x}i’-'ﬂandﬂ;&o
[ExfimpleR E

If f(x)=x—4 and £(x)=x"+3 then calculate lim [i{ﬂ:r
= g(x)

: 2 =x+3 : : e
[§10)
By using Qquatiqn_(i} and equation (). i
q i o, t"+3 : i '

By applying .Iiﬂnn both sides of equation (jii). -

) e [:—4] an=h 2-4. 6

=R (v e3) lmeeed) 443 -7 e

Henee, llm["r“)] E |

=2 g(x) ?




A

a, |i|.-|'.(£”—‘:l_)="“';.-|1l bt U 2 & : o'bhiﬂ‘-
wemcdmdiviﬁﬁﬂﬁ'j“mww =

.I’rool': 'In this situation,

.Mmamﬂﬂ,ﬁe function to the

E i I l=.'
; m“-ﬂ'ﬂ[!f,) € -
_ Proof: The basc “e” is an irrational number (like#),

e S S 4a"x4a™ . i 'y ; *
el : ﬁﬂuofmelﬁww i)'upmtlin'i‘lﬂllsforallvllu.u?if;;
and as such its limit, when x—a must equal to its value at x=a. Thus, the limit of the expression(!),
“ - "

" whenxtendstoais:

i E = = lim(e @y +aTE raixea™)

1 x=d Ll

AN o ek 'rm_hm.. "

Proof: ana.hlimhnfafmwhm1sufﬂurmn(n].whlchm\mdcl _ sitwation,
- i in ired limit: %5

: m»mmum_wmmmmm !
“‘. x=a - J;-l-q'; _Hm{x-aﬁgxirlt.n}.
(l-ﬂ ]‘!‘EE’ et ia e = e
;I-jﬂ : §
' 3 -MJ;+JE=EMJ;#EJ;%J;+J;=ZJE

lim x-a

e [I+I;] Mm!*"f" '

it cannot be represcnied exacily by any finié

b. . Prove ﬂﬁ'.-——'h'ihl. da>0,
o |

FUNCTIONS AND LIMITS

— oy

T} Use bvomial theorem to
gohcrale o,

]

_” 2792

s L [TIT

[ (==} rmen. - .

[=—="] 27N

Interestingly, the value of expression  is never close 10 1, but scems 1o be approaching a number
chose 0 2.7183, In fact, a3 x increases without bound, the valve of expression  approaches an irrational
rumber that we call e, The irrational msmber ¢ to twelve decimal places ix:

| : H[.I+T:--].=l?lmllm--f

From result (1), the new result deduced is:

fim [u%]' = 2718281828489 = ¢

A

W qexy, YESandE st nn)"'-l_d sinx
x d x

— whenxr—0
. x x

n. Show tha E{“’F: =e

) Proof: Il'lrcmﬂ-yB;.ﬁﬂ ¥ ==, wheax—0, and the lefi-hand side of the limit thus gives the

Lh‘(.luﬁ ”H["‘}] sty

Proof: Ifweput a'~1=y, then.x is obtaimed-by taking log of both sides:
¢ a-l=y =a't=l+y g
log(e’)=log(l+y) = xloga=log(l+y)

decimal fraction. However, € can be approximated as closely 8 WE s by sviiuses ' e loElty)
B : s ( 1 i y loga
1+-]' .
- X r e | R v
o o s ‘bound? Th Ullﬁlxﬁ*w—’-lnﬂﬁ: - =k
. What mmmmamgmaxmumwmwml o . x 9
for sufficiently large . What happens A : . koga

results are summarized in the following table:

e o
TR

——
T




umiT2 L "
Taking limit y —0, whmx—m :
a* 1 . A W a
limZ ‘=1[m =lim =lim 1
e 1+ ¥} 0 1 ] = T
: Liopnt - - log(l+y)
T J'hﬂl+y)[|ﬂgﬂ 3 ;.3%(;

1 i g 3
e - S =log,a={na
loga +=loga Lan E

loglim(1+y)” |
By replacing ‘a’ with ‘¢’ the following result can be deduced. X
= \
N
€ Prove that lim ~———— xi-a-_\r” T b 4 e s 5 sk al i
! 0w Sommy ol Srasliis ot 76X et ol AAITS
Proof: Weha\rew show"@hal ||m__———w;= o

T T LU R .' 5T S L |
"'JH'G"J; .0+a--|r owkwhsundq,r’ned

Take LHS fim £ (x) =lim ~—"—= =3 .
Now, rationalize the function f (x). v houleels feers w2 Anen s
16 = [ "*“'“"_Im*‘r] Xt Ve
x+a+ a A =i
__xta=a i N = =3 !

x(J;ﬁ+J_] x(m+r] e

= mn,r(x) =lim

x+a+ a. s t

" T-R.HS - 10 ;
JD+¢+]¢J ) .
(I-I-x} S e ft i :

il. Prove that Ilm

Prooft Ifwe put (1437 -1=  then :1+:=:-'—1=-z joid i oeus® | T
. (14+x)" = (14 z) Taking |ognfb0ﬂ13l.dﬁ~!0ﬂ]ﬂlﬂlﬂa.- 4 When x—0, cosx—1
b - __._.,..._:_. ca=1="9 1 £l H sinx | 3 E
4 Iolgg:x)-) F&F::x; 3 ol Sl Since _x_ 15 sandwiched between | and a quantity approaches 1 itself,
: " +x)=lo| z 32
Use these expressions in the Ieﬁ-handq:deoﬂhel::muocbmmihcnsm-hﬂndsid& i Therefore, by the sandwich theorem, it must also approach 1 ic.. hmﬂ‘:' : .I -
Qexy-1_z _z hs(}-l-z} z i‘&‘“‘_’q __.'—‘ﬁnlog(lﬂ)‘ WLimﬂsofdﬂterenba]gebralc,upunenﬁalandnignmmu{emntﬂm
x XK Iug(1+2) Ios(Hz! 3 = |ng(l+z)_’,‘_ LT The idea of li ""m1h=abov¢suhmwnsmllusnrmdmmeronuwmse_mmw SRR
Taking limit z—0, when x—0: - TR L e e BITTI 32) Evaliate lim Jﬁl R A :

tim O AL linlogai+2) =ﬁx~!°se'"

x * log(l+2)°

i- "o A

i

(i) Aru.af‘ ﬁGRQ=—|'GRHPq I:I;ll:sl.ll v]--smx
(1 s Amoﬁsﬁmﬂﬁg — .r‘=2(l]|:x]==—  Fak b e ; Mrofs | m=ta
s iy Axeaofm-—IOR]!RSI'- [[)[unx}--tanx TIT i e (v ¢ Yo e
» From the figure we observed T - N
Area of AQRO< Arca of sector QRO < Area of A SRO, '
s n%sinx-:%x-\:%lmt :
wilsdd , _:Assmx:spnmhve.m,dmﬁmgby —smxwegﬂ.
" o ; 2 Jums? Baiups sin. il o " ertiada T mapy §
PR !]-:——«: -

: '.__.._4 . foaits JM
woreopsass  NOVEOR

sih e,

ey In AORS, lanx—M-MS[

P o : e -.-r .—4
FUNCTIONS AND LIMITS

The sandwich theorem: This is a theorem that is nmm
used in caleulus 1o eval
particularly useful to evaluate limits where i bt it e
sandwich theorem: |~ 1° ATy u'lhcr techniques might be ily complicated. To define
L Lﬁf{x).s () and k (x) be functions such that f(x) < g(x) <h{x) for all x§ in some open interval containin
exc:ptpossul:lysxcmﬂr Ifllmf{x)n:.l.. am:' nmh(.:)zi. then ||mg|:.:] L .

e Prove thnt'h‘l'nE =1 if angle x is measured in radian.

Proafl: Take a positive acute central angle of a circle with radiug
p= 1 asshown in the t'gun:

Given that aOPQ, mx-Lﬂ FPQ] [QGfTI(mdm nfumtcwde)

¥

[rof
In term of x, the areas are expressed as pmduue QOto s so, lhat

SR L RO join QR. Figure 2.33

«dalr

= 1 wlb ) : -
b [lltx{-é]Le ‘1>—>uostorcosx<-——m Lol e
Xii .

- 537 +9x+6

i R !lml:.\.J -3x+7) p=347 LB

1
P |.m(s:’+9x+6:. 54946 20 3
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UNIT:2 -FUNCTIONS AND LIMITy

[T 33) Evaluate lim (7 -3%-2)

) ; 1 . i, IE
lim ’J.-;’-Sx-2=!Ltg{x’-.-33‘—2)3'-[121512{12“31:—2)]i=[(-2)='3{—2)‘.3]’-(3)’ 2

TR, 34) Evaluate the limits .
(a). Iiﬂsin‘x (b). lim (1= cosx), when lim sinx =0 and lim cosx =1.
Sl 5l 36 N | i - = lim1-limcosx=1-1=0
D lim mhl.\"-:[lll-l'.l: smx] =0 b lim (1-cosx)=limi-lim

"MAPLE Command to evaluate limit of a function’ .
‘The procedure of sing MAPLE command limit” s illusiratedin the folowing examplc
T 38) (@) f(x)=x +2x+2, whenx tends to 2.
®). f(9)=(2x')(x~4), when.x tends to 3.

(©). .r{x}="‘"“" whe_mémm.

(x=a) 4.
This will show you all commarids about the limits.

a. Command

= limit((x*) +(2x+2),x=2); 0 - , .
' imi ick- for the required limit
Using Palettes: Usc cursor bution to select limit palette. Click };ﬁ: ;mqnnii! e by

requi imi d Iauenby2.€lick[u+b)(lbr§um i . o
dn::e urauﬁfntlr?.;ﬁxfﬁanw key to obiain the required | them, easily online, ¢ "“‘“?"“"“""’- |

" RECRDCY T T

by yping: gy
Ii'lnit: ; [LEH 8
"o im((R)+(2-x+2) :
% i 10
b. Command
© > limit(2e W= 4),x=3) ok

; . . - - & " 3.
Palettes imi . Click-the required limil, and reptace & by
i cursar button to select limit palette 1 e
gli'::‘-(a'b) (for :a:duct rule of a function), then “Enter” key to obtain the required
> wm ((2)-x=9)
= =54 -
‘e, Command ]

> :wr[{" '!}.x=a];

(x-a)

leet limit palette.

Ulllghlﬂm:Uuecumlrhmmnmu : AR

Click-[ﬂ] (the quotient rule of a function), then "Enter” key 1o obtuin the required limit:
b

Y. |
= h.“‘x a
e 3a*

55

T f 5.
Click-the required limit and replace abya %

UNIT-3

& Bxtise

SEmttilei 23
Evaluate the following limits: B

a3, 1 342 e fx=1
L dim| 24— xepoars)c: Hx-l
. "-'-'}[1+:-5] h' IH[;’NHZT N ey
== =
d limEz— e plzHRX g gy lRX
=l p=] =l e’y a3
5 it b limS0C8) -
0 xsecx = Ix
2., Use algebra and the rules of limits to evaluate the following limits:
£ :
; L (x+3) ) 3 Jr=+5
; b. lim . i
A !i-'.'}{,—_'q.)‘ = x L x=5

3. - Find the limit of the convergent of the following sequences:

» {2 b {4=2n) -

n+l S+n -

by: §(x) = 5000+ —3 il
N £
Find the sale for the indicated weeks limits: ;
L e 5(5) . b. lim 5(x) c. lim S(x)

r=li

[ Use MAPLE command “limit™ to evaluate the limit of all parts of Q.1.
6. Use algebraic techniques to evaluate the following.
i Iim-u‘.r-l-h—uf'; b. “m.t‘—a' ¢ i 1—cos pB
S k- e x™ —g* 9 | —cosgqb
.- tan-sinp : : [y . *
d. ﬂw e ]lm(]—;]’ £ Eﬂi‘h‘}

S

5 FUNCTIONS AND LIMITS

Weekly sales (in rupees) at big store x weeks after the end of an advertising campaign are given

4
What type of function are represented by the curves drawn on cach image?
i i,
; f :
- il I SE)
- |
.|
§ 233867
M |
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UNIT-2

o
Continuous and Discontinuous Functions

Before discussion about conunumu; and dliﬁﬂ\l‘lllmlo.;.l‘é ﬁmr.tlcn we will revise the concept of
\imit of a function, which we have done in previous Section

m Recognition of left and right hand limits
I

tis a value the function approaches

< the x-values approach the limit from one sxdc c:rll_‘,r i.e. the
left side limit and the right side limit. .

i The left hand limit of a function f e ' o
l A given function f(x) hasa left hand limit |f_.r"(x'] can be made as close to the number. ‘L’ as
we please for all values ofx<ceg I1.m f(x)=L+ :

i "he right hand limit of a function e s ri A

. lhf{;;::'im f(x) has a right hand limit if £(x) can be made as to the number *L" as we please
for all values of x > €. hm fl=L

“In general, the ﬁ.m::lmn has a limitas x approachas cif 'm:-tl:. the left hand and nghl ha.nﬂ limit at
cexistand are ¢ 1l 1|rn fix)= ‘nm fl:'!:l I1m j‘{:} o

W Determine whether lim f(x) and lim fix) _c:-usr, if

3zt ifosx<3 -
F(x)={ 16=x B T R
2 ifl2sx<l4

(a). lim S(x)=lim f(x)_lum{3>.+4} 3(3)+4_13.
l1mf[x]-1|mf(x)-hm(16 —x)=16- 3-—13 :
Smcehmf(x}— lu'n f(x)= 1|m_,r"(x}- 13 1 1 (I -
= 'um f(:]exlsts and equal 1o 13 e A

(). Iun f(.rjl—.hmf(x} ]:m(lﬁ x)—lﬁ—-l‘z =4 R
1|11:| 1 f ()= I1mf(x)-' hm[r) =12

Slnoc I1m n f(x)# ] !|m ) Therefore,
Here, we cbscwedthat sometimes Ilm f(x) f(x)and sometime

hrn _r(x} does not exist.

it does not and also sometimes

ol
flc) is not defined whereas IJ.'H flx)=r (x:-exlst. " ok
Continuity of a function at: a point and in an interyal

i t . . N 1 Pt B gyl = .é.ﬂd

= inf“ :::;Lrlggmrlutl;ﬂn: :c:l‘::lﬁl':ﬂllts function at a poi_nt if two sided limit at‘“tm zo::;:sxlﬂl ]
equal to 1]1: function’s value e.g. Considera function f(x), it is continuous at the point x

(i) fle) is exist. B :

i existor lim f () existy oeni) : 4

(ii) ]im f(.r]:ilm f(x]al‘s:arll_n.} i - gy {

™ ; . r.d

(1ii) lun_,f(x} = f(e)- &i )

If any one of the above “condition does not satisfied then the function is not continuous:

mmw

FUNCTIONS AND LIMITS
m Discuss the continuity of f(x)= x’ -2 =3x4S5aix=1 o

a8 fix)=x'-2x"-3x45
f(l):m’-zu)‘-acms
=1-2-345=1

b J{E]n_f[x] = rIiLF;!{x"—Z!xi -3x+3)

= (1Y -2(1¥-3(1)+5=1
< lim £ (x) =‘|I_I.'El (x* —2x"=3x45)
= (Y=201P=3(1) + 5
, =]-2-345=]
& =lim fx)=f(1)
. S(x) is continuous at x = |, Al
Now, look at the following graph of function.

It can be seen that the side limits consider with the value of the f‘uncunn with the point.
il Continuity of a function in an interval
¥ Aj'mm.ﬂ‘ow is said to be a can.'mimusfﬂwtmn in dn interval when

the function i " fned at every point in that interval and no Jiumps ar
breaks inval:

v i some functions f(x) satisfies these criteria from x = a to
x-—*,b andwe say that _,t"(x) is continuous on the interval [a.5).

Forx=1

A funclion is said 10 be a
discontinuous function at a point
*e" if one of the three conditions
of continuity does not satisfy,

S(x) is cominuous over - the
closed interval [a, &] i) it is
continuous on the (a, b) interval.

~ Test of continuity and discontinuity of a function at a pointand inaninterval

i Example W] Dlsmmsthefmntlnult}‘ufﬁf‘(r)- '__;. At =) LTeamins Lotk
+
m In order to check the continuity of the function /(%) at x = —2. We will have to check the
function for all three conditions as we Imne done in Exampl: 37.
-4
S(x)=

x+2 ey
(-2)'-4_ 4-4 u
- f(-2) = L

f2) (-2)+2 -2+2 Dot
Hence, f(~2) is not defined. We Imurw that if any of the
the function will discontinuous,
Therefore, f(x) is discontinuous function at x = -2,

However, if we try to find the limit of f(x), we conclude that f{x) is continuous ucn all the values
other than -2.

three conditions nl'mi.imily does not satisfy,

1
Ilmf(x}-leT= ||m|:x-‘-‘) -4

This implies that f(x) is continuous at all the values of x other than -2, 1 e
JIEETIT I, 39] First—class postage in 1995 was $0.32 for the first ounce and $0.23 for each additional
ounce up i 11 ounces. If p(x) is the amount of postage for a letter weighing in x ounces, then we write:

HGT FOR SALE s




UNIT-Z . B o r_‘ﬂm:'nousmnu%

$032, if 0<xsI : : : - vNiT2 :
8055, if 1<x<2 L a : _“3 FUNCTIONS AND LIMITS
P At : NE- gy
. : [x} $0.78, if 2<xs3 H W T :
S <5 M o - -_Fnl-ﬂ_ —_— H i Use propertics of conti fi ™ W
e (a). Graph p(x) for 0< x5 u my functions: ous fnction to.test the continuity and discontinuity of the following
'.fl.. i ™11 0 [ ! T =t
O Fid i gt i pc) sl T l Sy Y R S I
s .- (0). Find lim p(s) and pas) o Hshaed iy bl [P ren
B ' ., L] ; == ifx=0
i é:illﬂjuli ¥ e M 2.+ Show that function f{x)x{ .r ot is continuous at x =0,
< { i ) ifx=0 :
- '!‘hep-aphofp(x):sshmmthe e .34 - s B
:. lehll'ﬂgl'lpil of the ﬁmmon.ﬂu;kﬂ.nglﬂ Il—“‘“‘ ¥ Figure 2,34, S o 3. Use the graph of the function g(x) to answer the following Jl 1 q +
: ; > - questions: i
. *" and the value of the function at x = l'are: . i e a. Is g(x) continuous on the open interval (-1, 2)? H s
" » 'Inm Plx) 032, Iun p(x)=0.55 a.mlp[l)'033 ;o e ¥ T b. ::gt{i:]w(m;num:?;mumnahtaun-w B E AT e
& : H.:n gix)=pg ; ]
] ¢~ From ﬂiegmphofthe ﬁmctlmthclmutam‘l lhevalueu!‘lhcﬁmdlum meaqua! . B b et : i _'::
: lim p(x)=1.24," p(a5)=1. 24, g e N g Is lim g(x) = g(2)? | n
Thus.uwﬁmchnﬂumunmusalx 45 Mg I i : -d Isg(.t}mlwonlhcdnmtunml[-—l 2]? LA ARl :
= P A T AN e - 1. Uchcwwhoftmmf(x)mmumhmg in
= — : . !
a. Is f(x) continuous on the open interval (0, 3)? 5
mmﬁmmmdmh:uﬁmdmwambmﬂwhuuupmmumm_ b 1s £( : A , 3)7 i
formula function, and therefore these ufﬁnﬂmumm!hd x) continuous from the right at x =07 - _
more than onc .mdcﬁncihe 'J’N‘ Is lim f(x)= f(0)? 0 g
c. Is S(x) continuous from the left at x = 37 ) -I_|_- Fi
Is lim () = g(3)? ,,
: : d. Isg{:}mm on the closed interval [0, 3 I
: . 2 = 5. Graph and locate all points of discontinuity ufthc]:'nthwmgpm“ functions:
Look at the "o ine ey Th:pmoedmo!'usmsﬂmwt 1+x, i< -x, if x<0
mmndfnrmunnultyofa function is illustrated in this example. & f(x)= S-x, If x21 b fix={1, ifzx=0
([ 40| Use maple command "mum"mehukﬂlecumtmulﬁ’ B " i) DR iy
i S ? i '“‘“‘“‘mﬂiﬁpﬂmﬂwvﬁahﬂmqnﬁlm month and
f(x)=x"+4 in: 5% of all uzmrimmm month, If the nwnﬂﬂyp:lﬁl:cﬂﬂ.&mm:rmm;: J..
o] {a). Intemnal from O to 1. : ﬂnumhu;mmonhemmynmlm Let E(s) represents the person’s camings during
wid (). czuefl interval 0[0;1]. a. Graph E(s) for 0 <5< 30,000 b. Find lim E(s) and E(10,000).
: ~ fc). Openinterval (0, 1). : . c ﬁ-u lim _ E(s) and E(20,000) d. 15 E continuons a2 £ =10,0007 At =
' > iscon(# +4,x=0.1); e ' ' 7. Use MAPLE command “iscont” 10 testthe continuity of £() =51 closed E
; = interval [-5, §
o iscond? +4,x 0.1 closed); e ' r+27 [-5.5).

o iscond{# +4,x=0_1open'); true.

Cmuluﬁﬁwﬁmﬁmmdnndydmmuﬂwmnm%mﬂ"mcmmw '

interval (0,1)
= (0% FORENE 5
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Chioose the correct option. 24 ax=3 o
a2

(ﬁ:._ undefined

- Thtih;depcndcﬁt variable in the function y= Oy e
(a). x ). & (c]._ il o LM
i If f(x)= %':f_:;mm [(=3)is:
o 5 . g
¢ 29 i 3
25 _— (c). .
{a). 1_3- (b). 18 i

3x -
fi.  Thedomainof f(x)=Z7=5g
(a). (oo, RV -3,+)

is:

(). 1 (===, - (-3, "’:"

2 g

v ol

). 1(==3) < T

(e). [-==-31 -2 . : b 3 v G

iv.  TheDomainof FEA=Rrg & (0 od sy it it
(a). x=-3 (b), x<-3 s L

v o if@msbeIOm ) =1

- 3 . b). = 3

vi i If‘y is expressed in term of x asy=J(x) '?:??::{“::?ﬁmmm

) ;mphcltfunctiol'l @ identity function 1. © ¢

function
ok Irl}f:::c?w Jf:-h-— ] and g (x) = x + 1 then fig (9} is:

s b _--. _4
vii. (a), 3 +%c+1 (L), 3C+8x+4 () 32 +Bx—1 (). 3.,3“ 8x
wiii. The value of e is: 2 . o o
am (). :
(a1 3.142 ). = () o ’
i If 5°= 17 then the value of x is: . o Yo il
ix. In(7} ) 183) iy ke In-lf,S z : Ly ok
) s - W) n( )
% Cothx= o o A
0 % g e’ [d:l- okt
¥ . | = g ! i % | E:_ by ,t
e (a) !r:(nﬂ(?u'm) o (b} - In(m + 1) (). In(m - n) ) A
I - z int: s cirot
xii The function f(x) = ] is discontinuous at po i
). -1,1 (b). =2,2 (c). -3, 3 . S
'Iim———sin = o e
- X1, 17
(@) .1 » b). 2 {c). 3 v A, .9’0
U IEf(8) = B.5ecH then £(0) = _ g
™ E:r i ). 1 @ 2 g @ -
xv. The inverse function of f_.’::—- is: . l s | e
1 2-x X ] i —lug[ ] (d) —m(-—-_—r]
). Elog[m] (). 2105[2 = (c). 3 > =

H. Stcinhaus was polish matt

FUNCTIONS AND LIMITS

.I —— ,_I

* A function y = £ (x) is a rule that assigns for cach value of the independent variable x a unique
value of the dependent variable y: ¥ = f(x)

< A function that defined by more than one equation is called a compound funetion.

% The graph of a function f (x) consists of all points whose coordinates (x, y) satisfy a function
»= f(x), for all x in the domain of f(x).

@ Let y = f(x) be a function of x. This function takes an dependent variable y in response of

independent variable x. The function that takes x as dependent variable in response of y as the

independent is then called the inverse function of f(x) and is denoted by: x= f7'(y)

A function £ (x) is called algebraic if it can be constructed using algebraic operations (such as adding,

subtracting, multiplying, dividing, or taking roots) starting with polynomials. Any rational function

is an algebraic fanction.

< Functions that are not algebraic are called transcéndental functions.

#  Ifa function is defined by an equation of the form y = f(x), one says that the function is defined
explicitly or is explicit. The terms "explicit function" and "implicit function" do not
characterize the nature of the function but merely the way it is defined. Every explicit function y
= f(x) may also be represented as an implicit function y = f/(x) =0,

< Iff(f) and g(f) are continuous functions of parameter t on an mtml D, then the aqumons

x=f(andy= g

are called the parametric equations for the plane curve C generated by the set of ordered pairs
inplane: (x, )= (x (8 y ()= (£, g ()

< If f(x) is a function of x, and ¢, L are the real numbers, then L is the limit of a mmnnnf(x}asx
approaches ¢ : ||m_,-'(x)-

A function f(x) is said to be a cenlirmnrus at x = ¢, if all three of the following conditions are
satisfied:

o The function is defined at x = ¢; thatis, f(c) exists.

o The function approaches a definite limit as x approaches ¢; that is lim f(x) exists.

o The limit of a function is equal to the value of a function when x = ¢; that is,
lim f{x)= f(c).

.

R

tician and ed . He eamed his ph.D degree from his mutable
contribution to functional analysis through the bancach-steinhaus theorem. He is also one of the
early founders of probability and game theory. He also proposed sandwich theorem in 1938 first
ﬁmwﬂjlyn-3mﬂhiwm3-&ﬂmvﬁﬂialﬂﬂl
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1.1 Derivative of a Function 3 o e
i Distinguish between mdq;cndcnl_an:] ::i-.dp::ednv.:’n:ﬂ \:a::amhlc T WAL ¢ T |
i -5l i in
il Estimate corresponding change
decremented).

< Explain the concept of a rate of change. i i St RETrIN.
:1\1 DcI'Einc derivative of a function as an instantancous Tae o I respect variah

v o FANYE 0T i tial cacl"ﬁcicr-t ofa function.

Define denvalve o differen
I. Differentiate y=x", where i € Z{lh!‘.' sel cl':ul.cgers], from first
v .

[ first principles.
, when n= £ and p, g are integers such that g 0, from P
q

principles {Iﬁe derivation of power nule),

vii. Differentiate y=(ax +bY

3.2 Theorcms on differentiation - s
Prove the following theorems for differentiation. : .
ivative of a constant is Zero. = o

: ::szc?.::::e of any constant. multiple of a function 15 equal to the product o
- " ; - - .

derivative of the function. . s Sy dntetnd
. |I|en;cri\-mira of a sum (or difference ) of'Ewo ﬁimhm:;eqm.ltnﬂt sum () eTenc
«  thederivative of a product of two functions 15 Cquat 4
{the first function) * {derivative of the second functi

ond function). oy e
?Icl:dcrivmi\'c of a quoticnt of Two ﬁ;;m:m:s L:::gx::: I::“ -
i i ivati the o L

denominator times the derivative o formy
denominator, all divided by the squarc of the denominas

3.3 Application of Theorems on differentation

plus (derivative of the first function = (&

the numerator times the derivative of &

I oy i ; Iynontials, '

. Dlﬁcﬁlﬁ;:-lmltiple of x". s sumfor difference) uf functions, @ Ipn [ymi

g - 1 ons. e

« product of funclions,. e guotient of two functs

. dy 1

3.4 Chain rule ‘ b1

i Prove that L ﬂd’—u when y=flu) and u = glx) i,  Show tha & &
¥ o dy  dn dx

=3

L e A
jii.  Use chain rule to shm:r that -E[f{x)], al ) S

i Find derivative of implicit l'unclmn: o=
'.'..LSVl'iHlfcrcminlinn of trigonometric and inverse trigonometric functio i
* et fi and cot x) from first iples.

«  trigonometric funclic ; prine
«  inverse 'Irigclnumclmi functi
differentiation formulae. !
i i ic Functions

i tiation of Exponential and Logarithmic |

T DlmF?nlgl :;Jﬁgmmms and a* from first principles.

Find the derivative of Inx and log, x from first principles.

i i X, 58C X,
nclions (5in x, COS X, 1an X, COSEC L, .
ons (afcsin x, arccos X, arclan x, ArccOsec X, arcsec

i.
ii

& Use logarithmic differentiation 10 find derivative of algebraic expressions involving product, 4
3 ;I-Diﬂtmﬁlﬁnn af Hyperbolic and Inverse Hyperbolic Functions

i iate:
3 Plﬁﬁﬂ:hatic functions (sinh x, cosh x, tank x, cosech x, sech x and coth x).

-1
+  inverse hyperbolic functions (sinit”' x, cosh x, tank™ x, cosech™ ¥, sech™ x and coth ).

. Use MAPLE corhmand diff to differentiate a function.

mdmc'ntx)‘»‘"

UNIT-3
DIFFERENTIATION

11'|.Ic dleri\'ativc is one of the main tools of calculus. It is instantaneous rate of change of a function at a
point in the domain. It is same like the gradient or slope of the tangent
line to the graph of the function at that point. Before going to the
definition we need to revise the concept of limit introduced in
previous unit of this book.

In this unit, we will start by defining derivative, which is the
central concept of differential calculus. Then we need to develop a list
of rules and formulas for finding the derivative of a variety of
expressions, including polynomial functions, rational functions,
exponential functions, logarithmic functions, trigonometric functions
and hyperbolic functions. “The process of finding the derivative is
known as differentiation. But the inverse process of differentiation is
known as integration” We will discuss in details about integration in
Unit- of this book.

‘| Derivative of a Function "

"7 The derivative of a function at some point is known as the rate
of change of the function at the point. We can estimate the rate of
change by caleulating the ratio of change of the function Ayto the

Diame Newtan W Lalbal

In the sense of a tangent line the
concept of derivative is very old
in the study of mathematics. This
is familiar to Greek geometers.
But the modern development of a
calculus credited to Tsaac Newton
and G.W Leibniz. Who provided

the independent and unique
change of the independent variable Ax.In the definition of derivative, | approaches to the derivatives and
the ratio is considered in the limit as Ax—» 0. differentiation.

Independent and dependent variable
“To understand the origin of the concept of variables, some real-life situations in which one
numerical quantity depends on, corresponds to, or determines anather are considered. For example,
|, The amount of income tax (output/dependent variable) you pay on the amount of your income
%Inpulhndepeﬂdcnt variable). The way in which the income determines the tax is given by the tax
aw (rule). :
2. A person in business wants to know how profit (output/dependent vari hanges with respect
ir p pendent variable) c es with
f: advertising (input/independent variable).
person in medicine wants to know how a patient’s reaction to a drug (output/dependent
variable) changes with respect to dose (input/independent variable).

In each case, the change in dependent variable requi ite change in independ
¥ s th quires the definite in ent
variable through a definite rule which is called a function.

Estimation of corresponding change in the dependent variable, when
S _1___in_dep§nct3n_t variable is incremented (or decremented )
amiliar situation related to change in dependent with respe ange in independent i iri
ma_!kes the run of 120, mile trip Fmgm Pcshl;ewar to Is!amr:zi,:?tir zc:?f«: I%‘tlm table s?:u:ss tg::?a!:‘:l vl.l:.ecr
driver has traveled from Peshawar at various times:
0 ' los 1.0 15 200 - |
5o Filza 54 [ TPl ]|
If fis the function whose rule is £ (f) = distance from Peshawar at time f, then, the table shows
that f(1.0)=54, £(1.5) = 88and F(2.0)=120miles. So the distance traveled from time r=1.5to r=2.0 is

S(2)-f(1.5)=120-88 =32, the change in dependent variable (change in distance) in response of
incremented independent variable f, while the distance traveled from time r=15t =10 is

S(1.5)-f(1.0)=88-54=35, the change in dependent variable {change in distance) in response of
decremented independent variable r.

BoT FORSALS
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DIFFERENTIATy,

UNIT-3

m fchange
farateolc : dn. For skampleiir

Cnrn S of change is something We Emmma::r:uerzgc 0k bt‘n:g g, i ar.
A 8.0 5, then we say that It ,;celcralc;_ climbs at an average Wlﬂt'h iy

mmclem}es f_m'“ om0 k"";g"(']‘m'm in 2.5's, then we 52y that Gasty average of 2 inches per day, %
5 A t:-lmb@ fwwm sﬂI ah:otat'cfzﬁ inches in 2 weeks, then it grows an ;

€
4000 m;s. :hecirzxw1ﬂplﬂ$ the indicated average rate of l:ll:iall-hgll= 1t
is -:lbmi:ed b;! div:iding the change in the dependent vark
change i independent variable.

i Letus ::l::;rh::me thE process of finding the a\'\emgefrale a::g
change of a function y = [ (x). If we select any vahlllemo ::E -
increase it by an amount Ax, then a new va i
independent variable is x+ Ax. Asx changes from x .rde .d
ding amount of p+ Ay. The ordere

will change to a correspon ;
pairs P (x, y) and O+ b, y+ 8y) developed must satisfy the

: S : b 1)
= f(x). This is shown in the Figure .
{I;nt;tcmﬁ?n};ﬁi value at a point P (x, ¥} is ¥ =[x} (i
then, the function value at apoint Qis y+ay= Sfix+ 'ffx] : (ii)
The Iliii‘fcrem of equations (i) and (ji) gives the change in »;
(y+8y)-y=f(x+ix)=f(x) = sy = f(x+ax)-f(x) (i)
h inxis Ax= x+;h'-x- ;
e aﬁ;: average rate of change in ' per unit change
by taking the division of equation (iii) by equation (iv):

Figure 3.1

_ixi= ﬂx::;l:fx) L ﬁ;?r_f(ﬂ v e The slope of “;' secant i:i:l
: in x is gi : of change
The average rate of change y per unit change in x is given by: average rmale
by S0 {v) | rate of change in phenomena.”
A i . T -w_ 2
lI!III'n;eu.-,rnli!l:: the average rate of change of y per unit change in x for y=x"-6x+52

vy et
change in x is the slope of the secant line PQ, obtaix

ineasures always "the approximé 1@ curve y = f(x)at a specific point?

UNIT-3 e, IMFFERENTIATION

A The average growth rate through definition (v) is:
A _h+an-h() _Jivdi-1-(I-1) Jivar-i
T T Y = )

Af
b The average growth rate (i) is used for t = 4
and Ar =35 to obtain the average growth between days 4 and 9:
Ah_irAr-Ji _ Jaw5-Va_3-2 )

Ar Af 5 5 5
Thus, the average rate of change of the height of the com

with respect to time (between days 4 and 9) is %{I unit

change in height for each 5 units change in time). The graph
is shown in Figure 3.2. The average rate of change is of
course helpful in understanding the instantancous rate of
change.

Figure 3.2

Derivative of a function as an instantaneous rate of change of a variable ™
with respect to.another variable

In the previous sub-section, we discussed the average rate of
change, and leamned that the average rate of change is the slope of
the secant line joining two points on the curve y=f(x). More
commonly, we are asked to determine the exact or instantaneous
rate of change at a particular time. For example, for an acroplane,
what is the instanta. .ous rate of change of the distance that accurs
at a specific time? ™ his can be dealt by the slope of a tangent line

To illustrate his idea, let us examine the graph of a funetion
y=x" at a particular point P (0.5, 0.25) with different secant lines
FQy, PQ,y,... that developed from the secant line FQ:

F E R gl T T o ———r -
e fm:ci;fd?ﬁg to the definition of the average rate of change: R TR ":: mx \m...j:vm Z;T..';:;J; e .'?.; -
DAy flx+Ax)-f(x) o y= f(x)=x"=6x+6 £(05,025) Q2,4 L5 3.75 25
Zx_ = -—T_ ; X:l’+ﬁf+5 P(0.5, 0.25) ,(1.5,2.25) 1.0 - 2.00 20 .
;(“m=-s[x+ax)+5}—(x’—5x+5)=i+2”‘"+-°" =RE26ArH5S : P(0.5,025) 0,(1,1) 05 o I
2 Ax 2 £(05,023) 0,(0.8,0.64) 03 039 TET
_xAx+hn-6Ax  MEQu+Axc=6) o, gypy ﬂyThe tabular form contains coordinates for the points P, O, the change A in x, the change Ay in y
g 6+i and ' the slope of the secant lines PO, PO, PO,,..... Notice that the slope of the secant line PQ is 2.5
—_—= AKX
Ax

Asrincmscsﬁnm]losmenx=laudm=2.
& sy ge2==2
M-Zm 642

Ay 375 _ =
(E = 2.5].-Ifwetakcvaluu:onclmertoP{m.toQ,Q..Q, ..... ), then, Ax gets smaller, and

smaller, and tends to zero.
The tabular form clearly shows that, as Q approaches P Axapproaches 0, and the slope of the

: y he ¥
The height h of a certain brand of com with respect to t days (r=1) after " secant line approaches the slope of the tangent line at s particular point P (0.5, 0.25) which is 1.

germinates is fi(f) = Ji-l

Ak
¢a). Find thi average growth rate —.

o (). Find the average growth rate between d

65

a5 43114?'(‘" exact) rate of change at that particular point.

sorForsd

Geometrically, the slope of the tangent line to a curve at a particular point P is the instantaneous
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I UNIT-3 UNIT-3
' This terminology develops the idea that the slope of y i 3 ; i S TR ETION
: {he secant line becomes @ better approximation for the fra 1 fmm this problem, we conclude that g ol da
e o o a particular point P I Secant line PQ 2 :E S:Ulle of the secant line (the average rate of change) is called the approxi et
— slope of the tangent line (the instantancous rate of change) is c:l::l the:::::‘ 'rn:e n: t:angc. I ii-i“h s
rate of change. i

slope of the tangent line to the
ll Fﬁ our discussion on limit, it follows that the

exact/actual slope of the tangent line o 2 carve 3= f(x)
at a particular point P corresponds to the instantaneous rate¢
b slope of the seeant

—_=

Tangent line First Principle Rule

If i
f(x) is any function, then the dﬂi““}?:ig:;l ﬂt::n;iple rule is
ol - fix
S= ==,y = (2)

The process used for findin svati
an ¢ 1cs - g the derivative of a function in - =
d the resull 2 s the differential coefficient of a .ﬁ_mc“r:,:' is called the differentiati

of change at that point. That is,

line PQ o
Ay _ @ - glope of the tangent line at a particular :
hﬂl&h = Figure 3.4 fix)= x* =6x+5 at a particular point P(4, 3).
St am ot deiny divided by delta 5 withmmtb:::f(x} . ll_szd to indicate the derivative of £ (x) |B Jf (x): read Y prime of &
pect to x. Sometimes other symbols are used to indicate (derivative of fix) with respect 1o x) !

%’E is read “the limit as delta x approaches z¢

The statem i n l § o ce ¥, doc X" (the
lim the deri Ve, of the Wi bo: 5 -
ent vati Each of { symbols in the follo g X il = pead " d

us rate of change of y with .o ]
indicates the derivative of the dependent variable y with respect

s the slope of tangent line or the instantanso

If the limit exists, then the result i. : ol
l respect 10 X which we call the derivative of function. e thetinqumt tive of th . L2 |
| , (x, f(x;)n\ig:t?:cl;?:clﬁ,it ﬁﬁ? of a function y = f (x) at the point W, S read fm'mm_ A ;;im e
Different mathematicians used different notations to write derivative. : : ot m)_g ( is polut havlig slope ?nm - i A
- o {ﬂ=£{“.¢ x) | (i I T y= read:™ D sibex,  {dic
Ax derivative of v with respect 1o.x)

provided this limit exists. If this Iim'-dm i '
 exists. it not exist, then g S| - 25 e e (e e
no tangent (no derivative) at the point. bl nEp with respect th ) i

The slope of the tangent line i ;
phenomena." gen is the instantaneous rate of change, gives "the exact rate of change in the

Mathematician

Notation for derivative

L - - _\
mm tive or differential coefficient of 2 function e ERTITIIEN 4 | i I

" The instantancous rate of change of & function f{x) ata point P is the derivative of a functie -' : =% 4 | The function is f(x)= x*.
i L 0= () ifthis limit exists ) fg ;;:: 2:: mns*sdmV:llilljre A e v ot e

By ) st : b ine on a given curve y = x* ata poi
le of derivative of a function f(x) with respecttox. (¢). View the slope of the tangent line on a c"fm Eouln PG'Q)..
or differential coefficient is denoted by [~ ory- 1fxi a. Byfi inei PR e
m . By first principle rule, the derivative of a given function is:

fix) at that point P, [(x)=
This is called first principle Fu
Ky=f(x)isa function, then its derivative

1 a number in the domain of y = f (x) such thaty = f'(x)is defined, (.‘nc_n I.hc. function f is sa-'tdﬂn:: Ponui FAD-16
'4 differentiable at x. The process that produces the function f* from the function fis cal'l.ed. dlﬂqenm . Jm o P
3 3 | Determine the derivative of a function fix)= F—6x+35 by first principle rule at apod i (x4 A — () o PR ”
i " amri Ax =k x
;- P(4,-3). e L E A 15 Fo ey
X;-i The derivative of 2 given function by first principle rle(i}is: . by kﬂ[ (‘ZIJ;+M) =2 . it o 71,
i ‘L___;lf—- s ‘f-Slltl is used to obtain the sl 10 | §
f(x)=lim (x m:l @) = fx)=x'-6x+5 IFE;M ;{; 3,9}“ ko P of the tangent T 6.9 Sllélpe et
S =p s !
= e (e 6 fat {3.£(3)) is 6.
= lim (= IM Sxe 20 '*_5_1__,5_4___6_11_51] . The tangent line. on a curve y=jx* & 4 W prvne
Ax=rl) Ax . point P(3,9) develo y=x a a 5 AL
; x’+2xﬁ:+£ﬁx]i-_ﬁx-ﬁ:1x-l-_5—;‘-+E-x-S i 2xAx +(Ax)’ - 6Ax r? ps a nonhomogeneous line: 2
= ,,h{n.o A? — = lim Ax - ¥= 3= f(®)(x=x),Point from of the line ‘-TIWI
= lim Ax(2x+Ax=6) _ iy (2x+Ax-6)=2x-6 y=9=6(x-3), F(3,9)
e rra] m‘ e

The result f*(x)=2x—6 represents the slope of the tangent line at any point £ (% ) g T
m - .
curve f(x)= = 6x+35. Thus, the slope of the tangent line at a particular point, say P4, ae" graphical view of the slope of the tangent line is represented in | rzve 3

curveis: [ (¥)=2x=6
- NOT FORSALE i

, - . = 24)-6=2, at Pi4,-3).

T

,.
E )
T R
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Differentiate of y = x" from first principles ruIB._‘.’ =" wrl xis
1f _fl:.'('] =x".n is any integer, then, by first principle rule, the derivative of f{x)=x i

r (x}f.!iﬂ f(x+ﬂ:x-”x) J ay=fx)=x
= h'_"‘,‘_x:‘fxti v by binomial expansion
x e nn=1y ... a3 %
= lim e 26.1: M i =LiﬂL[}u"'ﬂx!—,"—u;-ﬂx.d{m}z"'“']

=1 ; SRR (¢l | Y
=ﬂﬂ%[nx-_iq,.m:’;_)x--lﬂx,h_].:‘ETU[Mn I]+Eﬂ[__2_.__z ‘Ax . ] \
] =M"|,|_u= "xﬂ—j (i

Differentiation of y = (@x + b)" from first principle
Proof: Lety=(ax+ by (i). Where n is an integer
y+ay ={a(x+Ax)+b}" (ii). By using the binomial theorem

1 =1 1 [® = " (i
y+Ap = (ax+b) +[; }ﬁ +&)"" (alx) +[: ](ﬂ.t‘t-b) (aAx) +[3 ]{ﬂ:+b)' (a.Ax)’ +...+ (abx) F“'}

Subtracting equation (i) from equation (iii) .
n % 3 . .
Y+Ay—y=(ax+b) +[:'}ax+b}"'{m&t]+(:}m+b}"z[uﬁx]1 +[3 ](mm;) S (@de) . + (@A)~ (ar +b)

ot n = - i
.4 ‘ Ay =[:1 ]r[.ru-i-b "'(aﬁx)+[; ](e:::'+-E')"_alfaﬂnf.'n.u.']2 +(3 ](ax-l--.’:i:l Habo) +.. 4+ (adx) - ("-")
2 Dividing equation (iv) by Ax RO
- o =2 4 "~ ? et @ [AX -
% - Ar{ﬂ[:](a.t‘l-b]' ‘+[;](a.r+b} (a-m)’+(3](ﬂr+-5l (Ax) +...+ a” (Ax)" } i
’ EE

Apply li_’ﬂ.""" both sides of equation (v)

. Ay limda " (ax+b)"" +["](ax+b]'_:(d-.ﬁx)l+[:}(ﬂx+b ._I("M)}"'“'*"]"{Mr‘:}
ELIP.E gy Ar=—ed 1 2

ok n =1 - - a-1
O Y (] S e (B

i R e R 1

By applying limit all terms tends to zero except first term so,
: i ﬁy = (I "}axi-b)'_l
] E% s el [!_ -
Hence, :
= Jr-(xpi_(ﬂ”w = n{ax+5)".a

le of differentiation.

= This is generalized power i

PIFFERENTIATION

“Exercise ™ @

1. Find the average rate of change of the following functions over
i, ¥ :x’ +4

the indicated intervals:

fromx=2 10 x=3 b, y=x’+%x from x=-3 tox=3

Cog=20 =547 from (=1 10523 d k=2 +4  from 1=8 wr=35

2. Use definition for the rate of change to find out the avera rate of change over th ified
interval for the following fimetions: o o e

a, s=N-3 ffom 1=2tor=5 b y=,'-6x+8 from x=3tox=13.1
o A=n? from r=2tar=21 J h=Ji-9 from r=%9w0r=16
3. A ball is thrown straight up. Its height after t seconds is given by the formula b =-160% + 801, Use

definition for the rate of change to determine the average velocity % for the specified intervals:

o Fromi=21o1=21]. b. Fromi=2t01=20l.

4, The rate of change of price is called inflation. The price p in rupees afier ¢ years is
p(6) =3 +1+1. Use definition for the rate of change to determine the average rate of change of
inflation from £ =3 to 1 = 5 years. What the rate of change means? Explain.

5, A farmer plants x acres of sugar beets. The profit generated is Six)=1800x-9x*, Determine the
average rate of change of the profit, when the planted area is in between x = 20 acres and x = 50
acres. What the rate of change means? Explain.

6. Use first principle rule to determine the derivative of the following functions:

b. f{x}:(ixi-ﬁ)l’ e flx)=x"+1

2. fix)=3x
d f)=12-2 e. f(x)=16x-Tx BG

% Use function f(x)= y*~7x+6 to do the following:
a. Find the derivative of a function at point P(5, —4).
b, Find the tangent line on the curve y = ¥* —7x +6 at point P(5, —4).
e. View the slope of the tangent line on the curve at P(6, 0)?
8. Use definition of derivative to determine the slope of the tangent line to the curve at a given

point and then find out the tangent line equation on that curve at the same point, for the
following curves:

a f(x)=-x*+Tx,x=3
€ S(x)=3x"-6x-10,x=0

b f(x)=6x"-11x=10,x=1
d f(x)=2c+3x-4,x=]

There is always an odometer and a speedometer in an automobile. These two
things work in tandem and allow the driver to determine the speed of histher
vehicle and the distance heishe has traveled.

Electronic versions of these two gauges simply use derivatives to ransform
the data sent to the electronic matherboard from the tyres to miles per hour
(MPH) and distance (EM),
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DIFFERENTIATION

= T
Theorems on Differentiation %
In previous section, the derivative of a function f{x] is defined:

f A = S0 (i) . .
S (@)= lim Ax ; irst principle rulle. Now, after doing the
We learned that the derivative is found by applying the fist PROSEE 3y of finding the-
exercise for the previous section, you may be wondering v:-hclh:r Iher: & St provides easier ways'
derivative. In this and the next several sections, the discussion on the theor . s

of finding derivatives. 3
Proof of differentiation theorem
m—1: The derivative of a constant is zero

Proof: 1f f(x) = ¢, where ¢ is any constant, then, by first principle rIJ-'le.l
Ax)=f{x) _ . €7C_

is: f(x)= HE&LLL& =l =0, tion is zero

This calculation develops the rule that the derivative of a constant function X

In general:  [ff(x) = ¢, where ¢ is any constant, then: ; =0
FEETINoaYy 5 | Differentiate the following constant functions: ;

T (@) fe)=13 ®). f()=3 fe). f(x)=Tx |

graphs of the functions arc horizontal Ii::s parallel to x-axis,

% derivative in cach case is therefore going to be zero. h , :

?::::L:::m: }er;:aliv: of any constant multiple of a function is equal to the pm:ductaf that const

ivati he function. w sk

;nriulr;c dclrfwja:z:;. :L:g(.-.-)', where ¢ is any constant, then by the ﬁ.f:t principle rule, the dcrl.vlmtw\c !

constant multiple functionis:  f(x)=y= c.gl(x) {:

y+ by = cglx+ Ax) (it}
n Gy o (i)

Subtracting equation (1) from equation (il
y+ by -y =cgle+in) ~e-g(x)
Ay=cgls+ Ax)—e.g(x) i

Dividing equation (i} by Ay

' Ay _ coglx+ Ax) —cg(x)

e derivative of a constant function

@.f=ha

since all function are

i) -

Ax Ax
Ay _ c]lz(x+m)-§(x‘l} )
Ax Ax .
Applying Eﬂ on both sides of equation,(i¥)
. Ay . glx+ax)-g(x)
oy o Ax

Hence, f{.’(‘) = c.g'(-ﬂ

This calculation develops the rule that the derivative of a constant multiple function is the
15 ca .

stant function and the derivati *ofa function f(x).
Pmuu:::-m ‘::ﬂg{x] = x" and flx)=cglx), € is any constant, then:  [(x) =eg'(x) = ene™ A
gl Differentiate the following functions: @), flx)=-x (b, gl

ST s st flnctionis: =40 =1z,

=4y, then, the derivative ofa give iunction is _ f(x) :
g 11:.?:3) 0.555x", then, the derivative of a given function is: f*(x) = 0.555(6)x*" = 3.5.
b =10. , then, 1amn
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UNIT-3 DIFFERENTIATION *

Thﬂmn-ﬂ The derivative of a sum (or difference) of two functions is equal to the sum (or difference)
of their derivatives. e

To determine the derivative of a polynomial, such as the derivative of the sum or difference of
two or more functions, we need to develop a rule that could be used in the determination o a derivative
like f(x)=3x"+2x* +3. In this situation, if A{x) = f(x)+ g(x), then, our task is to determine K'(x) by
first principle rule of differentiation:
h(x)=y= flx)+g({x) il
y4+dy= flx+ A+ glx+Ax) 1
By subtraction equation (i} from equation (ii) 3
JHby=§ = s+ 80+ gx+ A0~ () -g(x) -
Ay = fx+Ax)— f(x)+glx+Ax)— glx) twid
Dividing equation (iti) by Av then we have
oAy flxrbn) - f(x)+g(x+Bx) - g(x)
Wiy ax

_Slx+Ax) - f(x) + glx+ax) - g(x)

Ax Ax

Mow, apply Hacn both sides of equation {iv)
L lim S oy LA ()

anmd Ay Ao Ax
Hence, h'(x)=f(x)+g(x) >
- We can say that the derivative of a sum of two functions is the sum of the derivatives of two E
functions. The difference of two functions f(x)-g(x)can be written as the sum of #

i)

-t-!ﬂ 5{“"'-::"3{11

S(x)=g(x) = f(x)+[-g(x)]. Thus, the derivative of the difference of two functions is the difference of
their derivatives. .

Ingeneral:  [fu=f(x)and v=g (x), then, the sum rule can be restated using the notations: ]
i(||| tv) 2££i£! |
. dx dx  dx |
This rule gencralizes to the sum and difference of any given number of functions. |
EUEEIGER, 7] If f()=3x" +4xand g(x)=7x-2 the differentiate f(x)+ g(x)and f(x)-g(x)
@D Since, /(x)=3c +4xand gx)=Tx—2

SO+ g(x)=03x" +4x)+ (Tx-2) =3 +11x-2

d d
E[I(IHg(r")]éz(lt”llx-zlrﬁ‘;[h"]+{:{Ih}-%{!}=&r+n

Now, S - g(x) = (3" +4x) = (Tx=2)=3x" =35+ 2

o d .. o v o g of
Al =g =00 =34 B=(3x ]-E(;.¢}+E’(z] =6x=3

Theorem—4: The derivative of a preduct of two functions is
the second function
Proof: If ii(x)

rule,

equal to (the first function)*(derivati
) plus (derivative of the first function)*( the second fmcion), ion)=(derivative of

= f(x) g(x), and f (x) and g(x) are differentiable functions of x,
hix)=y= f(x)g(x) .
y+ay= flx+Ax)g(r+Av)
Subtracting equation (i} from equation (1)
YHby—y=flx+Avkeiy+ A= f(x).g(x)
Ay = flx+A)g(x+ 9= Fx)e(x)

then by first principle
ti) |
(i) |

(i)
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UNIT-3 DIFFERENTIATION

The addition and subtraction of Six+Ax).g(x) tothe right side of equation o
Ay = f(x+Ax) g(x + Ax) - f(x+Ax)glx)+ f(x+Ax)g ()~ [ (X} &

= (x4 Ax){g(x + Ax) - g(x)}+ LS (x + A0 = [ ()} s
Now, dividing equation (iv) by Ax
Ay _ fx+ A{glx+Ax) - g(x)) + gL (r+A0) - S () «

Ax . Bx
Now, apply lim on both sides of equation (v)

lim & = jim LG+ A0 (g (x +A5) g} + () x+Ax) = F(3)}
x40 Ay A

Ax
- _ flx+ax)- fx)}
- Mﬂx+m)'ﬁﬂwﬂhgmlﬂﬁ_7‘r—f

Hence, K'(x)=f(x)."(x)+g(x).f (x) ; s

This calculation develops the idea that the derivative of a product of two ﬁf-“cuc;‘":‘;sﬁthle first
function times the derivative of the second, plus the second function times the denvatl\r:b: mer: ;mi“
In generais 1fy = f(x) gx) = u v with & = f(x) and v = g (x), then the product rule can be res 2

dv  du
the notations: &, n—tp—

de dx | dx Ry v =
Theorem-5:  The derivative of a quotient of two functions is equal to denominator times the i‘:"‘t'“
of the numerator, minus the numerator times the derivative of the denominator all divided by the square

of the denominator.
Proof: ¥ (=L Ix]). g(x)#0 and f (x) and g (x) are differentiable functions of x, then, the

glx
derivative of h(x) can be found by first principle rule;
h(x)=y= L(J.'_] (i}
glx)
_ S(x+ax) (i)
'v+ﬂy_—ug(x+.&x] 1

Subtracting equation (i) from equation (ii)
Slx+Ax) @
glx+ax) gx)
Ap = S+ 80)8(x) - gx +Ax).[(x) (i)
= glx-+Ax).g(x)
The addition and subtraction of f{x).g(x) to the numerator of equation (iii)
Sx+Ax).g(x) = f(x).g(x)— f(x)g(x+ Ax)+ [(x).g(x)
= £(x+ Ax).g(x)
_ (M (x+Ax) = £(x)}— fx){glx + Ax) - g(x)}
e 2(x+4x).g(x)
Now, divide equation (iv) by Ax. Then
{f (x+ﬂx:-—,{(xl}_ 1) {g(xmr}-g(x:-}
2(x) R A

ytay-y=

(iv)

&

Ax g(x+Ax).g(x) (v)
Apply Lul'i’ on both sides of equation (v)

e i S

UNIT-3
 DIFFERENTIATION
Ll g(x}{ lim ﬂ_"’f_%f:_'! _(?!}_ £ {EE} g_(x+d.;:-—g(x)
= Tim g(x +Ax).g(x) _ .
Hence, #(x)=20)L(0)~ f(x).g'(x) : sy
[T

oS o yzi;%t f » with 1= f(x) and v = g (x), then the quotient rule can be restated |

using the notations:
du  dv

du  _dv
dv_dv dx
de -

J.-'::«".ln'rrlltf"m Differentiate the following functions:
fa). y= 4 =2 45

B, y= (3202 =3) (g, y= 11340

2 +1lx+3

a. lf_l*=ll+1'+wlhm%=%{u+v+w}=%+%+% so,lhm_juivaxiveofagiveuﬁmuionis: .
dy _d 3 2 d d d .
2o E fax) - =L (ar)- L 2ty+ Lispy =120 — - i
o .u!ru ) =(2x7 )+ (5x)] dzﬁx] dt(z.r )+dI[5x} 12x* —4x+5 tj
dv  du i ; . ’ d

If y=u-v i ﬁ-_—, A Pkt is: *
b . y=u-v then ey dr-l-v & ao.d:ed.erwatwcnfmegwenﬁmctmms. A
dr ¥

Eﬂf‘z")'%("—-?ﬂ*{x‘ _3}.%&2 -2x)

= =20 Ly 4 . d
(x'-2x) { a&(x‘) ¢$>}+(f 31-{;(:‘)-23&3}

=(~‘1 '21)":3.1:“ﬂ}+(.l”-3](2:—2]=3;2(11 _zx)+xlm_2)_3{zx_2}
=3x' 6" + 20" ~ 20" ~ 6x 4 6= 5" — 8’ — 6 46

- 50, the derivative of a given function is:

dy_ (& +11x+3)-%(x= + 13x+9:--(x‘+l3x+9)i(.r‘+nx+3;
7o dx

(¥ +11x+3) i
Ay _ (1l 4+3)2x +13) - (& +13x 4+ 9)(2x+11)
- .
dy
dx

(x* +11x+3)°

= (2% 42207 4+ 6341327 +143x+39) — (2o +26x° +18x +1 1

+143x 499
(* +11x+3)° )

BT E6R SALE
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UNIT-3

dy _ 204356 +1493+ 39-20-390 - 161595
dx ey

dy _—4x" —12x-60

dx  (F+llx+3)

dy _—4(x* +3x+15)

de (@ +1x+3)

TP T
m Application of Theorems on Differentiation

. i iological and medici
Calculus is used in both applied mathematics and pure | R 1h_c b{oiﬂﬁl:cal ; ::1 =
physical sciences, compuler science, engincering, statics, economics, artificial intelligence and many
more areas of other fields. S 4
Few simple examples of applications of difierentionion are given in this sectio.

m Ditterentiation of

» Canstant multiple of x"
o Product of functions

m L9 L The cost in (million) dollars 10 produce x units of wheat is given by
C(x) =5000+20x+ 10+/%. Find the marginal cost, when
(a). x=9 units , x= 16 units _
fc) x= 25units  (d). Asmore wheat is produced; what happens to the marginal cost?

& Sum (or difference) of functions & Polynomials
» Quotient of two funetions

a  If C(x)=5000+20x+ 104/, then the marginal cost is the ®Mivc of C (x) with respect to x:
| ) T 5
C’{x)=20+lﬂ[5]u 3)-2{I+U;-
The marginal cost at x =9 units is obiained by inserting x =9 in C'(x):
5 5 _65
= = Z== = 521.67
') 2!}-1--‘!:.5 2IJ+3 5 F
b. The marginal costatx =16 units is obtained by inserting x = 16 in Cc'(z):
5_-20+3=5 =521
c'(16]=zo+ﬁg_zu+4 i $21.25
e The marginal cost atx =25 units is obtained by inserting x =23 in C(x):
5 5
=20+ =2042 = §21
c'(25)=2 U-f; 5

d. It decreases and approaches 520.

izl -

business and economics the ratcs of change of such variables as cost, revenue and profit are most important
= ts use the word marginal 1o refier to rates of change. For exaruple, the marginal cost refers to the rate of
e Since the derivative of a function gives the rate of change of the function, a marginal ':0"“(“
revenue of profit) function is found by taking the derivative of the cost (nlncvtnu.c of profit) [uncﬁon_'[hgmmgmﬁl
wﬂ“mlwd of production is the costto produce the (x+ 1)st item (i.c., one mare ftem).

DIFFERENTIATION

Does a feather fall morc slowly than a rock? An ltalian
mathematician astronomer and physicist raise this question before
400 years ago. He theorized that the rate of falling objects depends
on the air resistance, not on mass. It is believed that he tested his
idea by dropping spheres of different masses but the same diameter
from the top of the Leaning tower of Pisa in Italy. The result was
exacily as he predicted they fell at the same rate. Galiles Galliel

i In 1971 duing the Apallo 15 lunar landing, David Scott (commander) (ss-16a)
performed a demonstration on live television show. This is because of the surface of the moon is essentially a
vacuum, 2 hammer and a feather fell at the same rate.

1. Differentiate f(x) + g (x} and f{x) — g (x) if:

a f)=3x+7and g(x)=6"+2x=3 b. 'f{x)=11x=—lf.andg(x}:lz,:u%x-s

Y f(x]=x’-—-§—andg(x}=3r‘—4x’+2 4 f()=47 -5xand glx) =3¢ -2

2. Use the product rule to find out the derivative of the following functions:

a y=0F-2)3x+1)
e y=@x=-3x-1

b, y=(Tx +2x)(x —4)
d y=3x+6)4x-2)

3. Use the quotient rule to find out the derivative of the following functions:

. _3x-5 _—x'46x _Sx+6 _(2p+3)4p-1)
B b g L e T can AR & A= ey

4. Find an equation of a tangent line to the graph of the function at the particular point in the following

problems:

a. flx)=3x-17 at(3,2) b. f[t}E_f’ 31.\'=_T1

c f(x)=}i—3atx-2 d. f{x)=x—f§at[3.3}

5" Forathin lens of constant focal length P, the object distance x and the image distance y are related

o Az i
by the formula E+T 5

a. Solve the above equation for y in terms of v and F.
b. Determine the rate of change of y with respect to.x.

Ll 3:0

qurhome. Take a ladder measure its length and put if with the wall as shown
in the figure, Pull it away from the wall at the constant rate of 6ft/min. Calculate

how fast is the top of the ladder moving down the wall when the bottom of the
ladder is 6 feet from the wall.

[OT FORSALE E
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DIFFERENTIATION

Chain Rule . 5 : a. If p=f(x)=(4x—3 =1’ with u=4x=3, then, the first derivative w.rt. x by chain rule is:
abo “The chain ru o . : ifferenti ite functions ”. We have leamt : dy dyde d d ; :
tion f'I-].l-l e g g tal ey el i Vs HF imi y= ) an =) —(dx=3)= hrt 4)=12 ?=12(4x-3 !. =(4x-3
ut composition of? w::-‘.an: in ::n:l-z that a function is @ 1e functions of the two similar 2 _‘?" 4 )4 as o G ST M

i . 2 = fian . :
functions  (x) and g(x) if it is written as f [g(x)). In other words it is a function of a function. For

1
example sin(x*) is a composite functions because of we consider f(x) = sin(x) and E{’::'. =2 . h [; ¥ #&l’(;) = J1558 +1 =/ =u? with 1 =155 +1, then, the first derivative by chain rule is:
then £ [g(x)] = sin(x*). Generally, we write chain rule as; : 3 o ;"1 - d—iz“ C nu=(52+D)
' A rgOm=TeNe® - i 4 53 ¢ 2
o 2 : . 0% =L d s +n=2 6 ][30:)?355"7_":
WPI’B\"& that -@—:%d_u when Jlgf(y} and w=g(® £ u 15x° +1
Prool: F dg -t #ﬂ Fx) fTgtN (i) The revenue realized by a small city from the collection of fines from parking tickets is
rool: For our convenience, we s y=rix)= i £
Let 1 = gix) the equation (i) will be y=F(x)= fle(x))= fiu) {“} given by R(x)= 3}?20; where x is the number of work hours each day that can be devoted to parking
Piply=dnct é_"_‘} = A, " patrol. At the outbreak of a flu epidemic, 30 work hours are used daily in parking patrol, but during the
Now, subtracting equation (i) from equation {m} ) epidemic that number is decreasing at the tate of 6 work hours per day. How fast is revenue from
f b{;;;":;? }?2— = (i) . parking fines decreasing during the epidemic?
= = _ :
Equation (iv) can be “'g“ﬁ (x+ AV fTg(0) 5 o) m We need to find E‘% the change in revenue with respect o time f. The chain rule is used to
y = flglx+Aax)]=J18
Where, Au = g(x+Ax) - g(x) o 2T, dR _ dR dx . )
= glx+Ax) = Au+g(x) (vi). g dr dx de
Substitute the value of g(x+ Ax)from equation (vi) 1o equation (v) : i
Ay = fau+g()]- Mg 5 . - First find = follows.
Fx+Ax) = F(x) = f(u+ ) = () u=glx
Divide equation (iv) by Axthen we have : K= IR - G+ G000 300D 2, — R(30)= 16000 __15.625; atx=30
Ay Fla+bx)=F(x) _ flu+80)-f() (i) dx (x+2) (x+2) (30+2)
) Ay _ . _dR _dR dx
Multiply and di\lfidc thcﬁ;ght side uld'l:quaﬁon by ;:so : %=IS,625 and %’:—= -6 are used in equation (i) to obtain: 7 =%E =(15.625)(—6)=-93.75
ultiply an 8
by _flu+du)—f() Bu : This tells us that the revenue is being lost at the rate of approximately 594 per day.
Ax At Ax -
_ St~ f0) grtan-gl) vii) : 2 ,,
Au Ax it
: % = o i e . -
Apply ET.’"d ET»O“ 3 b .Mn} _Ify = f(x) is any differential function of x, then it admits an inverse function x= g{¥).
We l;ave lim & _ tim St b= f) _Hg(x-t-ﬂx]—-g_(x} - :Suppose y is changed by a small amountAy. This will cause x to change by an amount Ax, The
: . med Ay w0 Au Ax increment Ax in x corresponds to the increment Ay in y is determined from
Hence, 2 = & 3 o required. - o x=g0), x=g() isinverseof y=/(x)
Vde du .:ixl . it 1=£é‘5
1t can also writen a5 <[/ (g = S &)=/ (8N ) _ - Ax By

i ol
By letting Ax— 0to obtain: 1= lim =
B m s

4l

S 10 Differentiate the foth_:rwmg funopuus W.LLx:

@. f=0x- e =i
= ST FORGALE
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Thus == dy and ::_ mrmpmlweachoﬂwr

12 Verify mult%: i;fm the following problems:
d
). Jx) =-.‘le +1

(a). flx)=(4x-3)

a. The derivative of y = (4x 3} 13—--12(4\: ~3)". This multagrusmmult

-m[M] 12(4x-3)"

The derivative of gx! 'T:.?’

& 1208x-37

e ., dy 15x
B The derivative of y =152 +1is === :
dx Jisx+l

This result agreu to result
o L, (1)[ bz Dz
dx E"_- ! Jis 41 ) 1sxt4l
dy -]liri +1
15x
Use of chain rule to show that %[ﬂ,x)]‘ =n[ £ 1) b

proof: Let y=[/(]" and u=f(x)then y=u"and & - i oy powes le)
u dy du _ “u.-u_d_u
dv  du dx dx
—lﬂx:]‘-n[f(x)l e -~--,r'm

In words, if f (x) is equal toanﬁ:ptustmmxrnsndtulpuwerufn,ﬂm: f(x) is equal to the

product of 1 times the expressnom to the n-1 power times the derivative of the expression with respect to
{he variable. The statement is known as the general power rule.

13 Differentiate the following functions:
(@. =01 -7 ). fx)=v22+11

If y=f(x)= =01 -7 mmfmdmmmofamvmfmmm,

Esr-mf —7yt =8(11x" - L S0 =7) =801 -7 (222) =176x(1 1" - 7y
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e

| dy _dydt _dy 1 _ _Em
By chain rule, the differentiation of » = glh(x)] Wt xis E“E%d; %E— Lo

b ly=fln)= \‘ Y41l lhen.ﬂ\eﬁmdmvmveofagnmmnnwnm

i?_rn_ 1 =1 & =t 3
o (1x+1l]= {zx‘+11}: (2:‘+I.l} muna(ﬁx)m

1f two differential mwlim:-,rmmdy-g(r]ofpmmmuf t= k(x)is an nverse function of x= f(f)
then y = g[h{(x)] is a function of .

a|BRiE

dt
Fmd%.vmm x=gat* and y=2al.
fwmmim%=hl,%=2ﬂ is used to obtain:

dy _dyat _‘_]=l
T&Ed;&_r{u)[zar '

Wbulvaﬁve of implicit function
Whether ¥ is expressed explicitly or implicitly i in terms of x, we can still differentiate to find

the dmvaiwafy'— If y is expressed uplicit‘ly in terms of x, then % will also be expressed

explicitly in terms of x. If y is expressed implicitly in terms of x, then %"x—wi]l be expressed in terms

of x and y.
Ecmnate\y. lhene is a simple technique based on the chain rule that allows us 1o find %mihaut

first solving the equation for y explicitly. This mchmﬂue is known as implicit differentiation. It consists
differentiation of the both sides of the equahnn with respect to x and then solving the resultant equation

iy
algebraically for i
14 Differentiate the implicit equation x’y + 2y =3x+2p.

Ay+2y'=3x+2y.
is obtained by differentiating both sides w.r.t. x:

The implicit equation is-
The implicit differentiation of

iy d
E(xy+2y:]=zl:3}+2y]

Agan BissaBan,d
(x’y)*- 2y) dJr(3J=)+ d‘{lﬂ

dy __ dy
z;gn-x’ 26yt 3+2d‘x
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UNIT-3

2 g iy—=3—
% 5 (z*+6) 2)51'.:' Iy
dy  3-1my

Ho——ar
de 46y -2 )
m Find the slope of a tangent line to the circle g1+ y =5x+dy ata particular point P(54),

m The slope of a tangent line to the given curve is %lﬁﬂl can be found by taking the

derivative of y*+ y*=Sx+4y with respect to x:

%{x’+?’]=%[5x+4r}

4 dy dy
2x+2 =544
oD

. 5,4
@y-4L=s-2x - B4

dy _5-2x

E_ 2}'—4 '.. L - X w »
At a point P(5, 4), ﬁleslupeofthetangnEMIin:ié: ’ 01 =% 6§ B% - -
A, 3-20) Jo3 : . Figure3.6
& 244 8 :

Note that the expression is undefined at y = 2. This makes sense, when you see that the tangent is

vertical there.

L Find the derivative of the following functions w.r.t involved independent variable:

B wed—re ) b, etz
c. “='i“'-3|" " i 1
Gr+1y
2 Determine the derivative /' (x) in each case: .
a f(x)=(2x-5"'(5x=7) b. f(x]=':“:"1]=
x= 3
2x-5Y
c. fix)= T ; d f=xl22+11

x Find % of the following function in terms of parameter t:

a. x=]+£=,y=!’+2la+l b. "=3‘"="‘2|;'=6f'+9

a(l-1") 2bt 4 3at lar®
. x=——,y=—x xm—— pe -
i B R T we' ' hr
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4. At a certain factor, the total cost of manufacturing g units during the daily production run

isC(g) =0.2¢* +q +900 dollars, From experience, it has been determined that approximately
g(6)=¢* +100¢ units are manufactured during the first t hours of a production run. Compute the i
rate at which the total manufacturing cost is changing with respect to time one hour after
production begins. ;
5. Use implicit differentiation to perform % for the following functions:
1

a X4y'=25 b px+3y)=2 e ey 43y=3 & JHEe)

6 Amange the following functions explicitly and implicitly to pcrfm’m%:

2 "
a P#y+y’=l b pr2y=y o 4 w-x=y+2

B F
7 Let "—,+%-_ 1, where a and b are nonzero constants. Find:
5 -

a. du b Lid
dv Codu ;
% Determine the slope of the tangent line to the curve 3x* —7y% +14y =27 at the point P (-3,0).

9, Suppose two motor boats leave from the same point at the same
time. If one boat travels north at 15 miles per hour and the other 3
boat travels east at 20 miles per hour. How fast will the distance
between them be changing after 2 hours? ¥

| %
P
x E |-

REFSC

mﬁﬂerenﬁ_aﬁun of Trigonometric and inverse Trigonometric Functions Ty

To understand this section we need to know about trigonometric function. For differentiating all
trigonometric functions we use the basic rule of differentiation that we have already learnt e.g. We will
use product, quotient and chain rules to differentiation functions that are the combination of the
trigonometric function.

 function

i Derivative of sin x: lf;p'=sin.xI!.'melutllet‘]»!ri\fi'ni‘h'-‘ei:-fy=."ﬂl:|.xis%7 = COS X.
Proof: By the rule of first principle. 1
o ket - y=sinlx) (i)
y+ Ay =sin(x + Ax) (ii) ~y=fix)
Subtracting equation (i) from equation (ii).
y+ Ay - y=sin(x+ Ax) - sin(x)
. Ay =sin(x + Ax)—sin(x)

; ='2ms[x+'?+x}sin(x+f-x]
ROT FORSALE o

sinl: —sinp= zms[g-;i}sin [n_;ﬁ)




=20+ o 5 )

Now, divide equation by the Ax.

Ax Ax

2¢o0s, 22 1sin| =—

Ay m[“z}’“"[ZJ
Ax

Ax
MNow, apply lim on both side of equation

sin L3
oy Ax [z ]
i e W[HT)

ax
2
sin| — . [ Ax
o Ax 2 sin| —
}.‘r.“‘.."“[”_g}ﬂﬂ A - i —ad =1
5 - 7 e S O
=cos(x+0)-1 2 5 \
= 5 A s [
= éos(x) . = -.-i‘%—m as Ax—0|
dy
Hence, — =
o)
i Derivative of cos.x: 1fy = cos x, then the derivative of y = cos x is % = sinx.
Proof: By the rule of first principle.
Let y=cosx

y+ 8y = cos(x +4%) . wy=f
Subtracting equation  from equation

y+ Ay =y = cos(x +Ax) - cos(x)

Ay =cos(x + Ax)—cos(x)

difedgn [.'r-l-.a.zx +x ] s.m(xté;-x ]

s sn())

5)'.=-2=in[x+%x-].sin(%1]

Now, divide equation by the Ax.

'.*mu-mﬂ';—zﬁr[;%ﬁ}sin(fg—p)

. | Ax

sn| ==
-a—y-=—2si]1 I-I‘E 2
Ax 2 Ax

P T e S v

; P < e
A ey i .
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i

Now, apply ;Ijﬂ on both sides of equation

The traffic pelice officers uses radar
wmiolnhlhcmnnusnunhomy
use of derivatives. When a radar gun
is pointed and fired a1 a car on the
molorway. The gun is able o
determine the time and distance ol
which the radar was able 1o hit a
centain section of the car with the use
of derivative it is able to calculate the
sp:eduwhichmcﬂtwugoingm
also report the distance that the car
was from the radar gun.

. Ax
sin| —
. Ax Y .. 2 ) ..y Sin(A)
tim =~ a4 5 | m—p - im0 =1

=—sin(x+0)-1

==sinx

;d—y- = g

Hence,  —- sin(x)

il Derivative of tan x: Ify = tan x, then the derivative of

¥ ﬂh’ 2
= {an —— = gECTK.
¥ xis

Proof: By the rule of first principle. k&
Let »=tan(x) and S~ @
y+ Ay = tan(x +Ax) g &

Subtracting equation  from equation

y+ﬁy—y-m{x+ﬁx}-m(x)

sin{x+Ax) _ sin(x)

cos(x+Ax) cos(x)

Divide equation (iif) by &x ; 3

_;:g_‘_l_ sin(x+Ax) sin(x) ¥ '
{Wﬁ”ﬁr) W{ﬂ} 3

Ay =

Ax  Ax

Naw.lpplymunbothsidﬁufequaﬁun e >
sin{x+Ax) _ sin(x)

lim—'sl=|1:n°°’(’”“" uos(x_}=ﬁmsm(x+ﬁx}.oua(:]rsm[x}ms{x+&x]

pre T T = Ax ar—b Ax.cos(x).cos(x + Ax)
= sinfx+ Ax—x) lim 1 1 sinAx
as-sd Ax.08(x).c08(x + Ax) 4 cos(x+ Ax) cos(x) Ax

1 et IR 1 A (R 1

e T A%) A cos(x) S Ax  cos(x) c0s(x) g 7 s
Hence, % =sec’ (x)

iv. . Derivative ol sec xt Ify= secx, then the derivative of y = sec(x) is % = sec(x).tan(x).

Proof: By the rule of first principle.

Let

»=sec(x)
and y+ By =sec(x+Ax)
_ Subtracting equation  from equation
y Ay =y =sec(x -+ Ax) —sec(x)
Ay =sec(x+ Ax)—sec(x)
Mow, divide equation by the Axv
£=5w(x+h)—sw[x)
Ax Ax




UNIT-3

LS lim on both sides of equation (iv).
1 |
limAY _ . cos(x+Ax) costx) . _cos(x)=cos(x+Ax)
i lim lim
Bxsb Ay AcsD At *"'"‘Mcos{x) mh_'_h)
Ax
-z[fii‘i}m[_z;‘i] -2sm(-2i——}sm[——2—]

% E"“ Ax.cos(x).cos(x+ Ax) ‘I‘}'T' Ax. W[-’-’);W‘s{x*m‘)

Ax Ax
2sin[x+——}sin[——) Ax 1
i ii.“.‘."i"[“—g‘}'““wﬂm(x) *--*TEL
2

m Ax.cos(x).cos(x + Ax)

gl o= i sln[x] l =
=il cosx cos(x) = ma(x} COSX seu(x] ]
i
dx

Hence, =sec(x)- tan(x)

v. Derivative of cosec.x: Ify = cosec x, then the derivative of y =cosec(x) is % = —cot(x).cosec(x). .

Proof: By the rule of first princir’ .
Let » = cosec(x) (i)

and y+ 4y = cosec(x+Ax)” ().
Subtracting equation (i) from equation (ji).
y+ Ay =y = cosec(x + Ax) —cosec(x)
Ay = cosec(x + Ax) —cosec(x) (iii)
Mow, divide equation (iji) by the Ax
Ay cosec(x + Ax)—cosec(x)

At Ax - )
Now, apply lim on both sides of equation (iv)-
o )
Iim—ﬁ'—y _— cosec(x + Ax)—cosec(x) lun sm(x-l-dw) sinfx)
B Ay e Ax

4 x+x+dx) . (x-x-Ax
sin(x)—sin(x + Ax) Iimzms[ 2 }sm[l 2 ]

ZabAvsin()sin(x+Ax) =0 Axsin(x).sin(e+Ar)

Ax Ax i ; A
ol 2ol
= lim— - e ax) 1 :
=l Ax.sin(x).sin{x+Ax) Eﬂm["+T}~hﬂ[m}Mr—&f
: £ 1R
=- I 2. Z_Los(x) 1
mx+m'sin[.r),sin( x+0) cos(x) M sin(x) ‘sin(x) ==cot(x).cosec(x)
Weoohy, = = col(x)cosec()

Y Derivative of cotx: 1y = ot x, then the derivative of y = cot x s s = _cosec’(x).
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Proof: By the rule of first principle. : . B
Let y=colfx) (i) '
and ¥+ Ay = cot(x+ Ax) (ii)
Subtracting equation (i) from equation (ji). -
/+ﬁy-j=onl(x+&x)—-cul(x]
Ay = col(x + Ax)—cot(x) (iid)
Mow, divide equation (jii) by the Ax
Ay _ cot{x+ Ax) —cot(x) (i)
Ax Ax
Now, apply lim on both sides of equation (iv)-

cos(x+Ax) cosx

g I col{x+Ax)—cotx _ i sin(x+Ax) sinx _ lim sin x cos(x + Ax)— cos xsin{x + Ax)
e!!?n'ﬁ_x = : S Ax a0 Axsinxsin(x+Ax)

= tiim sin{x—x = Ax) ik 1 _l_ -sinmr. sin(~Ax) =—sin Ax

&0 Axsin xsin{x + Ax) *"*"SIII(.H-M'_I sinx  Ax
=— |,m__L_. ek ;ﬁms'"u ___.1___]_(1:|=-_%—_Am“.=x.
a0 gin(x 4+ Ax) A= gin x st Ax sinx sinx sinx
The trigonometric formulae are listed below.
? = d )

I.i(sinx)=ms.t . i{um;]-—-mnx bl (') =sec’ x

'—(mm)-—eolxmsear 4 u—(ser.x) fan xsecx ﬂ.i(outx}-—msac’x
Thechammlsmbcumdmdmwmemmhuunnofﬂmpownﬂemd:henﬂsihrdﬂumm“g

lhemgﬂnumcmefunr.uum assmmnmzedmthzhox . {
E(sm"] wsui[u} H.—(cuau)--smu—(u) : L]
i, %{“ﬂ“] = sw'u-g;[ll] . iv.%(cnsecu) =—cotu cpsecu%[u}

v, %{socu] =tanu smu-d—(u) mi(mg;j = ..wsﬁ!ui (w)

6 | Differentiate the following trigonometric functions:
fa).  p(t)=(t* +1)sins ®. fix ]_ﬂ,

m 2 -cos(x)

a If the given function is p(r)=(t*+1)sint, then [hr. product rule of differentiation w.r.t. r is used 10
ch'l'ain:' £= e +r)i[s‘mr]+(sinr}i[f"+:] =(¢ +r)cosr+sinr(2r+1)

o Im"""g'mm““ is f(x)= I”ﬁ Ihentl'lequoncm rule ofdlﬁermumun WLt x is used to
oblain: s

i _ (eosx)(2~cos x) —(sinx)(1 +5in x)
(2-cosx)’ (2-cosx)

a _d{ 14sing )@ ‘-‘m)—{lﬂmx) (+sinx)-2 L@
dx dvl2- cos(x) )

HOT FORSALE | 7,
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DlFFERENT[ATI{JN
- Zeosx-cos—sina=sin X
{24,05:] et o] i
2 c0s.x—sin x—(cos’x +sin’x). _Zcosx—SMATC - sin’¥ +eos'x =]
ST e,
. . jons: .
17 Differentiste the following trigonometne fur::l 4lanx l ‘ﬁ
- lany
(a). f(x)=secxtanx @ fx)= 3x+2Manx :

& X is used
& Ifuwmimmn:ﬁmisf(x]—stumi Mwm.mufd:ﬂ'mnﬂmonw: xis 10 obtain:

dr

b

-isccthx=senx—-[llnx:l+(ll“-ﬂ"(smx) ﬂx(goc‘.ﬂ+mx(mxmn.r}=set’x+s¢cxm:
dx

#ranx rule of differentiation w.rt. x is used g
,,____— then the guotient
If the given function is () =5 -7
_d x+1an(x)
dx dx 3.t+2tnn(z} :
(2x+sec’x){31+2tanr] [3*‘2”‘: )+ lanx) 3 .,.(4;_3.)1:1:1:1-.1:(3;-2!)5&'#
{h”mx} (3x+2tan x)

ey ; 2
Differentiation of inverse trigonometric functions

Derivative of sin'x:

(3x+ztanx] i(x +tan %)= (x* +1anx)—--(3x+2|mx)

(3x + 2tan(x))’

If y=sin"" x, thenx =sin y.

. dr
The differentiation of x = sin y W.r.t. yis! E;= cosy
Tal:e its rcclproeal ll.‘r abtain the derivax:'m of y w.rt. x:

d&: cosy :,]‘1 smy_t.J

Hcre,r.heﬂguufthetadmal |sihemn=aslhatofousy By definition of sin™ x:

o siniy-l-cu.s’y =l siuy=x

B in xSt or -Zgysl
zss”" 2 il

I (i) =
el

If y=cos™ x,thenx =cos y.

Hence, cos y is positive:

Derivative of cos '

The differentiation of x = cos y w.r.L y is: %:-m.y
Take its reciprocal to obtaiu ihe derivative of y w.r.t. x:
O . ol 2
@ siny € ]_.miy'_* - -rsin’y+cos'y=1,008y =%

Heu.ﬁesignofﬂie:admalisihr.m.sﬁmofsin}__Bydei.miﬁmofwsl_: :
0Scos” xsSa or 0Sysna,

Lo o f i
Also, if y lies between 0 and, then, sin y is i ] d 2]
- necessarily positive, = x)= ]1""' 1
y positive. Hence = (cos™ )=

revrens’

iil.  Derivative of tan "x:

¥ Derivative of cosec'x I p =cosec i, then x = cosec y.

vi. Derivative of cot™'x:

DIFFERENTIATION
If p=tan™ x,thenx =tan y.

The differentiation of x = tan y w.r.t. p is: %-m‘ ¥
Take its rocipm:'nl to obtain the derivative of y wr.t. x:
ﬂ= _—!I = ——]

l+tan®y  1+x°

dx sec’y
v, Derivative of see 'v: If y =sec™ x, thenx =secy.

wsec’y=1+mn’y, tany=x
g oo gl
The differentiation of x = sec y W.r.L yis: 5- secytan y

Take its reciprocal to obtain the derivative of y w.rt. x:
dy_ 1 1 i

== =
dx secytany tsecmfmy 1 el

1
We take + sign before the radical sign to obtain: —(m x)= m

-:1+tan® y=sec’ y, secy=x

-
The diﬁhumimion ot‘x = cosec y w. L yis: ?y =-ms=o(_y}cpt{y]

Take its reciprocal to obtain the derivative of y w.r.t xt

T L TR = --14cot® y = cosec’y ,cosec y=x
dx  cosegycoly ausechcusec’y~i
;;,ﬂ’.;-t =1

dx x;ix’ -1
We take + sign before the radical sign to obtain: -—(cmc 'x)= ;J—-
If ¥ =cot™ x, thenx = cot y.

The differentiation of x=coty w.rtyis: %= —cosec’y

Take its reciprocal to obtain the derivative of y w.rt. x:
S DS, - T 1Y
dx ::nsec:y l+cot’y l+x*

-reosec’y=l+cot’ y, coty=x

These inverse trigonometric formulas are listed in the box:
1 - -1

i. lfxin' W)= jT_";:' #i. ‘—[ms"x}- ]1__:’. iii. _:;,(Idl x)=
o =1
X (msu'. %)= :m "‘(m -‘)“m" vi. —{unl -ﬂ-H_

rlv chamrulecanbeuscdmdemaihz gmualmhouofahepnw:rnﬁemdﬂumlsfnr
alﬂc'r!nl.mhng the i |nvers¢ trigonometric functions, as in the

L+x

| & = i ii i = = i
dl_hm ) mdx‘[") if. #(ms"ﬂ} mdx[“]
d ;
St ) Gcosed u)=—_f——m
v -—(sae ‘ll.'l=7——l'll] vi ‘d—(cm h‘}=‘ ,#( )
'm

%
H
!



UNIT-3
. 5 metric functions:
!~.:nn|-h-"’f’;?;‘;ﬂ Ditferentintemfﬂa]'a‘”i"giﬂmmgo i =
i EEE
@. y=1an"Vx ] '[xﬂ‘"]
a y=tnVx - ' @
»=f()=tn" i
e (ii)
Let "'J;::E-m i ¥ 3 (i)
! iii
Now, y=tnt ) = 4=
= . dysi):iu' i
A i 1 1 :.9’..:
From equation (jf) and equation (iil) Z°=| 7507 | 57 ) ™~ dx 2/x(1+x)
5 2
b Given y-m"[?ﬂr_']
p = =1
Let l‘=';+i-:
I
Ml
du_df2-]
de  del 2 +1 i
4l i[;’;ilu[f-l:li{x!“)
=( }55, dx
(,\.J-I-]:I:_
(* +1)(25) - (¥ -1)(25)
- (@)
2422 0 dx
(#+1) (@)
Ly B or bl |
Now, y=cos u whereu x+x" K4l
:ﬂ:ims"u
du  du
L S
du f1-u?
By chain rule
dy _dy du
de  du dx
=] 4x -1 dx

. ; ? FEFE T
i e R s - -

DIFFERENTTATION

il

dy _ —4x g - :
&) (2 1) :

JHT"(-““)

—4x —4x

T 2 25(@ +1)
J(fﬂ:l,xl:x‘-rl}
& -2 :
dt_l:x'-t-ll

1. Useoffirst principle rules to differentiate the following functions. .

a. p=sin(Zx) ¢ b. y=cot(3x), Lhe s cos(3x)+tan(3x) i
Cd y=coti(x) e y=tanx , £ y=sin'(x)
2, Differentiate the following trigonometric functions by using any suitable rule.
: a. x" cot(3x) . b y=(sin2x+cotdx) c. y=dcoseclx
po tan(x) 1+tan2x
¥ i ] - = £
d. y=2tan(x+3) e y= pem f. o

3. Useany suitable rule of differentiation to perform % for the following flm:hnns

Ce(s) | wm(s) ()

4 ymcosecWfI+x) e ymcosec!(t+3) | f y=',iz-m"[%ll) 1
4. Suppose profits on the sale of swimming suits in a departmental store afe given approximately by i

P()=5-5c0s 72, 0SrS104 ¥ % :

where P(t) is profit (in hundreds of dollars) for a week of sales t weeks after January first,

8. Whatiis the rate of change of profit t weeks after the first of the year? '

b. What is the rate of change of profit 8 weeks after the first of the year? 26weeks after the first
of the year? 50 weeks after the first of the year?

5. Anormal seated adult breathés in and exhales about 0.8 liter of ai every 4 seconds. The volume of air
Wr]hhlu,gstmmﬂuexhnlhgiggigmabpmﬁnmlyby V[:}=0.45—D.35m%,0$!53.
a. What is the rate of flow of air t seconds afterexhaling?

b. What i$ the rate of flow of air 3 seconds after exhaling? 4 seconds after exhaling? 5 seconds
afiter exhaling? - '

XY bifferentiation of Exponential and Logarithmic Functions ™
The goal of this section is to develop the differential calculus of logarithmic and exgonential
ﬁ:nclmrns We shall begin by deriving differentidtion formulas for Inxand e*. The derived formulas will
~ be applied to a number of differentiation problems and applications. : ; :
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mvative of e* and g* from first princ.iple

i Derivative of *: If y= e, hen the derivative of y=¢" by first prmclple rule is:
Q:][m&—%_ﬂ_) ay=flx)=e"
dx  te-n Ax
(reir) _ PN
= lim & Caly o e 4 .
Ax A Ax =
i Ap A e | o N =
=hm2("'m ]—lqme‘ |Im£—§_=¢(l] e
. Derivative of a* If y= g" then the derivative of y=q" by first principle rule is:
ﬂ_“m !£1+M]-HX] _-_y=f(x]:=a'
pr Ax
RIS hetskte). o a'a“-a"
_HT‘ Ax = Ax
a1 ' h x . iy
M (’a |18 Iu:na ilm e =a" loga ET‘, R |03,4 Ina

Derivative of Inx and logax from first principle

i. m-rn ative of Iny:  Ify= Inx, then the derivative of y= Inx by first principle rule is:
dv_ M};.ﬂi oy o
e ETo Ay=flx)=Inx 3
=nm1n!x+.mr1 =Inx

= lim - m(“?"). Lograithmic—rale

= X Ax _
-M;;h[l-b?] multipy and divide out by x

=Li3§(ﬁun[i+?] = lim L ln(l-!-m—];—-h =1 v lim(1+x)" =e

ii. Derivative of logax: If y=logx then the derivative of y=log,x by Fu'slpnnmpk ruleis:

dy _ .. x+Ax)— f(x
L iy L2802 /() ..wa{x}gm;x,.
i log,(x+&x)-logx _ +Ax " A 9 |
= lim o Ilm Sz, ]ﬂ‘._"."alf‘;'ﬂs.(l-'-%) | \
x 1 Ax :
=Lﬂ‘_ﬂ°;;|ﬂ&(”?} mu!fqn!yﬁnddiwdeoutbyx |
=Ly X Ax) 1y ax Y L
-:}','P.m""" [H x ]—?hhﬂlug-(”'}')ﬁgéh&f "hm(l-l-x]; ;"L
'.L
A ":i
91 NGT{EORIGALE

anoumﬂﬂmdhgxnlhmfummhsmlmdmmw
:—(a‘) & t':'—(a‘)=a‘lngﬂ I;fﬂ(hx)-— w—ﬂos.x}'*'lﬂsf

mmmuﬂsmhuﬁwdmwmegemﬂzam nfihspovmrul:anﬂ%hsmluﬁw
dlﬁetenuahugthuxpnnemalandlogmlhmmﬁmmm umamnmdmlhem

.f—-(e")-e -—[u) i:‘.z(a')"ﬂ' WE{")

il —(I-Il H] - (ﬂ') Ev_% (log ) -1; k!g.e%("} .

19 Differentiate the following functions:
@. f0=T" @) f)=log,VF-Tx+2 (. S =lne™+e) fd). fm-%

a.  Ifthe given functionis f(x)=7"""1, then the derivative of the given function w.rt x is

A d o

o ]

Letu= 4-3+° then %=—1Sx‘
Now,y=7" =Ll 7u)_ 7 1og,(7)

.la.y1.1.&I|::.gr.hm:1m]¢ﬁ dy .::

f"— =7"log (T).(—15x*) = %z ~15x*. 74 og (7) cu=4-3x
h Irm given function is f(x)=log,,\[(x*~7x) +_x".1hm the denmv: of a given function w.r.t. x is:

[los..d' -?x)+x]=——[lusml'(x‘ Tx]-l-——(x’)——lcgue —()+3x%, u=J(z"-7x)
1
=w'°ﬂ.n8-—& = Tx)+ 3x%= 2( s )Iog..e+3;=

e Ift,r mmmmlnmmf(x) In(g™ +¢“"') then the derivative of a given function w.rt. x is:
) E—-[ln( e™ + "“)]—-——(lnu)-—(e"‘-t-e"‘)

V=g g
=‘_'(ﬂ| - _____' ™ _fﬂ{e I ﬂ“‘)
e me )= A _-.)(ﬂl)(g )= __'__In(,e"‘-!-:"')

d [fth.egwenmumnmsf(x}:— then the derivative of a given function w.r.t, x is:

df .i [_ej_ \ s 4 ) In(x) - -4 f1n(x)) e"—(z.t)ln[.r}-——
de dr|Inx | (inx)* (inx)’
,2""1""‘%‘“ _2xe"Inx-e* _ " (2xInx~1)
(inx)’ x(lnx) x(lnx)
INGT{EG RIS/ ]




Logarithmic diﬁercn;tiati-ou is a procedure in which logarithnis are used to lﬂdc. the task of
differentiating products and quotiénts for that of differentiating sums fmd differences. It is especially
valuable as a means for handling complicated product or quotient functions and power functions whero
variables appear in both the base and the exponent. L

). y=5
. .
= x(x® =3)
m =y “[m
" Ifthe given function after simplification is
2
y= m[ﬂi—iﬂ = In{x(x*~3]-In[(x*~4)i], logarithms rules
(x*=4)

=lnx-|-.]m(;’-—.3]i-ln(,:-1—4)%nl‘n.t+2[n[f—3)—%ln(x=-4],

then the derivative of pwrt.xis

dy_d —p-Lifa-a) L A 0o -3 -1 L -
a—-;[lunzm(f 3) 1In{x 4]]n¢[ln(.\:]]+2dx[1n(f 3 2dr1n[x1 4)

aliq 1 e [ e
'x”x’—a(m 2:’—4‘2"0

dx'-2007 412 d(x'-5x"+3)
x(x -3)x' —4)  x(x* =3)(x+2)(x~2)

L et

In y=In(x*"), taking ln of both sides

In y=sinxlnx

then on differentiation w.r.t. x. It becomes;

d L
E[!ny]—z[smxhlz}

ldy . d dl. .
e sm.rdz[hx)ﬂnxa;(smx)

1dy sinx %
e T
T XCO5X

sinx e[ Sinx
%!J’[Ti'lnxmsx =X"'“[-1—+lnxcosx]

Differentiation of Hyperbolic and Inverse Hyperbolic Functions |
£ byperbotic fctias § LSy perholicHunCIRCS
wﬁ'ﬁm; be fmm: mm 1% Gompletely discussed in Unit-2. The differentiation of

UNIT-3 e
W Differentiation of the hyperbolic functions
o Derivative of sinx: 1f y=sin = =€ then on differentiation wa.t., itbee: -
Dol afdeq d o] L.
prstr e 3 d‘(e) d.'x(e i z(e'+e )= coshx
i Derivative of coshx:  Ify= coshv= e £ ‘_';_ » then on differentiation w r.t. x, ithe o0
dy _d|g"+e™| 1[d d 1 = :
= | ——— | — (" —(g™ |==(g" = ) =sinh
iy (o e LU R | e e
iii.  Derivative of tankx:  If y= tan = "“':}mm on differentiation w.rt, x 10, ient
cos
dy caskxi[sin.'u)-sin&x :—x{mshx)
rule, it becomes —== d - “recshix—si.
dx cosh'x
coshxcoshx —sinhxsinhx _ cosh’x—sinh’x 1
= . = . = : - mh’x
cosh'x cosh'x cosh'x
iv. Derivative of sechx: If y=sechx= cc-sh.t'“w" on differentiation w.r t. x throu_ ke,
e (- ). cos -
o £=Oﬂﬁ E()"{);(‘m }_mshx(ﬂ}-sin.fu_-sin.'m _E’E 1 ) .'.‘j'“
dx coshir cosh'x cosh’c  cos'c coshr P
v. Derivative of coseche:  If y = cosechr = — l’“ , then on differentiation w.r.t x sinent
sin
i d d
B — (1) = (1) —(si 4 5
rul,itbecomes = e 0 g O _sinhx(0)—coshx _ cbshx
sinkb'x sinfi’x sin fix
__coshx 1
i TR
vi. - Derivative of cothx: If y=cothy= ?sf:,then on differentiation w.r.:. x throu. sl pute
sin . . y

5 d
dy _ slnth(-:ushx)-msh r%{sinhx}

it becomes = v s coshx—sinhix= !
_ sinhxsinh x— cosh xcoshx _ —(cosh’r—sinh’c) _ 1 :
sinh’x silh®  siphix  Coseeh

The hyperbolic formulas are listed below:

d
LS » . - .
7 (sinh x) = cosh x ii. E;(oosh x)=sinhx i, Emnh x) = see )

d
v, — = d
jy (cosechx) = —cothx cosechr  v.=—(sec hx) = = tanh x see hy vi ;.,- (o b s

n mle t s & =]
The chai can be used to derive the generalization of the power rule and the &5 1|
le the rules for o1 vhibinnng
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UNIT. ) DIFFERENTIATION

e kS
i Z(smhu) =cg5]|u£.|:u) if. i"(ﬁﬂﬂu}: sm]lﬂz;(ﬂ

d
"y = L = cosechu —(i)
i ?;{ll'l'lh )= sec iy F{u] . z{coiﬂﬁu] colhw F

d d
[ E(sechu} == tanh u sec lu.-%(u) i %tcu&u] - -ccs:c"‘h'z(nl

=
Example E Differentiate the following functions: (). y=cosh(2e’=1) (). y=sec!:[T::_]
©IITIED a 1f the given function is y = cos h(2x* ~1),then the derivative of y W.r.t. x is:
dy d d !

= z;;[cos I(2x% =1))=sin h(2x* ﬁu_};(zf =1

= sinh(2x’ - 1}[2‘ % Exa]+%[_|]].,in h(2x =1)(2(2x)+0)= dx.sin h(2x* —1)

b If the given function is y =sech[r]-‘—x].lhm the derivative of y w.r.t. x is:
+x

l=-x

y’-—[ — ]—j—u(mm%(ﬂl Vima—

=‘—!anhnrsac.‘m—[_l."_x].-mfmmﬁu[('lm"’ﬂ‘ﬂ'ﬂﬂ]]
dx\1+x i

(+x)
(1+x)* 1+x 1+x

Differentiation of inverse hyperbolic functions
! Derivative uf sinki'x: £y = ginh“'x, then x = sinh y , the differentiation of x =ginhy wrtyis
%;-a coshy  Take its reciprocal to obtain the derivative of y w.r.t. x:
@ _

dx coshy ;}Hma y

Here, the s;gn of the radical is 1hc same as that of cos hy which we know is always pnsiti\"ﬂ-l

Hence, —{slnb":]-?—

il Derivative of cosli s If y=cosh™ x, thenx = cosh y,

~sinhy=x, cosh®v—sinh’y=1

then the differentiation of x=cosh yw.r.t. y s &_ sinhy

Take its reciprocal to obtain the derivative of yw.rt.
el g I

weoshy=x, coshly-sinhly=1

ili.  Derivative of tanh x: If ¥ ™ tanh~'%, then.x = tanh y,
then the differentiation of x = tan k y w.r.1. y is: % =sech'y

Take its reciprocal to obtain the derivative of y w.rt. x:
- dy 1

dx mh’y= I—tank’y

= 5 seckly=1-tan Ay, xlcl, tanhy = x

iv.  Derivative of seel'x: Ify =sech™x, thenx = sechy.
The differentiation of x = sechy w.rt. yis: % =—sec ky tan by
Take its reciprocal to obtain the derivative of y w.r.t. x
dy = -1 -1 1
—_ =% =t v l-sechy=tan b*, ysechy = x
dx  sechytanhy sechy fl-sech’y  x J]—.\.”

Here, the sign of the radical is the same as that of tan/iy but we know that sech™x is always

=1
positive, so that tanky is always positive. Hence, —{m.&"x —-W

v. Derivative of cosech™x: lfy=nu9mﬁ“:. then x = cosechy.
The differentiation of x = cosechy w.r.t, y is: %= —cosec iy cothy
Take its reciprocal to obtain the derivative of y w.rl. x:
dy _ -1 -1

2 =% weoth’y =cosech®y +1
dx  cosechycot iy cosechy |Jcosechy +1 % e

=% i cosechy = x
x—:ix"i-] e

Here, the sign of the radical is the same as that of cothy which. Here cothy is positive or negative
according as x is positive or negative,

d 3 =] . d -1
—(cosech™x) = ifx>0and-- = -
dx m a (cosech x) ‘m ifx<0,

d =1
Thus —(cosech™x) = for all values of x.
dx | x| ;x’ +1
vl Derivative uf cothly: Ify=coth 'z, thenx =coth »

The differentiation of x = cothy w.r.t, vis: %r—cm’y

Take its reciprocal to obtain the derivative of YWl x
dy -1 1 =1

dx cosech’y cothiy—1 xicl

cosech’y = coth®y - Llx>1, cothy =
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e . : __DIFFERENTIATION |
g e hyperbolic formulas are isted below: Siliiion : b &
; E(sm Myy=—_l - i 4 (cosh'x)= 1 i, i(mh“‘x] = lxl 8. Command: Context Menu: :
o T+x dx ;'-1':'1 dx 1- > a‘igl'(x’+1-x+2.x]; > A+ Tx+2 5
5 4 (Cosech™x) =—j'l_= v. f.(m;,-',k_.‘h;I_. vi. i(m,:,-x),_, =1 4 5t 47 > Jlj‘?'(x"s +7%x+2,x) ﬁ

x I = . 5% 47 i i |-
The chain rule can beLst;;nvg the generalization of the ;wmmmm ﬁxdl'm ntiating This result is obtained through right-click on the last end of the expression by selecting " Differentiate < x ™ ©
the inverse h)'petbohc ﬁmcﬂan& a5 summarized i m the box: on the context menu
i i{sm B ( w e 1 b. Command: Cume::t Menu:
- 1] o it = — .
& e ds L > apYt2atid ) Az
—(mnh"u)=-___ w4 parce =L id] 3 4l 42 (F42x416) (32 +3) > diff ((x*4 +2%x + 16)/(x"3 + 3%x —2).x)
= A ® . - (cosechu) T R . i Pl 4242 (f4+2:+16) (32 +3)
i{mﬁ“Lu)- d - =1 d £43x=2 (¢ +32-2)
dx i J] -t —(:.r) § —-(ml.'t i P 3 —(u) c. Command: Context Menu:
= | s diff (x* + sin(x)* + arccos(x), x); : > :;,(;‘;“_E_‘Fl; ';";‘f‘m 1.5)
22 Dlﬂerenuate the following functions: (¢ =gin kA _ sink™'x : : e > di sin(x)*2 + arccos(x),x
@). y ) @y T 34 + 2sin(x) coslx) el 32 + 2sin(x) costx) — — =
m 11—
a If the given function is »=sinh"(x"), then the dmv:mre of pw.rt. x 1& d. Command: Context Menu:
i“"—[sln () o ' > diff (*-cosh(x) + arcsinh(x), x); > ¥-cosh(x) -+ arcsinh(x)
-—[Sm-'f (x)]= s :’ d ol Rkl — > diff (x*2*cosh(x)+ :r:sintll!x}..tl
= 1 d - ‘ - 1+ 4 2xcosh(x) +  sinh(x) + 1
il+{x’]’ 'dx("'J) J1+&
" 34 ) ) : Exercise
Nred cre ; e
b Ifthe given function is y= ﬂ"%%.mmmedeﬁwﬁ;eofywﬂ g S 1. Usethe rule of first principle to find the derivative of the following functions:
cosh™ (x gk .
.l : d a flx)=e" b. f(x}=%e" c. f(x)=%ef’ +1 4 fxy=2"
' =1 cosht (x).—[sinh™ —sinfx) L =]
dy _ [su-m_ (x) ] =0 ()]~ sin &7 '(x). = [eosh™ ()] : o fx)= 4= L f(x)=logx+1) g f(x)=log(x) h. f(x)=sinh2x
dx  dx cos ™' (x) [eos k™ (x)F ¥ Find f*{x) if f(x) is: r
I : 1 e ink? ) .
cosh™ (x) —sink™ (x). cosh” (x) _sinh™ (x) : a 119840 b, ¥ & i g
ol I e ;o : e
[eos i~ (x)]? [eos k™ (x)] d a_"'Tl e. In(e™ =e™™) f. ey
1 sin k™ (x) b -
'Ill.l' +1 GOSJ'I-'{I} i.t i [M.‘l"(x)]t 3. byusmganysmublcrulzofd:ﬁ‘emnuamn 2
Eﬁ MAPLE Command “diff’to differentiate 2 funcﬁon . y—x’.ln-r b p=xIn(x) c. y=In = _:
The procedure to use the MAPLE command *dj b . d y= nfl =g = gt guindy
following example. fF" to differentiate a function is illustrated in the b . % ¥ l'?'(r lh:;ﬂﬂ e y=e¢ " .cos(2x) . y=x'goin .
Y 5 flerentiate ing functions.
EF01000% 23] Use MAPLE command *diff” to differentiate i ‘
] % a y=log(x+2)’ b, y=cosh(3x) . y=sinh"(cosx)
fa). f(x)=x+Tx+2w.rL variable x. ®). f()= (x*+2x+16) S b A x
(©) f(x)= (X +sin(x)? + arccosx) wir.t. variable . GFaae—g) " el [E] & F=iloti) £ y=xcosh™(x)=va -1

fd). f(x) =" coshx + arcsinkx w.r, variable x, -

WOT FORSALE
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5. A research . . : UNIT-3 DIFFERENTIATION
8roup (used hospital records) developed the approximate mathematical model related ¢,

systolic blood pressure and ageis: p(x)=40+25In(x+1), 0Sx<65
Where p (x) is the pressure measured in millimeters of mercury and x is age in years. What is the
rate of change of pressure at the end of 10 years? at the end of 30 years? at the end of 60 years?

A single cholera bacterium divides every 0.5 hour to produce two complete cholera bacteria. [y
we start with a colony of 5,000 bacteria, then after ¢ hours there will be a

A(r) = 50002" bacteria. Find A°(t), A’(1)and A'(5). Interpret the results.
7. Use MAPLE command “diff” to differentiate all the functions given in Q.3 and Q.4.

It must be inflated.
*  Find the general formula for instantaneous rate of change of the volume *¥°

w.r.t, radius r. given that F-; ar
*  Find its rate of change of ¥, w.r.t, r at the instant when r=3.

L5 Suminars )

fl&-\'mw:];.\:n:ert .

1. Chaoose th t option. : W
LI fu:-: T4 3.+3 e ,::-31 is: ' % Theaverage rate of change y = f(x) w:fjhw tnx s givenby:
; El‘“hl 9 (b). 11 (. 21 (). 29 %mﬂﬂ%{’—], y=f(x)
- - o - i i i
ii m: a:rerase rate orch?::;e -F:Inr Sx)=x* =bx :: :32 3 ifx mu;:}&c i xe[1,3]. & ‘Do siope of e T AT swhich measures "the approximate rate of
i If pe & i i g change in phenomena."
. J'-_-"(I}(x;ﬂj._f;ﬂr i 4  The instantaneous rate of change of a function y f (x) at a partieniar powt Plx, f(x)) is the
; = x+Ax) = f(x il .
(2). Loy Ax (b). -‘Lﬂﬂ—'dx_ derivative of a function y = £ (x) at that point, f"(x)= M&%}‘l—”‘ ¥ = f(x)provided
¥ =4 o=
(@), LinLl=tIr/() ,_:: + /) @. Lmd® ;“g; (x) this limit exists. This is named by first principle rule of derivative of a function f{x).
i, If f()=2 -3 +4 then () is #  The tangent line to the graph of a function y = f(x} at the point P (x. f{x)} s the line through
WM (b). 45 © 36 ° @. 27 this point having slope f*(x)= ma&"‘:—x‘;ﬂﬂ. y= f(x)if this limit exists. If this limit
X i .
¥ Ifﬂ;"m‘““‘-””’ does not exist, then there is no tangent at the point.
A ! 2 ; : ; =
o). K ([I}_ E::x} & EN () - h(g'(x) b :::;r;:' ;;:com is the instantaneous rate of change which measures "the cxact rate of
£(x)] - [g=] ] & : ;
In business termino! |
L1980+ g(x)/1x) L 0g 0~ W' 4 e : :
{c). P (d), ———=—L o705 o the instantancous rate of change of cost is the marginal cost which counts "as the
[eCx) [2(x)] approximate rate of change in business phenomena”.
vi, IFM.'}=JI_’ then K(z) is: o the average rate of change is the exact rate of change which counts "as the actual rate of
3 J- 2 3 3 change in business phenomena™
. =l . =
{a) 3 (b) 3 Ji . (c). m ] (d). m % For any real number n, if f(x) = ¢", then: (xR =
vii.  If f{x)=xtanx l:ben fx)= *  The chain rule is a rule which we use to differentiate the composite function. It is generally
{a). mnx+xsec'x (b), xtanx- d 2 1 £ d :
i L LRt witenss  S1f(g(]=fg(g )
viii. 5005",1'1
1 ¥ x
(2). —p= (b). ko) d x
;liy -1 4 Je-p - (d). W
ix. g = e |
1<l f‘:' g ) T} ool il 9 i i
. sec b). cos” - e :
R 7 e R s AR %
¢ : 2 il L [ o
{a). 'F;x]- ). (<), ;]r " (dj}:.!% Wit =1, : - 1I
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HIGHER ORDER DERIVATIVES

AND APP LICATIONS
By e of this i, i s silienis will be able 07 )

4.1 Higher Order Derivatives
L ! higher order derivatives of algebraic, trigonometric, exponential and logarithmic functions.
i " the second d wrivative of implicit, inverse trigonometric and parametric functions.
i, MAPLE command diff repeatedly to find higher order derivative of function.
4.2 Mifhnnn s and Taylor's Expansions
i. « Maclaurin's and Taylor's theorems (without remainder terms). Use these theorems to expand sin x,
stanx, @', &, log, (14 ) and In {1+ ).
ii. MAPLE command taylor to find Taylor's expansion for a given function.
43 Application of Derivatives
i. geometrical interpretation of derivative.
i 't ihe equation of tangent and normal to the curve at a given point.
iti. 1 sl ihe angle of mersection of the two curves,
. ! .lihe point on 1 curve where the tangent is parallel to the given line.
44 Maxima and Minima
i e increasing and decreasing functions.
[ Presc e that iff(x) s a differentiable function on the open interval (a,b) then
=/ {x)is increasing on (a.b) if /" (x)> 0¥ xe (a,b),
= /(x) is decrensing on (a,b) if 7 (x) <0, x& (a,b),
iii. | samine a given Sunction for extreme values.
iv.  “iaie the second derivative rule to find the extrems values of a function at a paint.
v. ' eosecond derivitive rule 1o examine a given function for extreme values.
v, edve real life preblems related to extreme values.
vil,  Use MAPLE command maximize {minimize) wmmpulemumm{mnumun] value of a function.
il - e ST T

* -= LETT L e e T T
Introduction

‘i1 higher order derivatives has useful physical interpretation. If y = f(f) is the position of an
2

olyer o nme t* then %:f‘m is its velocity at time ‘t’ and Z—fis its acceleration at time °r'.
it

Aveora o the Newton's law of motion "The acceleration of an object is proportional fo the total

Jewe g om it”. So, the second order derivatives has importance in mechanics. The second order

derivarees is also important to graph the functions, Now, in this unit we will leam in details about
highe: ..r.lcr differentiat on and its applications.

E— | ¥l1gher order derivatives

o function y = f ¢x) has a first derivative ¥, then the derivative of ¥, if it exists, is the second
derivaine of = f ), written as y" . The derivative of ", if it exists, is called the third derivative of y =/
(). writien as 7. By continuing this process, we can find fourth derivative and other higher derivatives.
For ¢« nieple, if _,"[.r}= 2+ 2 +3x° =52 +7, then the higher derivatives are the following:

e _f.l:x)_a;_ 4x" + 617 +6x =35, first derivative of y
: dy_d(d) 150 i
i ’...(ﬂ,dr dx(d] 12x" +12x+6, second derivative of
ddly) _ :
. I-‘)_‘_'=};[Z§] =24x+12, third derivative of p

101 T FORSALE

~ velocity at a time t.

UNIT-4 IIIG!IEI{ ORDER DERIVATIVES AND -\mlC&Tlﬂﬂs

AEIITA, 1 |Find the second derivative of the fu!lmng functions:

4x+32
fa). f(x)=8x"-9x'+6x+4 (B) _,l‘(x)n o vpregr c e P T

can be written with any of the
a. If the given function is f(x) = %' =9x% + 6x+4, then, the following notations:

first and second derivatives of the given function through | d¥ LV ) DL

linearity pmperly are the following: ?

3 The third derivative can be written

I )— = ——r(Sx —9x" + 6x+4)=24x"~18x+ 6 in a similar way. For derivative
nzd, the derivative holds the
notation 77 (x), n=4,5,...

F(x)= %:%{24x'-l&x+6}=¢sx_].g

2 dx+2
b Ifthe given function is f(x)= y:E_ e

function through qual:cnt rule are I.h.-: fh]IOWIHE

,thcn the first and second derivatives of the given

dy _ d (4x+2 {3x-l}~—[4x+2) {4.24—2}—(31 1) 4 d[ﬁ]‘d—"v-i—:u
dx dz[h- .]" (3x=1) Tl w ¥
' _@Gx-D-@)@x+2) __-10
(Bx—1)° (3x-1*
Cdyd [dy)_(O0x=1) - (-10)2)3x-113) _ ﬁﬂ{Sx ) 60
iR m'?‘ﬁ(ﬁ] Gx-1)° Gx-0'  (3x-1y

In the previous unit, we saw that the first derivative of a function represents the rate of change of
the function. The second derivative, then, represents the rate of change of the first derivative. If a
function describes the position of » moving object at time t, then the first derivative gives the velocity of
the object. That is, if ¥ = s(f) describes the position of the object at time t, then w(r)=s'(f) gives the

The rate of change of velocity is called acceleration. Since the second derivative gives the rate
of change of the first derivative, the acceleration is the derivative of the velocity. Thus, if a(t) represents
the acceleration at time t, then

v _dr
alt)= g g (0

BT, 2] An object is moving along a straight line with its position s(t) (in feet) at time t (in
seconds): s(f)=1' =21 =Tr+9

fa). Find the velocity at any time 1. (b). Find the acceleration at any time .
{c). The object stops when velocity is zero. For t =0, when does that occur?

i The velocity at any time ¢ is the first derivative of s{) w.rt. &2 v= % =3 4=

The zeceleration at any time ¢ is the first derivative of W) wrt.r. a= ;ﬁ =61-4
t
c Use (i, < 0 to obtain the time:  3¢° -4t =7=0

Gr=N+0=0, r==1, :"3.

The object will stop at ; sceonds, since we want time ¢ = (0,

e 1Y i 1 v A

© ol ol
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m;ml“;rowder derivatives of algebraic, trigonometric, exponential and logarithmig™
netions

The successive derivatives of some functions are gal]wrcd. to obtain the general form of py,
derivatives in the following eases:

L The nth dervative of f{x) = (ax +b)"
If f(x)=(ax+5)", m is positive integer, then the successive derivatives of the given functioy
developed a general term for the nth derivative of a function:
S(x)= (ax+5)"
(%)= malax+5)™"

L (x)= m(m=a*(ax+5)""

£7(x)= mn(m=1)m=2)...(m—n+1)a"Nax+b)™" (i)

= ﬁ aax+b)""", if mis positive integer

If m = =1, then the nth derivative of f(x) =E;5]Ti’_} is obtained by inseﬂiﬁg
m = =1 in equation (i): )
e i (1) nla”
ST = (1=2)=3). (-n)(a"Wax + b) '——{ v
i The nth derivative of /(x) = In(ax +5) s

If f(x)=In{ax +b),then the successive derivatives developed a general term for the nth derivaiive
of a function:

/()= In(ax +b)

I (x}=

(i)

{ l)a

(ax+b)’
L2

ro

fx)=——

L1 = (D2BNA). (=D Nax + by~ = V=D

(ax+b)
fli.  The nth derivative of f(x)=a™
If f(x)=a™, Mﬁewmtwdmmmmmlmbumm&nmdmmﬂ
Sflx)=a™ ;
S @)= a“lnsa%-iml =ma™loga

£ ()= mioga (e =mloga( & loga—4 (m) )

las iy R R ey S
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HIGHER ORDER DERIVATIVES AND APPLICATIONS
T _m T
=m'a™(loga)

S =m"a™(loga) "
If @ = e, then the nth derivative of f(x)=¢™ is obtained by insertinga =¢:
Six)=¢
S ()= me™
I (@)= mim)e™ = m*e™
=™ )
iv.  The nth derivative of f(x) = sinfax +&):
If f(x]-sm(ax-l-b} then the swcessm derivatives developed a general term for the nth

derivative of a function:
J(x)=sin{ax+5)

S (%)= acos{ax + b):a:in[anb-r-;]
f'{x)=azcos[nf+b+a§J-n-‘sin[a.ﬂ-b-l-z—;-]

f-':x]=a’ﬁ)$[ax+b+_2—:-]= a"gin[m_'.b.‘.lz‘z)

f= a'sin[ax+b+%] (vi)
v. ‘The nth derivative of f(x) = cos{ax +b):
If f(x)=cos{ax+b), then the successive derivatives developed a general term for the n-th
derivative:
S (x)=cos(ax +b)
J(x)=—asin(ax+b)= dons[w:q-b-i- E]

f'(x]=-azsin[nx+b+1;-]= azm;[ax.q.bq.%t]

I (x)=-4 sin(au b+ ?'T'],—. a’cu\s[ax+b+ 3_21‘_)

frx= a"cos[ar+b+ E] (vii)

t\llllpl;

b3 ] Find the 5th derivatives of the fullowmg functions:

fa). flx)=(6x+4)° b). flx)= 4.1' 3 (). f(x)=In(4x+7)
.
. flx)=6 o) floy=e™ (). S(x)=sin(5x+7)
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a W f(x)=(6x+4) wilha=6b=4andm=29, unenlheS“‘dﬂiwliW"m"Eimﬁm%u

obtained by inserting n =5 in equation: f"(x)= __-F a"(ax +B)™"
) 5]:6’(61:-1-4}” 2 oxvy'= OEXMENsK6r+ 4= (15120(6x+4)')
b, lff{x}-{q 3} witha=4 and b= im.{,;?dmvatmufﬂwgwmﬁmummuhmnmdhy

(=1)"nta”
(ax +b)'"
(—1] 514’ -4’5!

SO (4x+3)° (4:-!-3-}
c. If f (x) = In(4x +7) with a = 4 and & =7, then the 5% derivative of the given function is obtained by
(=1)""(n-I)la"

(ax+b)

—n'agt 4%
@x+7)’ “@x+n’

inserting n=5 in equation:  f(x)=

inserting n = 5 inequation:  f"(x)=

'( I=——=——

d. If f(x)=6" witha=6and m =4, Ihmﬁms“'dmvameofﬂnpmﬁmdmumnbmudw .

inserting n = 5 in equation: f(x)= mu"‘(i.ogu]

£i(x)=46"(og6)*
e Iff(x}=g"wi1hm-4.ﬂwnlheS‘dmmwoflhepvmﬁm:tlmisuhlainedhyin:seﬂingn-im
equation: S(x)=m"e™
Fix)=4%"

£ I f(x)=sin(5x+7) with = 5 and & =7 then the 5th derivative of the given function is obalaed
_f"[x):a‘sin[ax+b+%]
Fx)=s'sin [Sx+?+ 5?"]

by inserting n = 5 in equation:

[EEEY Second

w Find the second derivative of x*y+2)" =3x+2y.

The equation is x*y+2)°=3x+2y :
The first implicit derivative of (j) W.KL. x is: @

d W_d
;(x:yq.z_y )- dx(Jx-l—Zy'_l

d d oy @ b
E(:‘y)-l-;ﬂy’) SO0+ 5 @)

dy_ o @
2:?+x’%+6)'=5=3+2;

1105 WWW .
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“Second derivative of implicit, inverse frigonometric and parametric (unctions -

UNIT-4 HIGHER ORDER DERIVATIVES AND APPLICATIONS

{x*+6y1—ﬂ%= I-Zxy (i)
The second implicit derivative of first implicit derivative (i) waLxis: %[(:‘Ny‘- 2:-%] - —:;(3-111']
4 (56521 +<x'+ay‘—z>i[“’—’.]= 4 5L

{2x+lZyQ-D)-—+[ 2468 -:n 2=0-2y- 2:;

_gy_zxiﬁ'_

[2x+12y—y)a—:y~+(x +6y1-2]?= =

d
(x+6y _z)ﬂ’ J’=_gy-(zx+zx]-—412y[d:]’

Aprageofa]) Aol o))
l:-,,{ (a*+6y°-2) ¢

‘2[ bx—dxty ]‘Gy[9+4x’y:—‘121?
< X461 -2 (x* +6y° =27
- 46y =2
--z[y bx—dx’y * Sdy+24x’y’~ -T2xy*
Fr6y -2 (P+6y -2
(x* +6y*=2)
—2(p(x® + 63" — 20 + bx=4x p(x + 637 —2)+ S4y+ 242"y — T2
x (x*+ 6y -2}
; (46" =2)
_=20(x' 436y + 44 120%) - 24y° 4x*) 465 +36) k=12 — 4:'}'-‘24:’)"+8ry+54y+24r"y] —T29"
(=" +6y*-2)"
—2(:‘y+3ﬁy’+4y+1211y’-24f-41 y 6 + 36— 1 2r—dx' = 242"y + 8 y+ 54y + 2457 - T2t
(& +6y"-2)
dy __2036y" +12y"5 - 24" - 36y x— 3y’ + 4y’ + 58y + 6x' ~12x)
dx’ . 6y + 2 -2)°
Find the second derivative of cos™'y+ y = 2xy .
@D The given equationis cos”ly+y =2z M
The first implicit derivative of (i) w.rt, x is: - - ¥

Zcosy+y) = (29)

Biitting vines. of
x +5Jf' -2 dx

it AR

d
3 loos™+ i(yl =2 %(-V)

s M r:-‘.r d d
7—1 yldr yo 1(3&””;[}"1]
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L HIGHER ORDER DERIVATIVES AND APPLICATIONS - DGR URUER UERY A YES AN AFFLILA LU
L
-1 . dv i =4 dr |dt (i)
[T_I = +1E—2y+2xdx Bation (2) ‘o, 56 vallon Ty | @ [z
s|n11)|lﬁ.ﬂd form for 1® order dt

The second implicit derivative of first lmplu:ll derivative(ii) derivative 35

P d 1 , ar]_ ¢ +2xip-] d__ 2pf1- 37 The quotient rule of differentiation is used to simplify the right hand side of equation (ii):
P P | il P ™ ™3 [P ST W (dy) ded E!J_Ezi[f’f] By d
: . d| dr |_didil\dt) didil\dt) dt g dt di’ (i)
d[ =1 dv -1 dy . dv . dy o d dr| dx Y 5 (dx}‘
—_— - — i J 2—~ 2 A c—— _—
‘“[Jl—fﬂlif |-r=+' dr’ T dt de dr
= ' = 2 2 Use (ii) in (iii) to obtain the general term for second derivative of parametric functions x (f) and
2—"- 3+0]£‘-+ A d{=4%+2xd—": e
-y i (I-y e i
. P dy ded’y _dydx dv v odvddx
4 ; dy . d'y i o ISP S P R dy d|d|d g’ digfdi g et b it £ o
Emumgmﬂﬁc:m&er#mdtamuhmn. { ],y=+ il = (l-y’ﬁ P = % ._d#dt ! == — = replace e
di (EJ dr de
¥ . ﬂ b s+4 2p1-y* : 4 . o g S
dy {1+y=)§ dr y], 1-Ji- 3 4 2xf1- 7 In light of result (iv), the first and second derivatives of the parametric functions
v’ =1 +1=2x -1 +1-2x x{ty=1+6, y(0) =" +26* +1 with %-wF—z %-3: +4dt, E--G.Md
1-5¢ 1-5 .
3 are the following: dy _dydt 3t‘+4:=:{3f+4)-3¢+4
2y| y+a(=)* +1)E de  dt dr 2t 2 2
= +1- i fimy Eﬂ_ﬂd"
[2“ 7 H1=fi-F) -t -7 -2efi-p | i) dy_di g’ dt g _ Q06r+4)-(Gr+40(2) 127 4860 -8t 67 3
de’ dx 8’ 8¢ ¥ @
ExampleN3l Fmdthesemnddenvalwe‘;y when the parametric functions are: [E]’ _
x0 =1+, 0= +2 +1 M_MAPLE command diff repeatedly to find higher order derivative of >
m The first derivative of the parametric functions x = x(f) and y = y(1) w.r.L. x is: a function :
5 i ;Q Ntmnedurmmnfmmwmmandd.ms illustrated in the following example.
=t :
}%. drde dx ) w Differentiate  f(x) =a" + Psiiee +x + 2 wart *x*
@ oo
The second derivative of the parametric functions is obtained by taking the derivative of Command

#y & > dif (¢ + 2osinfz) + x4+ 2,x)-
jon(i): S2=fdt | L )dt (8 i and divide it g »
ey 2y 4\ g |4 & d R +28in(x) + dweosl(x) - xsingx)
s = For second derivative, afler command, press the "Enter" k i i ivati
e e p €Y two times to obtain the second derivative of’
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HIGHER ORDER DERIVATIVES AND APPLICATIONG

Exercise

Find the indicated higher derivatives of the following functions:
i 1
T f(x)=3x"+4x+5, [(x) b fR=xt_, r(x)

e st)=+E+7, ) o y=3tL
2. Use implicit rule to find out the second derivative of the following functions:
a 51.‘:4_&:),! b b. _rzf'JF =7
e ¥-2x=0 fod dtx=g+y
3 Use pararn:tnc differentiation to find out ny for the following parametric functions x (1)
and y (1):
3. x=d4r 4], y=60"+ b x=3ar +2, y=6%9
: 3ar 3ar’
€. x=at¢$2.l_yzﬁ$m2'-' d x=—7 L y= ]+-'

4. Find the indicated higher order derivative of the following function.

A flx)y=("+4x=5)", f"(x) b flx}=tan’(x), /(%)
C S@=e" 00 4 fE=xnlx], S0

5. Use MAPLE command “diff* to find the indicated higher order derivative of the following
functions.

L e g A b.  fi{x)=sin(sinx), f(x)
6. Find the indicated derivative of the following by using rule.

a. y=0x+7)", 7 derivative

b. f(x)=In(2x-4),10® derivative

¢ glx)=4cos(3x +8) , 6" derivative

d. hx)=7e""" , 12" derivative

f+3
afeeds ot
By using the chain rule and other differential rules, some of the derivative mmpula,tmns can be radius 10

perform. For complicated derivatives mathematicians, scientists and engineers use oocmpuler so ftwares. Such 23
mathematica, maple and Matlab, use computer software to compute,

d d | (44 sin’ (2
dr 1+ cos(x)
d 1+ ese(x)
-.— =+4)1tsinl(

Although we have all mathematical tools to compute above type of problems by hand. But the m_‘,“w"nl
involving computer software may be more efficient. __-—J
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Maclaurin’s and Taylor's Expansions

Often the value of a function and the values of its derivatives are known at a particular point and A
from this information it is desired to obtain values of the function around that particular point. The-
Taylor polynomials and Taylor series allow us to make such estimates,

Maclaurin’s and Taylor’s theorems. Using these theorems to e:pinﬂ llm, e
x, tan x, a*, %, loga(1+x) and In(1+x)
A Taylor's Theorem
If £ (x) and its n derivatives atx=x, are f (xo), f* (xodsoon S (xo) then the nth urﬂu‘]‘aylnt .
polynomial p (%) may be'written as!
= z - P .
2= L0+ =50 () + E )t EEBL o 0
This polynomial provides an approximation to f (x). The polynomial and its n derivatives are
very much matched with the values of f(x) and its first n derivatives evaluated atx=x, :
Pa(x) = S (%), P05 = S1(5), PL(Es) = (), o PAR) = £(%)
[BYTII, 8 | The function y= f(x) =" and its derivatives evaluated atx, =0 are known by f(0)=1,
SUO=1, £(0)=1, fF(0)=1, £0)=1. Use fourth order Taylor polynomial about x, =0 to estimate
S{0.2)at x=0.2.
m‘ﬁu fourth order Taylor polynomial p, (x) is obtained by t-:rmmmng the Tay]ot polynomial
(i) after fourth order derivative term:
Pid= 1)+ S ey ST oy | o) Y
Insert x, =0 in (ii) to obtain: ' :

iﬂ“f{'«'-‘“f fﬂ)-*"*f'(ﬂ)“"'f'(‘])'—"'f (0)
-]+x+§+§|—+—- d i)

The Taylor polynomial (l!i) is usod to obtain approximation of a function y= f(x)=e*atx=02:
i
Pilx)=1+x+ 2—+§+ T

P02)=1402+ ":'2!)’ 0ay o

Taylor's  and . Maclaurin's
3l 4! are also known as

=1+0.2+0.02+0.00133+0.00007 = 12214 [Taylor's and Maclaurin's b, (U

Notice that the Taylor polynomial approximation equals the actual function value
»=[(02)=¢" =12214atx = 0.2,

A

=

2

Taylor's Series: The Taylor polynomial I i
Tay o The ylor polyn rmashavehe:nusedtneﬂmmtememlmofy-f{x]l.t\farmu:xnhm

i Ho e T = b
h::c;lm ﬂ)'lﬂf?ﬂlmnlsmmﬁ:db)-y ff'“‘-‘nhﬂwmmlcy-f{x]ummﬁx " iz ik
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UNIT-3

*If more and more tenns arc used in the Tayl ——'-_,Ef,__ﬂus will produce a better ang beig

approximation oy = fix).
To answer I.htﬁc:flm:{lmns. we introduce the Taylorscrrﬁ As more and more temms are included iy y,,

A Ff‘?"m' 'Dﬂlynu'rnlnl we abtain an infinite series, km“"’l"ﬁ’m r’;ﬁ” 5
pley= fix,)+ (\—t.,lf(-r.H——-f'(x Mot SR )

iFor sbme Taylor series, the value of the series ﬂ‘l‘“h the value of the function for every value of x. Thatig, gy,
Taylor serics approximations of ¢, sinxand cos x cqual the values of ", sin x and cos x for every valye ofx,
However, some fanctions have a Taylor series which equals the function only for a limited range of x values, pg

which equals its Taylor series only when —l<x <],

| eskample, the value of a Rnction f(x) = :
(1+x)

JiIGHER ORDER DERIVATIVES AND AI’PLICA“% e

—

B. Maclaurin's Series

A special case of a Taylor series occurs, when the function y = f(x} is known only at the origiy
x, = 0. This special condition imposed mTaonr se:ies. develops the Maclaurin's series:

pla)= 101+ 37'0)+ & oy + L 10y 0
Thc Taylor and Maclmmn s series af y=f(x) aboul a particular point x, are of course:

RS RPN = U= 1 PR .

J’t.r)-.-'(‘-'!}+9"l0:-+m 0+ SO +"“ re i

I we ust:c-.rq =, then equanom (ll} and (jii) Mkt the
popular notation for the Ta).ornnr.l Mnclaurin s series of order n:

fx,+h)= f(xn}+if!'{:u}+ f‘[x,,}q- 3:f.(‘ﬂ]+ +_._|r'.:_‘-°) {iv)

y ;‘
Sl by =il

£ St h)

J'l-‘a'*h]'-“ﬂﬂl"f!f'(u}' ![0)+ )‘"[0}+ e f"((]] v)

——tX
Qlx=h % ' xqth
Figure 4.1

The graphical view nfn f’umctnun ¥=fx) axxz:;,ls shown
in the Figure 4.1.

The popular notation for the Taylor & Mula.udn s “mgfnmn, are:

i Sl +h)= .-'"l\'u)"'ﬁf‘{m*—f'(fo'l"' f'(-’fn) e —f"(-fo)

if. Slxg+h)= [10)+ A (0)+ —If((l)'i— ——f'[ﬂ} 1:.,_—_}"'(0)

If o function v= f(x) is known at a particular point %00, then the Taylor series (¥) atd
sorward or backward pointx=x, +h ut'a function y F(x) are;

S Ux+iy= SGr)*bf* lxd*'ﬁ S )+ ':,EJ"" (%) .. x=x,+h

e g g EAp A e
» _J”."u"'” f(xu] M{In]+iir|:‘tﬁ)"3-lr(xo]+ x=x,-ﬁ

RoT FORSAE
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Mow, look at the following examples the pﬂ!i:udurl.: ta the use of Taylor and Maclaurin’s &
Thcomm is illustrated in these examples. '
Ty, 9 |Use Taylor's series to approximate the v:uhu,nfﬂ function f(x)='ata pointx, =2.

The function and its derivatives atx, =2
fia=e', f(2)=¢ =1389L [(x)=¢", f'(2)= & =73891, [(xy=et, ST (2= =T38%1
are used in Taylor series (ii) to obtain the Taylor series approximation of ¢ata point xu=2:

¢ = 1@ =07 @+ S e S @

-2
=7339|+1389|u-2]+73391“ 2’ +73st:-|“‘ 159

. Maclaurin’s theorem for the I’nru:linm of the typrfl‘lxi =u )
AT 10] Use Maclaurin's series 1o approximate the value of a function f{x)= " ak a pointy, =0.
The fimetion and its derivatives at x, =0
f)=a S0)=1, fx)= n’lug_,u. S =loga

[(x=a"(loga), (0 *(los,a)‘
are used in Maclaurin series (iii)to obtain the Maclaurin series approximation nfa aa pointx, =0:

u-=;‘¢o;+xf(m+ﬁ’—’—rm+ﬂr (0)+ e

-I+:rlag_,rr+ (Iog‘ﬂ) +—ﬂ°ﬂ,¢!] +..

E. Mackwurin’s lhnm-um for the functions of the type fix) =e*
a1 | Use Maclaurin's serics 1o approximate the value of a function f(x)=¢" ata pointx, =0.

The function and its derivatives atx, =0
S fiR=et. FO =1, L=, S0=1 Six)=cl m0)=1
are used in Maclaurin series (i) o obtain the Maclaurin’s series approximation of €' at a point x, =0:

e' =14 x4 £+£+...
a3
F. Maclaurin's theorem for the function of the type fix)= sinfz)
12]  Use sfaclaurins series to approximate the value of a function f (¥) = sin (x) at a

pointx, =0

C'?m The function and its derivatives atx, =0
f(x)=sinx, f(O)=sin(0)=0, [ (x)=cosx. ["(M=cosg)=1
F(x)=—sinw, M (0= =sin(0) =0, [~ (x)=-cosx. [7{0)=-cos(0)=~1
are used in M:.:lf.lurin series (iit) to obtain the Maclawrin series approximation of'sin x at a point x,= 0 ;

sinx=£(0) r(r)f{’-'}*{x) o+ “’ 0.

3 5 »
el o e 8

T T T ks
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5 )= K c}
S5 VT Weodiin for 1oe Banetion of the apefix=costy )
13413 Use Maclaurin's series to approximate the value of a function f{x)= cosx atapoint x =
m The function and its derivatives atx; = 0. y
J{x)=cosx, f(0)=cos0=1, f'(x)=-sin% f‘('3)=“5’“°_='3
1" (x)=—cosx, f*(0)=—cos0=—-1, f"(x)=sinx.f"(0) =5in0=0 ’
are used in Maclaurin series (ill) to obtain the Maclaurin series HPP“'-'"““‘“"“_ of a function cosxy a
r
pointx, =0: cosx= £ (0)+f (0)+ ;;T;'(n;.;' (0)+.
< X =g
=14 x(0)+ E!-l:v—n-l‘ 3!-{{]]+...—_!. 7 + .”-!----
P Vil e, [ e faacting of the (pe f r=ran(x)
W Use Maclaurin’s series to approximate the value of a function J(x)=tanx atapoint x,= 0,
The function and its derivatives atx, = 0 .
F(x)=tanx, £(0)=tan0=0, f* (x)=sec’ x, ' (0)=sec’0=
£ (x)=2see” xtanx, f7(0)=2()(0)=0, ™(x) = 2sec’ x+4tan® xsec’ x
f7(0) = 2sec’ 0+ 41an* Osec™0=2
are used in Maclaurin's(ill) to obtain the Maclaurin's series approximation of a function tanx at a point
x,=0: |an.r=f(D)+.rfttll}+;—.1j‘{ﬂ]+-;—:f'(0}+... :

=0+x(u+"?'!m)+%(z) ........ -x+2-;i!+...

b Wiaelswrin s thoetirom S the Turdiion of the type fix) = logo (1)

TSRS 15) Use Maclaurin’s series to approximate the value of a function f(x) = log,(1 +x)at a point
Xy = 0. .
m The function and its derivatives atx, =0
S(x)=log,(1+x), f(0)=log {1)=0

f':ﬂ*_'ﬁlﬂg.ﬂfrl:uj-lug'e=hg‘g

f'(-’f)=‘n+l—ﬂ,|08.¢, f(O)=-loge

I x)= (lf'ﬂ’ Iﬂﬂ.e. Fia (1)) =2103.B

are used in Maclaurin's series (i) to obtain the Maclaurin’s seri " i i jon
S(x)=log,(1+x) atapoint x,=0: claurin’s series approximation of a fnct

mg‘([.'.x):f({})+[r)f(0)+£:—}'f{ﬂ)+%?—’f“(l}]+

= I RTY
=0+ xlog e 2 Iug.e+2-3—!-|uz'¢_.m

x 25
- xlag_e-atog‘e+—3!—hg'¢._“_

NoT FeRAALE
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log, (1+x)= xlag,e—%lag.¢+§log,e—-...
A Muelaurin's theorem for the Binetion of the e fixd= Bt

B 16] Use Maclaurin’s series to approximate the value of a function J(x) = la(l+x)at a point

x,=0.

m The function and its derivatives atx, =0
. 1 L&
F(x)=In{1+x), f(0)=In{)=0, f(x)—m'f(ﬂl-l

1 = :-——2 =
L O S O=-h [ @ s S O=2

are used in Maclaurin’s series (ji) to obtain the Maclaurin’s series approximation of In{l1+x)at a

s 2 3
pointx, =0 mu+:}=f(0)+xf(0]+%r{u)+ %f'(un...

: x A o - TG
=0+x(l}+-;—|(—|)+§-!r(2)+...=x—E-!—+Ziu;..::x—?-l-?-—T-h.,
Use Taylor's theorem to compute the series of the following functions at x; =3.
i. flx)=sinx ii. f(x)=cosx iii. f(x)=tanx iv. fix)=¢"

v. fix)=¢" vi. fix)=logs(l +x) vil. f{x)=In(l +x)

MAPLE command “Taylor” to find Taylor’s expansion for a given function |

The use of MAPLE command *Taylor® is illustrated in the following example.
II'\-.||||||I|_:"-W Use Maple command taylor for the function

fa). fix)=¢ by Taylor's series expansion to first four terms.

(B). fix) =sinx by Taylor's series expansion to first 5 terms.

a. Command:

s mylor{e,x=0,4);
Context Menu: A
> Y

> series| e%x,x,4) R‘ )

1+ Infe) x4+ g2 4 %m&.*ﬁ +0(v')

Ll ek Sl e’y 1ol

This result is obtai right click on the last end of the ex 10 ing "Seri
Pk m“mq_ e gh pression by selecting "Series < x" on
b. Command: J

> aylorisin(x),x=0,5);

£ c=d it pole)
Context Menu: °
> sin(x)
> series( sinlx),x, 5) A
= o)
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UNIT.4 HIGHER ORDER 7

mpﬁcation of Derivatives g

In this section, we wi Tiaw 10 use dori tives o ;
. we will see 1 b 1 i i
angles in between twa curves, the maximum and niaimum valucs of a function as well as the 11].:#\'“'}-

where the function is increasing ordecreasing. &

: PR
W Geometrical interpretation of derivative

Consider a function v = f {x) as shown in the Figure 4.2,
Let P(x,,y,) bea point on a corve v = f{x). ¥
The change Ax in v develops a change Ay iy ] y
The coordinates of a point O are therefore
O+ .+ Av. y, + &), Notice that the slope of the secant
linie Po
E L i‘n\‘ﬂ"’ Ax) - f(.\'n:l (‘}
Av Ax
If we take values of @ closer 10 P, then @ o
approaches P. and Avanp.oaches 0 an. the slope of

the secant line PQ automatically approaches the slope
of the tangent line at a particular point P and is denoted by: .

Amtepmrine the tangent, and nomnal lines b,

Equations of tangent and normal to the curve ata given pointﬂ‘ _

If the slope of the tangent line an a curve y=1 () at a p'aniE:':ul:'mr paint P(x, 1) is (%), then
ihe tangent line on this curve ot 2 particular point P(x,;¥,) is the nonhomogeneous line (developed from
the definition of the point form of the siraight line): L woas

y=yo =S (%)x—xg) .
y= 3= mlx—x) =" (x,) -

The normal line is the line perpendicular to the tangent line on this curve at a particular point

" -1
Pl o ¥,) with slope on:
-1
(v=yg)= ——(x=%,)

Iix)
. L = i :
(y_',.“)__;(_-:—m. m= [ (x,) (i1) .

PRPEETSI 18] Find the equations of the tangeni and normal lines on a curve y= x* at a point P24}

If the given curve is y'= ", then, he slope of the tangent line is the first derivative of the V€7

curve at a particular point P(2.4):
Jixy=2x
F(2y=2(2)=4=m, say. ata point P(2,4)
The tangent line (i) on the given curve at a particular poin PE2.4) is:
J"'J'n;nﬂ't"'xul 2
(p—=H=Ax -2}

—dr+y-A+8=0= -Ars ped=0=dx-y_4-g

T FOREALE
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The normal line (i) on the given curve at a particular poimt P2, 4) is:

(—yo)= = (x=x,)
m

-1
l;v—4]=-:(x— 2)
d(y-4)=-(x-2)
x+4y-16-2=0=x+4y-18=0
ih'.!mpll:":m Find the equations of the tangent and normal lines on the curve y=9- X atapoint, whon
y crosses the x— axis.
m The coordinates of a particular point P at which the given curve y=9- o crosses e v axis
are y={ ] i
Put y=0in p=9— to oblain a set of points: 0= y=9-x =xi=0 = x=343=(3.0L1-3.0)
If the given curve is y=9- , then, the slope of the tangent line is the first derivative of the
given curve at a particular point P(£3,0):
S (x)==2x
[ =-2(3)=—6=m, ata poinr P(+3,0)
[ (=3 =-2(-3)=6=m, atapeint P(-3,0)
The tangent lines (i) on the given curve at the particular points are:
(y=0)=-6(x-3), m==6, P(3,0)
6x+y-18=0 B
w0y =6(x+3), m=6, P(-3,0)
6x-y+18=0
" The normal lines (ii) on the giveén curve at the particular points are:
 -0)=Tp(x-3), m=-6,P(,0)
6y=x=3
x=6y-3=0

-0)=(x+3), m=6, P(-3,0)
6y=—x-3=sx+6y+3=0

Angle of intersection of the two curves

If my is the slope of the first curve and sz is the slope of the second
. [ m 2 curve, then the angle of
intersection in between these two curves at a point of intersection is the angle in berween their mngesmsm

that point, This angle takes the notation: tn0 ="M m

L+ mym,
ETATIE: 20]  Find the angle of intersection in between the :
n ki curves y=y =21 =2
point of intersection (2, 5). y=x'=2x+land y=x"+1 at the

@RI The required angle of intersection in between the given two curves is: tan® = "5""5 ¢y

- = - l* m 1
For point of intersection, solve the system of nonlinear equations for the unknowns x an.d. y'x

NOF FOREALE | .

i

. The tangent equation at a point
Pl xa.y,Jis (3=¥)= mix =x ).
Ii. The normal equation at a point

Plxpy,)is(y=x)= -—‘{.\' —x,k
m

TN
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- J’=x’-2x+1, y:J‘J‘H 3 : (ii)
Using first equation of the nonlinear system (ii) in second equation to obtain:
: B =2x41= 41
x'=x=2x=0
x(x* —x-2)=0 = x=0,-1,2 :
The set of x values is used in first equation of the nonlinear system (ii) to oblain a set of y vajy,,
- Putx =0 to obtain y = x'-2x+1=1 .
Putx =1 to obtain y = x* - 2x+1=-1+2+1=2
Putx =2 toobtainy= '~ 2x+1=§-4+1=3
*This process developed a set of points of intersection: (0,1), (=1,2), (2,5),

" “The slope of the first curve at a point (2, 5) is: %;333-2 n[‘-}ty—l ='3(1)=—z=10=m|..my
i 2.9)
Tﬁeslopeof:thcsemdcunealapainltz,S}is: £=2-t :[ﬂl -=2(2)-4=m,..say
dx dx fo g
The slopes m, and s, are used in (i) to obtain the angle of intersection in between the given two curves:
tpfa Py 2 104 LG ; '
Temm, 1+(10)4) 41

[
= - =
o un a 0.1453

Point on a curve where the tangent is parallel to the given line _
.mﬂﬂmfnllﬂwingﬂﬂmpkﬂicmhﬁndth{ int on a curve where ta t 15 parallel to
“ the given line is illustrated in this example. = -

i le

y=Bx—4

Find all the points on the curve y=2x"+4x" where tangent line is parallel to the line.

Since the gi\rerl}ine is y=8x-4

Slape of the given line = §
Given curve = y=2x" + 457 )
%-ﬁx"q.gx ¥=2C4+4x" when x=-2
Tfmy= =2 -2 [ =
SN 22( )’::{ ) ==16+16=0
It +dx-4=0 yaz[ij'ﬂi[i] . when x=.§
3t +6x-2x-4=0 8 2 -
Ix(x+2)=2x+2)=0 =.2[E]+4[§]
(x+1)(3\x-2]=0 16
16 _16+48 64
2=0, =-2= ot o
.r.*:-lx-t- , 3x 22 0 7'y Y] 2
x==2 and x=+— J’EO.E -
i 3 o

" HIGHER ORDER DERIVATIVES AND APPLICATyg

Excreise

l. In each case, find the equation of the tangent line to the curve at the indicated value of x:

A p=or+l, x=3 h o y=sin(2x+m), x=0.
7 =5 x
¢ y= , x=| i = —_— x=]
xe ¥ P
7 ) In each case, find the equation of normal to the curve at the indicated value of x:
a. y=xg, x=I b, p=(2x+D)%, x=0
¢ y= cos(x—m), x=% al. _].r1=r1||'|_1_ x=]

3 a. Find an equation of the tangent line to the curve x>+ »* =13at (-2, 3).

b. Find an equation of the tangent line to the curve sin(x— ¥)=xy at (0,x).

c. Find an equation of the normal line to the curve x*+ 2xy = 3 at (1,-1).

. Find an equation of the normal line to the curve #']\Jr;i = y’-h’—l at(l,2).
. Show that the first four terms in the Taylor series expansion of /fx) = tanx

T 3
K. m n B n
about x= ane. H—E[:—;}![x—zj +3[1 4]

b. Show that the first four terms in the Taylor series expansion of f(x)= J;
1 1 g -1 3
about x=4 are: 2+—(x—4)——(x-4) +——[(x—4
%, 4 e=tl) 64 = 512 (x )
€. Show that the first four terms in the Taylor series expansion of

)= x+ e"about x = 1 are: (1+e}x+e[("‘;lnz+(x"lll+ {I-])‘+...]

3 41
5, Find the Maclaurin series expansion for the following functions:
1 e}
a f(x) P b, flx)=sin’x

¢, fix)=coshx d flx)=In(l-4x)

[ 2. Use the Maclaurin series for ¢* to show that the sum of the infinite series l+l+l+-l—+... i

14731 3]
b. Use part (a) to find out the value of e that must be accurate to 4 decimal places.
kA Find the angle of intersection between the following curves:

o ¥-y'=al Feyi=a2 b yi=ar, X+p'=3axy

8. Find the points on the curve y = 5x” — 4x” where tangent line is parallel to the line y=5v—3.

HIGHER ORDER DERIVATIVES AND AVPFLICATIONS

B.Taylotmaﬁ_ﬁﬁshm&wmﬁuim who is known by his invention of Taylor's theorem and
h:_Ta?-lor‘s series. In 1708 he obtained the solution of the problem of the “centre of
mlhlm“ and published on 1714, Caleulus of finite differences add 1o the branch of higher
mathematics in 1715 with the name “Mettiodus Incrementonum Dirccta et Inversa™, This word
contain the well known ralized its importance i i i

e ; layrange zed its importance and temed it as the main foundation
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maxima and Minima '

Always the maximum and mininum values of a function iﬂglmﬁzfﬁl’;miﬁm view,
For 1 quadratie function (whose graphis parabola), the MEEMREE T 0P P oh are not known, o
without grarshing by finding the vertes algcbraically. For funetions Wt b
techniques are necded, Tn this unit, we shall sec how o use derivative® (0 casing or decreasing,
minimum values of a function as well as the intervals where the function is incr £ or decreasing,

Increasing and decreasing functions

Suppose an ceologist has dctcnni{md the snz.elul" a
population of a certain species as a function S ctf time t
{manths). 1 it turns out that the population is increasing unt_l!
the end of the first year and decreasing thereafter. It is

f

reasonable 10 expeet the population to be muim?md at time Population curyg
¢ =12 and for the population curve to have a high point at 1 12. 20 ~*
1= 12 as shown in the Figure 4.3. Figure 4.3

If the graph of a function £ (1), such as this population R ks }
curve, is rising throughout the interval 0 < t < 12, then we say llﬂlf(f] is strictly increasing on that
interval. Similarly, the graph of the function in Figure 4.3 is strictly decreasing on the interval 12 <1 <20,
These terms are defined more formally in the Figure 4.4.

Figure 4.4
e The function f{x} is strictly increasing on an interval (g, b), if
Slx) < fixg), whenever v, < x, for x,and x,on (g, b).
« The function f {x) is strictli decreasing on an interval (g, b), if
Six) = fixy), whenever v, < x, for x,and x,0n (a, b).
it 22| Find the intervals at which the function f(x)= x*js increasing or decreasing.

Tie function f(x)=x" is a parabola passing through the origin. Take any two points X and
in the interval (a, b) for which: f(x,)~ f(x)=x] - x'=(x, - ), +x)
1

If x,, %y € (0,00) with condition %, > x,, then the function f (x) is increasing in the interval (0,):
Six)=fx)=0

ﬂx,):-f(x.J- bath (x:-xljmpd' ':-‘;*x;)are-i-m when & 2%
" 2 ]

. 0
then the function 1 (x) is decreasing in the interval (%

- Ifx.xE (—o0,0) with condition X=X,
Sx)=flx) <0
SO fn) Go=x)is +ve whife {x,

*0) is—ve, when x, > x,

NET

-, slape of the parabola:  M{(x)=2x+2

" I / Ly
e \;3‘“‘_” D e

TIDCGRNEIE O LEDE 1 DAY A TIVES ST APPLIC VTINS

Prove that if £(x) is a differentiable function on the open interval (a, b) then )
s f(x)is increasing on (a, b) if /"(x)> 0, ¥Vxe (a.h)
& f(x)is decreasing on (w, b) if [ (x)<0, ¥xe (ah) :
Proof: Let x,x,€ (a,b) such that x, >x then there exist a point € berween x, and x, such that

rie= {8l

1~ %
g -\',)f'l:f) =flx)-/(x) If & function £ is comlines on fd, b
For f'(c) >0 and so, x, -5, el * Teventiable on (o, by then iere
Therefore, Flx)=flx) =0if 5y > x5, -—-- lw.::r;# t-;b:.suchl'-.m
Or Fl)> fix) if x> x 220 S = ey
Thus, fis an increasing function.
Similarly, the prool of part (iiV can be done which is left as an exercise for the reader.
fl 23] Determine the values of x at which the function f(x)= x +2x-3is increasing or
decreasing. Also find the point at which the given function is neither increasing nor decreasing.
For graphical view, the given function through completing square
F)=x42r-3mx 4+ 2+ 1-1=3=(x+1) =4

is compared with the general equation of parabola f(x) =alv-h) +k
to obtain 2 parabola with veriex (~1,~4) that opens upward (a =lis
positive). The graph of a parabola through the points (-4.5) and
(2,5) is shown in the Figure 4.5. -

The derivative of a given function with respeet 1o x is the

b=

If the slope of parabola is 7(x) > 0 (positive), then it gives
Six=0
2x+2>0 = 2x>=2 = x>-l

This shows that the given function f(x) is increasing in the interval
(=Le=).

[fthe slope of parabola is f*(x) < 0 (negative), then it gives Figure 4.5
<o
x+220 = Ix<-2 = x<~-1

This shows that the given function f{x) is decreasing in the interval (—=.~1).
If the slope of parabola is f'(x) = 0(zero), then it gives
F)=0= 2=l = WIx==2 = x=-1
This shows that the given function ((x) is neither increasing nor decreasing at a vertex (—1.—4).
Examination of a given function for extreme values
~ Typically the extrema of a continuous function occur either at endpoints of the interval or at
points wh!::r.- the graph has a "peak” or a "valley” (points where the graph is higher or lower than all
nearby poinis). For example, the function f(x) in Figure 4.6 has “peaks” at B and D and "valleys™ at C
and E. Peaks and valleys are what we call the velative extrema,

The exact loeation of a relative maximum or minimun ather than a hic's approximati
: relat gray tion
normally be found by using derivatives. The concept developed is as under: % P G

Let f(x) bea fanction as a roller coaster track with a roller coaster car moving from left to right
along the graph in the Figure 4.6. As the car moves up wwards a peak, its flapr tilts upward. At the
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i " - i B P it begins to tilt dwnmmasme
mstant the car reaches the k. its floor is level, but then it e €ar py,
down toward a valley, At f“? |;:oI=m along the graph, the floor of the car (a straight-ling segmay, g

figure) represents the tangent line to the graph at that point. Using '“'f&"?'ﬁﬂﬁ?mﬁg g
through the peaks and valleys at A, B, C, thetangent line s horizcuial S50 RS VE : FPeak D ang vy
E, however, a real roller coaster car would have trouble. It would ﬂy g E I:ecapca fihe hmh
make the 90° change of direction at valley E. There is no tangent line at Dor = mmec l||| harp g
Thus, the points where a peak or a valley occurs have o prcrlm{n nt rl:%cenl 1-12 it
and has slope 0 there or no tangent line is defined there. The slope of the fangent ine to the grap, o th
function £(x) atapoint P(x, f(x)) is the value of the derivative f"(x).

Sx) DNO tang
B Mo tangent
A * E'No tangent
No tangent o =
N, E /s b
o] 7] [+] . 3 ]
c
Figure 4.6
Ao Relative Masiowm amd Relanve Minimum: The function f(x) is said to have a relative

maximum at a number ¢ if f(c) = f(x)for all x in an open interval containing c. Also, f(x) i
said to have a relative minimum at a number d if f{d)< f(x) for all x in an open intervdl
containing d. In general, the relative maxima and relative minima are called relative extrema,

B, Critieal Y alues and Critical Point: Suppose f(x) is defined at a number ¢ and either f"(¢)=0
or f'(c) does not exist. Then the number ¢ is called a critical value of S(x) and the poit

Fle, f(e)) onthe graph of f(x) is called a eritical point.

Note that if f(c) is not defined, then ¢ cannot be a critical value. If there is a relative maximam
at e, then the functional value f(c) at that point is the maximum value. Similarly, if there is a relative
minimum at ¢, then the functional value f(c) at that point is the minimum value.

Find the critical values for the following functions;

L =k
fa).  f(x)=4x" 52 ~8x+20 (h), f{;)=_xji fe f{x].—-lix“i‘“
A §

4 1
(). [(x)=32 120 @ f()=6 ax
a. The first derivative of the given function is: S(xX)=12* =105 -8
f1(x)=12x" ~10x~8is defined for all values of x. Set f*(x) =0 to obtain the critical values:
f'() =126 -10:-8=0 = 23x-d)2r+1)=0 = ,_4 -1

b. The first derivative of the giver fiunction js: Sixn= =4

(x-2) 3

function f(x) is not defined

to obtain the other critical values:

Thcdcrivativ:isnmdeﬁnedmx=2.ahaﬂteoﬁgﬁm

mx:lSox-:hﬂﬂﬂﬂith‘\'ﬂ“&.hf(}]:ﬂ
x(x—4)

f(ﬂ'ﬁ:a = .\'(I'-"-}'!n = x=04

NP FORSAE
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also the critical value of f(x) . Thus, the critical values of f{x) are 0 and 1.

(.3

x=0is a critical value of f(x). Ifx 0, then f"(x)is going to be 0 only when the numeratord - 4.5 =0 is
zero forx= 1. So.x= 1 is the critical value of f(x) . Thus, the critical values of f{x) areDand 1.

Theoreen 4.0z If a continuous function f(x) has a relative extremum at ¢, then ¢ must be a critical

HIGITER ORDER DERIVATIVES AND APPLICATIONS

-1 i
The first derivative of the given function is: S(x)=6x2 —3x2

The derivative is not defined at x = 0, but the original function f(x) at x = 0 is
S(0)=12(0)3-2(0)3=0 defined. So x = 0 is a critieal value. For other eritical values, set
=1 ] = |
Sx)=0 to obtain: f'(x)= 6x? =3x? = 0= 3x? (2-x)=0= 2—x=0 = x=2
Thus, the critical values are x= 0, 2. 5 .
The derivative of a given function is: f(x)=3x% —12x
Lo L 4 =2 i =
f(x)= 3(%]“ r'IZ[_;-}Y:. st i B 24

N
x? x°

The derivative fails to exist when x = 0, but the original function f(x) is defined when x = 0. So

x=0is a eritical value of f(x).

Ifx =0, then f(x) is going to be 0 only, when the numerator 4x -4 =0 is zero forx= 1. Sox= 1 is

i
The derivative of a given function is:  f(x) = 6x' —4x

}':fx)=ﬁ[§]x%"_4: . 1 W Y

[
2
The derivative fails to exist when x = 0, but the original function f(x) is defined when x = 0. So

value of f(x).

the function f(x) is strictly increasing or decreasing.

select 2 typical number from each of these intervals, For example, we select -2, 0 and 4, evaluate the
derivative at these values and mark each interval as

derivative is positive or negative respectively. This is shown in Figure 4.7,

interval —1< y <3,

NoT FeRcALE)

The function f(x) is defined by f(x)=x"—3x*—0x+1. Determine the intervals at which

First, we need to find out the derivative of the given function, which is: " (x)=3x" —6x -9
For eritical values, set f(x) =0 10 obtain: 31 = 6x—9= 0=3(x+1)x-3)=0=x=-13
These critical values divide the x— avis into three parts, as shown in the Figure 4.7, Next, we

increasing or decreasing, according to whether the

¥

| ’ | F 0| rrsp ::
R b _ L8l o
s e s ‘ .'n75’:’\ '. 2 :i —ax 2
N R [ 4 l""\/’ |
T R L | xw=3 - .
pat il . 3,-26) E
Figure 4.7 = %
E

S

Thus, the function f{x) increases in the intervals for x < =1 and x > 3, but decreases in the
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]:'.wjnpl:?ﬂi Draw the function f[_;-]:x‘-l\'z—'a"l'“ and its

derivative f"(x} = 3x? —6x—9, Use these graphs 1o tell about the

following questions: :

fa). When f*(x)is posilive, what does that mean in [ems of the
graph of f(x)? ) .

{h). When the graph of /(x) is deereasing, what does that mean in
terms of the graph of f*(x)?

m The graphs of flx)=x'-3x"=9x+] and
S(¥)=3x" —6x—9 are shown in Figure 4.5.
These graphs develop the idea that the critical values of
J(x) are always intercepis for the graph of Sx)=3" —6x-9:
« If f7(x) is positive, then f(x) is increasing. i
e [Iff"(x) is negative, then f(x) is decreasing. : _'Figim?ﬁ o

State the second derivatives rule to find the extreme values of a function at a poif)

The first derivative of a function can be used to determine whether the function is increasing o
decreasing on a given interval. We shall use this information to develop a procedure called the firg
derivative test for classifying a given point as a relative maximum, a relative minimum, or neither,

The steps involved in first-derivative test for relative extrema are the following:

i. Find all critical values of f{x). That is, find all numbers ¢ such that f(c) is defined and cithe
Sley=00or (¢} does not exist. :

2 The point (¢, f () is a relative maximum if /"(x) >0 (rising) for all x in an open interval (4, )k
the left of ¢ and (¥} < 0 (falling) for all x in an open interval (¢, &) to the right of ¢

3. The point (c, f{c)) is a relative minimum if f"(x)<0 (falling) for all x in an en  interval (2. G

- theleft of e.and f"(x) >0 (rising) for all x in an open interval (c. &) to the right of c.
4. The point (¢, f(c)) is not an extremum if the derivative /"(x) has the sane sign in open ik
(a. ¢yand fe, b) on both sides of ¢. ' ;
In light of first-derivative test, the function f{x)= 1" =3x =9y 4| (cxampic 24) has the il
values =1 and 3. The function f{x) is increasing when x < -1 and x > 3 and decreasing when ~lar

& ad
R et =
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The value of the derivative is positive (rising) to the left of -2 and negative (falling) to the right of -2.
Thus, x = -2 leads a relative maximum point
J=2)=2(-2P + 3(=2) - 12(-2) - 5= =16+ 12+ 24-5= 15,
The test values 0 and 2 are used for the eritical value x= 1 10 obtain:
S(0)=6(0+2)(0-1)=~12 (negative)
SU2)=6(24+ 2)2=1)= 24 (positive)

The value of the derivative is negative (falling) w the left of 1 and positive (rising) to the right of
6. Thus, x = | leads a relative minimum point. f£(1)=2(1)+3(1)-12(1)-5=-12
Thus, the arrow pattem in the figure suggests that the graph of f(x) 1
has a relative maximum at (=2, 15) and a relative minimum at (1,-12).
The Sevomil Decivative Role: It i5 often possible 1o classify a critical
point P, /() on the graph of f(x) by examining the sign of 7(¢).
Specifically, if (c)=0 and f"(c)>0, then there is a horizonal
tangent line at P and the graph of f(x) is concave up in the
neighborhood of P. This means that the graph of Jf(x) is cupped |
upward from the horizontal tangent at P and to expect P to be a relative —
minimum, as shown in Figure 4.11. | 12

Similarly, we expect P to be a relative maximum, if f(c)=0
and f*(c) <0, because the graph is cupped down beneath the critical
point P, as shown in Figure 4,12

[ e
A -

Figure .10

fa=0

: P
L=\ @0 /0 SE>Y preyen \S W0

.

i c []

Sley=0 and fe)>0

implies fle)is a relative minimum
Figure 4.11

nr € I
F1e=0 and [Mick=0
impligsfle)is a relative maxmmum

In other words, Figure 4.12

The first derivative test tells us that there is a relative maximum of 6 at x = —] and 2 relative ipion o ¢ The point P(c, f(c)} is said to be a relative maximum. if the slope /°1¢)of the tangent line from

ot . left to righ} "F"E i curve through P, is decreasing from positive to zero to negative and the
(BT 27) Examine the function (x)=2x"+ 3x~12x=5 for the relative extrema using first-derivs™ Fslsyhe o gt
- ¢ The point Pic, f{c)) is 5aid to be relative minimum. if the slope j7() of the mngent line from left to

right along & curve through P, is increasing from negative to zers to positive and the second:

The first derivative of f(x)= 2 +3x = 12¢—$ is-. it al
2x-35 is: derivative /”(c) is positive. These abservations lead to the second-derivative test for relative extreme.

S =657 +6x =12 = 6{x+ 2)(x—1)
Set f7(x)=10 to obiain the critical values:
g (x)=6x" +6x-12=0= 6lx+2)x~1)=0 = x==2]

The Second Derivative Rule for Relativ a: ; uncti
iz 5 3 =1 ; e Extrema: Let f(x) bea function such ) :
To test the critical valies -2, 1, we can use the tost e i derivative exists on an open interval (a, &) contrining . o such that f™(e) = Oand the second
values -3, 0 and 2. Many other choices of the test values are R in ¥ I IE/(€)> 0. then there s a relative minimum at x = ¢ ad the graph of i i
also possible, but we try 1o select numbers that will make the computations easy. This is shown! neighborhood of P(c. f{c)). gruph of f(x) is concave up in the

Figure 4.9. .
The test values -3 and 0 are used for the critical

va =_ Fo

S(=3) = 6(=3+2)(-3- “ =24>0 imiti\ﬂ!] Iucx il 3. 'r.lr":c)— 0, then the second derivative test fails and gives no information,

£(0)=6042X0-1)=~1220 (negaive
— L WoTFORS 124

2. 10 f(e)<0, then there is & relati im = ¢
migbtodol e fl). o e gt of S(3) i concave down in the
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UNIT-4 HIGHER ORDER DERIVATIVES AND A FPLICAT]%

Use the second-derivative test to detenmine whether cach critical value of the functigy
S(x)=3x" _ 541, 5 comesponds 1o a relative maximum, a relaive minimum, or neither.
The first and second derivatives of f(x) are the following: .

T () =15x" - 15 = 152 (= I)(x+1), [ (=602 =30x=30x(2x" - 1)

Put 7(x) = 15x* 155 =152 (x - 1)(x+1) =0 to obtain the critical values 0, 1 and -,

The second derivative *(x) at a critical pointx = 0is: f7(0) = 30(0}0—1) =0

The critical value x = 0 declares the failure of second derivative test,

The second derivative /”(x) at a critical pointx=1is: /"(1)=30>0

The critical value x = 1 leads to a relative minimum of f{1) = 3{1)- 5()+2=0.

The second derivative /*(x) at a critical pointa= —1is: f*(=1)=-30<0

The critical value x = —| gives a relative maximum of f(=1)=-3-5(-1)+2=4

The second derivative test works only for those critical values ¢ that make Sey=0, This teg
does not work for those critical values c for which S(€) does not exist or that make f(c) = p, In both of
these cases, use the first derivative test fo proceed the process of relative extrema,

Solve real-life problems related to extreme values _
2
A truck bums fuel at the rate of G:x)=—2t',5[i'““7+‘-]. x>0 gallans per mile when

traveling x miles per hour on a straight level road, If fuel costs $2 per gallon, find the speed that will
produce the minimum total cost for a 1000 mile trip. Find the maximum total cost,
&P The total cost of the trip in dollars is the product of the (number of gallons per mile) (the number

2 2
of miles) (the cost per gallon) that develops the rule: €(x)= -E%[W; = )(mom(z); ﬂ“:_mi

The independent variable x represents speed, only positive values of x make sense here, Thus, the
domain of C{x) is the open interval (0,00) and there are ng endpoints to check.

The first and second derivatives of C(x) are the following: C'(x)= M_T—:;_mﬂﬂ , ()= ‘ﬂ:f“
Put C'(x)=0 to obtain the eritical values: 'W;mﬂ =10:*-8000=0 = % =8000 = x=3283mph

The only critical number in the domain is x = 28,3, The second derivative test at a critical value x = 283

is: - 16000
i C(28.3)= (283) 0.72»0

The second derivative test shows that the erifical value x = 283 leads to a minimum value. The minimm
* total costis found by inserting x = 28.3 n the cost functon; €(283)= 3000+1028.3)° _ 55 coioitars
' 283

Example Y] m supporting cable of a pipeline suspension system forms a pan-]bolic arc between
supports, which is described by the equation y=003]125, ~1.25%. The distances are measured in mﬂﬁ
mmﬁnorﬂwuismmisummﬂmwmm | Where
point is on the and how far is it below the attachment poiq;ﬁbrc Fiaches to the ke support tower.
meclowpoimofﬁwcahle.wenmdmﬁ d
second derivatives of the given function: 1 the flst ang
»=0.03125x"~1.25x, ) =0.0625x~1.25, V=0, G Rt
obtain the crifical value: 0.0625x~125= 0y g0 3¢ ¥/ =0t
Since the second derivative js posilive fp,
critical value x = 20 will produce the minimum

rall values of x,
value on he Curve,

1% NoTFoREME

= —r =~ il

R4 LR T T OATIVES AND APPLICATION

Ti!c_luw point on the cable oceurs 20,0 m to the right ol the Jeft 1
original function to oluain the distance from the low paing af 1!
point: ¥ =003125(20)° ~1,25(20) = —12.5

Therefore, the low paint of the cable is 20,0 5 1o the et
to the support,

WE command maximize (minimize) 1o compute meximum (minimum)

value of a function
The procedure to the use of MAPLE command maximizs (1 H)
value of a function is illustrated in the fallowing example
TAA0 f‘_T_[] Use MAPLE commands to compute
. (@) ffe)= cosx. fB). fix)= ~

writical value for x i1 1
Mich is below the attachient

* e el ow s point of antachment

w complste maximum (minimum)

i the intenal [-1.2).

a. C;'-mmand:
> maxiniize{cos(x) );

= mrinfmize(cos(x) );
=1
Contexi Menu:
> “cos{x) . 3
- Optiniization] Maximize]( cos(x) ]
v [1. [e=5.58237824804110 10717]] _
This result is obtained through right click on the last end ol the cxpression by selecting "Optimization <
maximize local”en the context menu.
- coslx)
> Optimization] Mimitize]{ cosfx) )
[=1. Lx = 3.14159263358977))
b. Command:
* movinize(d — 2,2 4 3, pmny .2);
- " [}
> wiinimize( s =32 4 3, g e .2);
2
|W—l:;a;i-“r -!/_\

B ._,__u_zg;}_-:__\_"-.; _“i__—s/)

Find the eritical values of the given functions in the follow ing problems and show where the
function is incrensing and where it is decreasing.

i ]
& f()=r+3v7+1 b. fiv=x"+ 35x°-125x-9.375 %
. Find the eritical values of the following functions: :
L f(0=22 -3 T2re 15 b.

Sxy= %.'."' -3 =15x+6

€ f(x)=6x" ~dy

(307 FORSALT

+ 1
d. flx)=3x0 =123




UNIT-4

S

1.

- et

HIGHER ORDER DERIVATIVES mam,mn L

Efetmnine whether the given function has a relative maximum, a relative minimmn,urneiu.,, ™
given critical values for the following problems: : : ;
NS = (P <3y = 0at x=Lx=—1 b f()=(¢'-4x+2)’at x=)
SOy P ax=tx=2 g fx)=Y" -48at x=4 . :

Find all critical points of the functions in the following problems, al:edctumme where hmﬂ‘
the function is rising, falling, concave up, or concave down. Sketch graph. : .

1
o (%) =2(x+20)" = B(x+20)+7 b ,r(x)=§x’—9x+g

Find all relative extrema of the following functions:

0 fx)=x"-3x+1 b Slx)=x"+6x +9x+2 45

# Suppose f(x) is a differential function with derivative f'(x)= (x—l)‘(x~2)(x_4)(,+5}- :
Find all critical values of f(x) and determine whether each corresponds to a relative Maximum 5
relative minimum, or neither, '

" Suppose f(x) is a differential function with derivative f(x) = {Zx(;l-ﬁ;:a)

Find all critical values of /(%) and determine whether each corresponds to a relative maaionm,

a relative minimum, or neither.

FP(x)=80+108x—x", 0<x<10

I, Findth:expendjmonadvctﬁmhgmlmlsmmimumpmﬁz.

b Find the maximum profit.

The total profit P(x) (in thousands of dollars) from the sale of x hundred thousands of automobilt
tires is approximated by P{x)z—;’+9x‘+120x—4m. I=x<1§

Find the numbwnfhmd:odthuuundscfﬁrmmumhemldmmﬂmwﬁl Find the
maximum profit. % v

The percent of concentration of a dxuginﬂ::ﬁluodshuﬁ:i:houmaﬂﬁtﬁédmgis;ﬂmiwd' f
e 4x 5 . Loy ' :

- K(n= : g : g
el ) I +27 e et
" Onwhatﬁmei:nemlsisthzmnmhdmenheﬂugmmugo‘ ing?-
1 On what intervals is it decreasing?

- Findthelimeatwehthemwnmonisamimm. E
.. Find the maximum concentration, -

UNIT-4 HIGHER ORDER DERIVATIVES AND APPLICATIONS
E( Review Exercise

L. Choose the correct option, _

i. I f{t)=3 +4r-5 then L) is
(a). 3 =dr+5 by 6t+4 €. 12 fdy 6t=5

i Iff(r}:s:'w:-s.-m,f‘mia
(). 3 =dr+5 by 6r—4 fe). 6 fdy 6Ge+5

dy_

i If y=e™then e
(@) me™ log(e") (6). me™ fe).  me™ fdl me"e™

iv.  The 5* derivative of f(x)=¢"is
(& o (b & o). se dj &

v. The 4™ derivative of sin ¥ is
F’l',l.. ﬂ:—‘:'!sinx - (B). %-ﬂ;s: f‘;l.. %{I-—:—sinx iy, %ﬂ*mx

vi. If f(x) and its derivatives at x=xare (%), /(%) /" 5) then the n® order polynomial
S(x) will be equal to: g -
@ S0+ fon-0r @+t B oy @y e (ron e )

(e ftz+h)+(z+mrm+...+‘—";%’;w (dy. _-"(-t—hh[«r-fr)f'(ﬂli--"fh—;f—]fﬂ)'

vii.  To calculate the first five terms of taylor's series for f(x)=e*, the MAPLE command is used as
(2). taylor (x,e"* =0) By, taylor (™)
(e taylor(e™,x=0,5) (dy. taylor(e™, x=35)

viii.  The equation of normal at point (xa,yg) is:
fay. x-&=ib~y.) (B, (y-y,)-—'tx.--ﬂ

m m

(eh (r-y)=mix—x,) @ O-s)=-Lir-x)

“ix.

The angle of intersection of the two curves can be calculated by using the formulas,

@) @=sinFHm ) 8=tan lomm:
l=rm, l-I-nR,m:
el G=an Zhzm (d). @ =gin~ MFmy
B L myn, ]+m.m_,
If f(x)is differentiable on the open interval (a, b) the f(x)is strictly increasing if:
i fix)y>0 By S0 & foso e f(x)z0

HOT FORSALE




UNIT-4 HIGHER ORDER DERIVATIVES AND AI‘I‘LI(_-,\“DM

SUMMAry

" The second derivaive of p = f(x) can be wntten with any of the following notations:
e 1 r
:—f;;» Yo @) D)
The third derivative can be written in a similar way. Farnz4, the nih derivitive is Wriltep g-
S*x),
* The second derivative of parametric functions x{r) and y(r) can be found as follows:
&) dedy_dyaix
Ay _d| i | dr gt i g o
I Rl (s ool ot T ' ST
dv’dt| dv gy dr dv [r_ ¥
dr dr n’r-‘_
The popular notation for the Taylor thearem of order ""is.i.
g o ool
ff.\'n+fl')=f(.v..}+f(.rn3'r'!+f'(.r,)%—+...+f (x.,:l;,'—'+... : 4

. H e
= The popular notation for the Maclaurin's theorem of orderf_h?-
3 ] A = wk & i

Sxo+ )= £(0)+ £ (0)h+ f‘(ﬂ]%q—,..{- f"f':"'::".* O L
= L Iftwo lines are parallel, then their slopes are equal, ;

I I two lines are perpendicular, then the product of their slopes equals -1,

il The tangent equation at g peian‘[.\h.Jq,]is{y-yn) =mix—x ).

. The normal equation at a puIntP(.n.',.._1',,}is{'|-~_'|.;])= ﬁ}(r—xg).
< If fix) is differentiable on the open interval (a, ), then the function f(x) is
strictly increasing on (@ B)ifF(x)> 0 forg <y < b.
strictly decreasing on (q, DF S ()< 0forg<y< b, .
If'a continuous function F1x) has a relative extremum gt <, then € must be a eritical value of S,
= The graph of a funetion f{x) is concave upward on an open interval (g, b, where f*(x)>0,andit
is concave downward where Sx)<o,

< W= f(x) is continuous on (o, 5) and has an inflection palfnl atx = g, then cither f*(c)=0
or f"(e) does not exist,

- A poimt Pic, £ (c)) on the graph of a differentja) function y = S(x) where the concavily
changes is called a point of inflection,

B I a function has a poim of inflection Ple, f () at a partition ¢ and it is possible 1
differentiate the function wice, then Sle)=0,

!o Ky _;I;TTF___:'"“‘"“‘_“‘—*—-—

MEr Bhayyam was “rE1an mathema ician, Stronomer and il -

Nishapur in north castern Iran, He Was most notghle wd e ihp:ll:q:ozi.;-l::ﬂ' ::_c :\.::she;"hgr:;:
because of his work on the classification ang solution of cubic equation r}':“-fhc.::; . “vod
the geometric solution by the intersection of conjes, T cz.: e dc prov o
understanding of the paralig] axiom. As an a5ironoimer designed the JllI I_|.l e] :Ia 1 :
Solor calander. He was the first person, who considercg Oh6 the b, Fa_| cal e_uh;..r, ;;
abtuse angle for summit angles of a Khi_lj'rm saccher Quadrilatgra) i o m.utc.ng 1 an

exhaustive and painvise mutually exclusive, : » Hree cases which are

i a1 3
_— 129

DIFFERENTIATION OF
VECTOR FUN CTIONS

Sealar and ‘I-"cclorl:‘un:ﬂm
L Deline scalar and viector funclion, il.
52 Limit and Continujty,
i Define limit of a vector function and employ the usual technique for algebra of limirs of scalar function 1o
demonstrate the l”orluwingpm;:mfcsol'limnsnra veetor function.
= The limit of the sum (difMerence) of two vector functions is the sum (difference) of their limits,
*  The limit of the dot product of two veetor functions js the dot product of their limits,
*  The limit of the eross raduct of two vector functions is the cross product of their limits,
*  The limit of the product of 3 scalar function and a vector function is the product of their limits.
-l Define conlinuity of a vector function and demonsirare through examples,
53 Derivative of Vector Function.
i. Diefine derivative of g veclor function of a single variable and elaborate the result;
LA = filh + fitry +Silepk, where £i(r), f5(0), fil¢) are differentiable functions of a scalar vanable L, then

Explain domain and fange of a vector function,

-ﬂ!—rzﬂf+f1j+—fﬂl'.
dt ot dlt et
54 Vector Differentiation.
i.  Proveihe following formulae of differentintion:
da d oo J o df  dg
—=0, : —[ftg)l==328 - “—+—Z
. e . d;[f el dr e " d'.-wf]-# ot dr'r
o dg df o dg df
Sl El=f—=+=. g - —- A==k
i P Lt &

& dleln .,.f{_."i,]_
dej ¢ | #\"a & ’
where  is a constant w:::lur_fumlion._fundgak vectar ﬁm.c!iuns.nnd¢ is a sealar function ofg.
iil.  Apply vector differentiation 1o caloulate velocity and acceleration of a position vector () == = o)k

In the same way that we studied numerical calculus after we leamed numerical arithmetic. We
can now study vectors caleulus. Since we already studied vecor arithmetic in unit-3 of srade-xi
h_'lathcmatics. Quite simply, we might have a vector quantity that varies with TESPCCt to another variable,
cither a scalar or g veetor. In this unit we shay] study the vector functions and the applications of the
differential caleulus. We shall exteng the basic concepts of caleulus in 5 simple and natura way. The

smd,:,r of vector caleylys makes the more useful in the geometrical, physical apd engineering
applications,

E' Sealar ang Vector Functions™

The relationship of caleylys and vector methods forms what is calleg vector cn!::rus‘. The key |

A function 1 (v) is q rule which operates on an input x (x js an i
/ t | i X ¥ scalar quantity) and duces
always just 5 single sealar output v, This ives i proper notation of a scalar fnnclign: 4 S

Nor FoRSALE



UNIT-5

For example,

h
= Alxy)= n:smeamofmmngh&mdependsuntm x

mm:m';wmﬂos OF VECTOR FUNCTIqyg

£ units of items. Here xis the input, y s g
r]-_—zxa?.' : nmdepcndson.\rnumbﬂo t
lc:r‘tu‘rput and c(; 3 ;:s..t. ?.T.T.'Z rule which operates on an input.¥ to pmg(n.::]e a _}s(-;]glf iﬂ;’-‘mmlﬂw
In response of x = 2 jtems (2 is scala),the st (€08 lsmatfam]lar{::scause it transforms one input x 1
This function is then called a sealar (single variable) func

produce just one ourput C. and width y, Here x, and y are the two inpy

perates on puls 10 produce a single output quantity 4

and the rul - t two inputs x and y to p a sing| )
| i e‘:::‘t ‘}_, a::d‘:hl_‘:l:n(': and 1 are scalars), the area is (is also a sealar) A(2, 1) =(2) (1) =,
n response of x = =

square umits.

This function is then called a scalar

and y to produce just one output Al : s St
Iv be extended to define a scalar mu tivari

chEi;l:::;‘:nu?:::lar function is to transform scalar quantities in a single scalar quantity, |5

there any rule that will ransform scalar quantities in a vector quantity? Yes, the rule is the vector
functions. Vector functions are used to study curves in the plane and space.

(double variables) function, because it transforms two inpus

Vector Function
b A veclor funcrion F=(flt)e (), hir)) is @ function of one variable that has only one “input

value”. The “output” values are in two and three dimensional vector spaces instead of simple numbers. In
other words we can say F is called a vector function of 't F=F(r).

If 7,7 and F are the unit vectors associated with a rectangular coordinate system (discussed in deails in

unit-3 of grade-xi) then a vector function F(r) is written as
i, F)=£0i+ L0
i, FO)=£0i+£O]+ A0k
We can say that a function F(r) is defined if all its components fi, /2 and ﬁ are defined.

Example W RELTI F[E] and F(r) if F(r):sm{r}ucus(.‘)_;

2 spac::s

3 spaces

We have given F [I"_I sm(t)w ms(t);
As, sin (1) and cos (1) are defined for all values of t, 50, F(t) is defined forall ¢ -

Aspolsfomls)-

F(x)=sin(m)i+cos(x) j =~ j

T
For :—2,

Forf=m ,

ji. Domain and range of a vector function

N [amuin .
“The set of al t values used as input in () is called the domain of a vector-valued function F()~
b, Hange 3
The set of F(f) values that the vector function F(r) takes as s varies, is called the range of a ve
valued function F().

131 mm@‘@

e DIFFERENTIATION OF VECTOR FUNCTIONS

[2LUTE, 2 | Find the domain for the following vector functions:
faf  F()=2i-3 +'F N

«  The vector function is:
F=(/0. 400, )= 2i- 3]+ ¢k
The function [ (f) =2t is defined for allr ; J2(6) =3¢ is defined for all values of t; fiti)=1" is
defined for all values of t except ¢ = 0. Thus, the domain of a function F(r)is & - {0}.
b F@O=(£O. L0 L)) =sinei+(1-1)" j+Inek
The function f|(¢) =sins is defined for all t; f,(1)=(1-" is defined for all values of t except

t.=1; £,()=Int is defined for ¢ > 0. Thus, the domain of a function Fir)is 1> 0, 1 = 1. The range
in each case is of course a vector quantity.

Fly=sinti+(1-0"j+ Inek

Operations with veetor functions
It follows from the definition of vector operations that vector functions can be added, subtracted,
multiplied I:»y a scalar function, and multiplied together c.g. =

IfF and G mwmorﬁmcnmsnfﬂ::mlmh!en,nnﬂbmmmmhr function. then F + G, F —G and
Fxvamﬁmms_mdF Guasﬂ]’af&mcmn__ \

/ Limit and Continuity

. For the most part, vector limits behave hkn scalar limits. The proper definition of the limit of a
vector function is given below.

m Limit of a vector function and properties of limits of a vectors function '

“Let a vector function F(f) be defined for all values of ¢ in some neighbourhood about a point
t= ta except possibly at itself and let L be a constant vector called limit vector. The function F(r)is
said to approach the limit vector L as *t approaches ," if for any given real number ¢ > 0 such that
|F(:)-E|a whenever 0£|t—,|£8 symbolicaily, it is written as limF() =T
Nowhokumrnﬂmdnguuﬁuptnpuﬁe;bfvacmtvﬂmdﬁmﬁuns.

i The limit of the sum (difference of two vector functions is the sum (difference) of their limits.

If fi'i‘?'[‘)-' L and El’-.u(_?(r}- _H,wam Land M are constant vector functions then:

a ;im[F(;)+ G ] -um?-::mimﬁ(f)uhﬁ b, lim[?-"(:] —'é(r)] -timF(n 1imE(:)=I -M

i, Tllchrmiufﬂie.dot prnm:t of two vector ﬁmchommlhedutpmducl oflh.cu Imuls

It’hmF[l')—-—L and llmG{l) M, where Land M are constant vector functions then:
hm[F{:}G(t)]-lmF(r) limG(r)= LM

The limit of the cross product of two vecwcrﬁmuuu: is the cross product of their limits,

If IunF(:] L and Im:.G(.l] =M, where Land M are constant vector finctions then:

1;5;[&*(% 6] =limF(ox limG(e)= Ix M

{18
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L s e | T

L The limit of the Modug of g <calar function and a vector function fffhc prodict of their |='mitg_
Ir iim ?':'] = I and Hm m T T ,I" is n constant vecior and ¢ is a scalar constant ﬂlﬂ]:
-ty |'Hl T

gl o V=i Pt men
3 Find !1_I.r‘l F(r), when the vector function is F(1)= I:.‘z—3];+ e'}:i- sinzek,
m lim F()= |r1_11[ Fani- - .’rJ}+_}7‘jI’f}kA]
t{ff*n_‘l(r' - 3)]?+[g@11rc'}]j+[!jﬂ sinm:[E

= (b= 3].-:+ e:;-'m‘- sin 2k =i+ 4".}. sin2r=0

Wﬂnﬂnuity of a vector function

A vector function F(1) 1+ 1 he continuous at ¢ =it

[}
Do You Know ?

A continuous veetor valye funclipg
is also continuoys at BVEry paint jn
its domain, y

fy s in the domain of i1 v function Fir)
imF(ty= Fi,)
gy

il 4 | For what values of tis (. oeior function F(r)= [sim.{l-r),"] continuous?

@RI 7he components of a vecior function are: SlO)=sint, f(=(01-0)", 1epr
The function f(¢)is continuous for all L fi(e)is continuous where. |- ¢ » 0: (¢ #1). Thiss, Ay is
contmuons, when tis a real number other than 1. : Tl St

5 Forwhat values of tis F(7) =(sing,(1=1)",In ) continuous?

m The components of a vector function are: j’,(:}é sinit, fl-f-‘) =(l-1)" _r‘,(:}; Int, te R
The function f(r)is comtinuous for allt; £.(r) is continuous where l—t=0 -(tla.nt is, where ¢ #1); (1)

is continuous fort > 0. Thus, F (1) is continuous function whenever t is any positive number other than 1.
Thise=0,121. 1 4

, J. Willard Gibbs was an American scientist. He made his great contributions in the

ficld of mathematics, physics and chemistry. He was the firs American who obtained

Albert Einstein praised him as “(he freatest mind in Amerjea history”
Oliver Heaviside (Britain and Amcrican national) Gibls developed .
express the new laws of‘c!nclrmgnell iy

o ’..\c;'_i-‘
ks iy O
IEFLRESTINTION OE VEL TR

 Exevsise -

I. Find the domain for the following vector functions:
a FO)=2i-3j+r'i b Fl=t-nisij--2)'k
¢, Fi= sinl;'+uusrj'+ tan 1k d. Fl6)=cossi-cat r;'d-cﬂ.'.'ccrE
2, Perform the operations of the following expressions with
E{.’}=2rf-—5}+ kG =(1 -.r)}i-%i. Hit)=sinti+¢ j:

a. 2F()-3G() b, IF(+4GH) o T Fn d. Floy= fiin

1. Evaluate the limits of the following expressions:
P SX e : :'—I-_*:"—Jn-z». 2 R
a. Jlt_tlll[l'rq-e‘ _;+smmk:| b, Im;n[r—_—t.- m—; [ = 1) ﬁ-}
c. irm[ﬂ’ﬂi+]—‘_"."‘_‘}+ e'*;?] d _|im[’—'“{—29i—m4tuj}
] i [e] I |
4, Test the continuity of the following expressions for all values of t:
a. F(=1i+3j-(1-nk. b. Gr=1i-r'k
- - - - -— [ 4 3
c F(:)=e’(ri+r"j+3k} d Gi=4 ,J;";
& =4

7 Derivative of Vector Function

A veetor function F deter. ..aes a curve in space s the collection of terminal points of the vectors

F(1).If the curve is smooth, this is natural to ask whether Firyhas a derivative. Our experience with single
variable caleulus in previous units prompt us to wonder what the diferentiation of the vector valued function
might be and what it might tell us. For now, let's recall some important ideas from unit 3 of this book, We
defined the derivative of the sealar function f(x). Which is the limit as Ar — Dof the ditference quotient %’r-
Av

e.g. Given a function £(r) that measures the position of an object. moving along an axis its, derivative /(1)
is defined as. f-;:)=mﬂﬂ£—“ﬂi ; m

and measure the instantanous rate of change of fi1) with rspect 1o 1 in particular for a fixed value ¢ = q,
S*(a) measure the velocity of the moving object as well as the slope of the tangent line to the curve y = f(y)
at the point (a, £ (a)). As we are working with vector valued functions. we will use the above ideas and
perspectives into the context of curves in space and output that are vectors.

@-{.3 "5/ Dovivative of a vector function of a single variable

IF 16, = gy S+ fi(nk, where AL it are differentiable functions of a scalar variabley,

then ﬁ;ﬁ+£ ;,_‘_lﬂ'.“-
v ot ilr

The derivative of a veetor-valued function Ferhis defined be,  Fir)=Lin -Fl"_‘::_}'ﬂﬁ i)
LT {
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UNIT-5 DIFFERENTIATION OF VECTOR mmﬂ%

for these values of t at Whichtlwlimitmmmmmm Leibniz notation F' f—:)rderi.‘-'ativeut-

F(), and %[Tvu)] The following theorem establishes a convenient msfllod for computing the deriyayy,,
of a vector function,

Theorem~1: The vector function F(0)=(/f,(0./:(0, f,0)=/0i+ {0+ (1) is differentiable
a point ¢=¢, whenever the component functions f(f), f;(f] fHnof F':")m all differentiable ata
point £=¢,: ie. F'()=(f 0, ©O.L0)= [0+ £ 0]+ £ 0k

Proof: If a vector function F(r) is differentiable, then their component functions f(¢); f:(;} and f(
exist, then the scalar derivatives f7(£), /3 (r) and f; (1} by first- principle rule

F(t)=lim F{H.ﬂ.r) FL}

. At »

i Mﬁ.ﬂ - [ LE+AD-A | . HE+AY-/() |2

-[Eﬂ At i) L At L - At ol

= {0+ [ O]+ Ok
In the Leibniz notation, the derivative of F(r) is denoted by: r:F = %H_ %ﬁ%k (iii)
ety 6 | For what values of tis G()={¢] i+ {oﬁs_.')f-l-(:-_‘.)kd;ﬁ‘eremuble?
m The component functions f,(f)= cos? and f,(f) =~ 5 are differentiable for all values oft,

but f;(r) = ¢|is not differentiable at 1 = 0. Thus, the vector function G(#) is differentiable for all £+ 0.

Find the derivative of the vector function F(t) = ¢' [+ sint j+ (¢ + 5n)k.

m Since, the given function is Fiy=ei +sm.','+(f +5£]k
Differentiate both smdes w.rt, ‘1™

)_d
d.::r [

iesintj+ (0 +S:}k]

d - & ~ -
‘:‘f --—[e ).-+—(smr)_m—(:’+5t}k=e’i+¢nsfj+{3r‘+5)k

[SET¥ Vector Differentiation

Several rules for computing derivatives of vector functions are
listed below, which can be.proved by applying rules for limits of vector
functions to appropriate theorems for scalar derivatives.

mrmula of differentiation

Remember =

A vector Falso writtenas F-

B

i “_ = ane
i 25=0 —[.I"t:] t—: i, E[‘,j.-] q,_..,.,_‘,r
d
iv. 5l 81= f“ Ef-‘ iy Er“"']“f" *?*x vi. f} ?f"‘f}
d: it
Mm,ansnmnslaan:tnrfuucuon fmsm“ﬂlarﬁmcuomm qns:sm:r il
da
L %o
dr

UI(H A+ [ (1+ A0 ]+ £ (e+ AV -[ A+ £,0)] + A '

Uth-S IMFFERENTIATION OF YECTOR FUNCTIONS

dp A% d
Proof: i, Leta be a constant vector function then %[n) =%[a,i+a,,l +a,k)= _g-a,m :—u,J +Ea,k

i, -—[,rtg]__tﬁ

M
o) :;[f]'b Lf{+ A0 gle+ AN]-[F (1) % (1)) = Lim J'E!+Nl LGy i )_;l:rl

ﬂi’ a4
e . A _;_
di dl k3 ;['r !] i

il -—[@fig].q;g.—.pﬂ
Proof: -—[q)j'] ['F(“ M) f (1480~ v{nﬁ_r] z

A
it + A0 F{t+ 0= li + anrml [-p(: + 800 = elr). fll:-]
.lf-ﬂ'[ Ar Ar =
- . [ olt+ a0 —g(0) L
.ﬂm(u-m)[f “*‘*‘3 S ":'] +£¢m[¢( 2 ]_ﬂt} oL 2w

Hence, %[#]w%-*%-f- —[w"]-w—d-——f

iv. %[f.g]:j_ﬁq,_dj_g
+ (GF10)
Proof: _[ f8)=Lim Lfie+angl m) fi0).2(0]

mr+ Anglt+ ar} f{: +an.g0)] Lim Lfie+ Mm‘.f) fre]

= Lim f({+ &1) [‘g{Hm"' gm}t Lm["m =1 ) 'ﬁ”].g(lj = j'd'g +—g
el

dr
Hence, = —-[fs] .fﬁ‘- + o€
2 E{J’ xg]=f*—r +£‘£+z
Af)x r+m} Se)=gln)
Proor —[f*:] gin [f(=+ ) gli+a0)] - )]
[_ru+m}xgu+m) f(u-mxgmhb {f(r-t-m]xg(r) fin=gn)]
Lim
.nl—oﬂ

=me[r+m;~x[ﬂ”m Hﬂ]‘_im[!lﬁﬁg 'r—lxstr) -f*%*%ms(f)

Hence, —[_{xg! fxi’-+ir~xg

(ExampleNE] Let Fit =}+r}'+:‘§ and E[ﬂ:ﬁﬂ’ j+3§ are the vector functions. Verify the
B v fF e il
E{Fx(}'){t)-?x G+Fx=

m For verification, the L.H.S is:

derivative:
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ik e Y| N B | B
IJ =f— ;J' ! '_.f-l r-!+k’ uﬂ
dt| & 3] T 3 It €

3

” % = o Y d ¥ T _i s s
= OG-0 PR O G O ey :

=03=2¢' - e )i+ 37 j+ (¢ - 200k

dF £ F . & i ;
=2%G=10 1 2 |=(3-2)i-(27)]+ (-0f -
e 3
= | Fod :
:F,{‘:;_G; A =.:_;=e'}}u(_3}}+(é -0k are used in the RHS 1o obtain
il T
RHS= %"F-x G+ .Ex%—,?- = (-2 - Pe)i+ (26 + )]+ (=14 & )k
=(3- Ete‘-ﬁe‘}?-t ﬁr’}}ﬂe‘-h}.@ which is identical to the L H.S,
Thus, the L.HS = R.H.S, ; J

- - -

IFF(n =i+ 'z’_}-l--"f and G(f) =34 -k are the two vector functions andiy) is

. < (F3) |

any scalar function, then evaluate the following derivatives: (a). %(2F+."5)

]

d = = d A oa = - i = ‘_'! S s s
a. —;(ZF+r’G]=}}-[? [s+e';+!’k'}+:’|:3r.=fe“j-2fﬂ- !] =-§E[(2+3."}i+ (2e'+% "5, .-
= Isr‘j+(2e’+3’:8-'.'r‘f‘;}j'f'(dl‘-sli)k=]5:“;1'[2‘2,4-!!8_‘{3"-[)};-}- ‘"(I“!I::‘*
b -5[?‘.5]= f:.[-:fle- J+CR). G ve j-2b)] o ey W
= %{3.-% 1-2t")= 6t +0-6r* = ~(61% = 6r)

M= P =205+ ) e 2k or Ar_ds s drs

—r : 1 a d o at
Find the velacity of the particle whose position veetor S F=7(f) = 56 4 41 ] - cos(t)i

i - R0 FORSALE

UNIT-5

[ Solution JENSY
Veloeity =':;i'[‘." =£_

i
il Acceleration

In the caleulus of single variable, we defined the aceeleration of a particle as the second derivative
of the position vector. There is ng change for the vector ealculus.

DINFERENTINTION OFAVECTOR FUNCTIONS

e S1i4 4] - costri

(560 + w}—mmh = ';-;:5: - -ITr < snfrk

“Let r=Ft)=xi+ y}+ 2k be 1 twice differentiable vecior valued function, representing the position vecior
of a particle at time *r". Then the acceleration vector is the second derivative of the position veetor rir)
a=F)=x' Wi+ y' 0+ i or E=-‘£—:’=%‘;‘-}- %}--‘%ﬁ
RESIIEN] Find the acceleration ofthe particle whose position vector s
F{0)= (36 + 5 = (46 + 20~ 1)} +singr)i
Since,  FAO=(3" + Sl (4 4 2= )+ sin)i

ST R e RS R ol e s
L= Ly 2 =4t = =— (3 = = 2 =1y —sindnik
ldp{r}x:d:{(.i! + SN = (4r" + 20=1)] + sinio)k | GOC -2 =1y + sind

%_—,6:3-(8;1-2}}”05{:‘}3
[

== %[%’}%[m-(s; + 3}:!+ ms{r]E]

=FE]= 6;~3}:- sink

e r

iii.  Speed

. In the calculus of single variable the speed was the
absolute value of the velocity. In the vector caleulus it is Ihg The direction of motion can  he
magnitude of velocity. vector. ! . v

Let 70 be a differentiable vector valued function | CW€uIe by using
representation of the position of a particle in time " the speed °s” of

+ the particle is the magnitude of the velocity vector. Speed= 5 =[Fue) = 7o)

: Fin the speed of particle whose position vector is 7ir)= 3/« 45 =sinnk after 30 seconds,
m Sinee, ) =3ri+47+sinink = V() =-‘%<?a=%(3.-.’¢ 47 =sintnky

?U)-ﬁwos(:}h S P(E0) =3+ cos(300) = =3 N3

2SI 13]) A particle's pasition at time* +* s determined by the vector 7r) = cos(r)i + sinfr)j+ 'k .

,Fl'm] the particle's velocity, speed. direction and aceeleration w A time 7= 2, Interpret the particle’s
motion; .
H
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UNIT-5 DIFFERENTIATION OF VECTOR Fuy, Dh"éﬁ A
m If the particle’s position at a time t is , then 7(f)=costi +sin¢ j+ 7% then, the Parti UNIT-S DIFFERENTIATION OF VECTOR FUNCTIONS
‘ velocity and aceleration are:  F(r) = %.;}';': g[ms(;)?+gin[r]}+t’£:r= —sin I‘:'+¢us:j-‘+3f= i
: "
a[tj=%=%[%':]= %[-g.in,(;]fq- ms{t)}+3;=E]=—cw(t)'r"__sin(!]}-p.s(rﬁ N, il the cerrest option.
= % - - - e i A quantity having magnitude and direction is called:

The velocity atatime ¢ =2 is ¥(2) = =sin(2)i+cos(2) )+ 3(4)k = =0.911-0.42 j+ 12k, use radiang - Gw). vector - (b), scalar el velocity (d). derivative

The acceleration ata time t=21is a(2)=—cos(2)i-sin(2)j +6(Dk =042/ -0917+12F e f;:‘““""’ "“""Wﬂﬁxmgm no d"f::“ is “i‘l;"d: A

The speed is [F]= yf(=sint )+ (cost)+ (3f)'= V149" .Atatime =2, il If Farieej-sin(kand G=ri+r'j+skthen FxG=

The speed is {?Lﬂl 149(2)' = /145 ita. [5,=+__sin‘(fl ]i—tsf‘+;sin{r)}}~[:+:')§ by, [5.! +-—""rm]i+{sr‘+uinm)j +(f =0k

The direction of motion is: 2 =) [—sinr?+casr_}+ 3r’E] .. [5;4- sinf) ]f-(s;' +sinO) ]+ (e~ 9k (d), [sﬁ +ﬂ}- (56 + asinenj + (e 1)k

[F]~ Vias 7 ‘

s | P 15, v Let Ferisej-sin()kand G=fi+r"j+5kthen F-G= .
M“ﬁmm"h‘d"“““m"f”‘“ﬁ”“i‘:—=7='["$i'12r+mﬁ+12k]ﬂ=—-0,91f~0.42_;°+12£ . P+l45sin()  (b). Folvdsiof) (¢} 3 -T+dsin) (d). P+1-Ssin(0)
fi. e ' v IfF@=(+3)i+20]-(0-0k then limF(-2)=is: _

(). Bi+50j+4F _ (b). Bi+10j-4k  (c). 8i+60j-4k  (d). Si+50j+4k
i IfF=pi-@+)k then F-2)is:

Exercise

‘ : . - : (). Wi=12F - @) 12-4F . (o). 1Zi+ak ). 12i-8k
1 Find the vector derivative of the following vector functions: vii, 1rF=2E+J}+4EandJF|= :
a. F(t)=ti+0 j+(t+)k . b F(s) = I:SE-I-&‘:'}‘I-.T:E:H- (23’?—.-:}-; 3k) " 8 ; (b). 5T o @i &
e F"(B)-cus&[:#hnﬁj-l&k] : viii. I 7= 574 3]+ F then velocity vector 7is: p "
2. - Find the second order derivatives of the following vector valued functions. . (. 106 +37 ). Si+3dk . (o) 2i+3f (d). 10r-3k
a Fy=ti+3°j-8°% b, F{-_?J=f3+:‘}f—(s+l}’j+3;‘k ok vaeh:ityw;qin(rﬁ-zm:):lnilhmmqlsmﬁbni-
¢ Fx)=lhxi-xk - 5 d. Fi)=sin*07 - cos’ 0 - o). -sing{t]?+2cus(r)}-—4§ (b). cos(r)i—2sin(f)j + 4k
3 D:ﬁ_t-‘rentim l}:e MIWPg sc:‘a‘la: ﬁmﬁcﬁuns: 4 o el 3 i ). —cos(t)i+ 2sin(r)] (d). cos()i~2sin(r)]
a f)=[xi+(x+1) ). [2xi-3x° f) b. g(x)=|sinxi-2xj+cosxk 2 Lim(CF @)=
4. Find the particle's velocity, acceleration, speed and direction of motion for the indicated value of t, , o s L. | = o4 c
when the position vector of a particle’s in space at time t is #(r): o e k. CF) (t). C-F(1,) (e). C+Fin) (dh. m
a r)=ti+fj+2katz= b. . F(r)=costi+sint j+3tk at :=%
e ri)=ei+e’ jre"karr=In2
5. If #(r)is a differentiable vector functions of t such that F{t) =0, then show that
40 F@) [Fo.Fa)iFo : 4
alF@ JFol Jref -

. : | [0 52
e 139 mmﬁﬂ m“m 140
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DFFERENTIATION OF '|'I-j(',"r0|¢ "-UN(,‘]'HJ

LIS

The Parametric equation for ihe plane curve C generated by the set of ordered pairs in 2-space is:
L 00> ). v () = (£ 1), 2 (1)) e,
The parameqric “quation for the plane curve C generated by the set of ordered triples in 3-gpace i
G0 2) = v o), i), S0 = (), g (o fe () . :
A vector fimction Fuy is cominuous at 1= £, if f, is in the domain of F7) !12‘1 Fin= Fly)
The derivative of a vector function F7) is the vector function "F(r) determined by the limig

. oo NE. - -F
Fiy=iim 2L - lim (C+Ar)= _U]_

il Ay A At

whenever this limit exists, In the  Leibniz notation, the  derivative of Mty s
Y Fit+ Ar) - Fit) :

—= lim = |im =~ =<0

At AN Ar aeeso Ar

I an object moves in such a way that s position at any time f is the position veetor or displacemeny Ry,
then the

denotey by

© Velocity js = ars ;'{I}
alf
° Acccleration is g = LV _ L5 e
dr e

o Atany time 1, the speed is iF": 'i-;h V;}-r p‘,}“=,,|';/ﬁ P2+, the magnitude of the velocity asd
: 2 g
the divection of motion is TJ 7
I3
)
e
L.C. Maxwell was Scottish mzthematician, He made a great contributions in the field
of mathematical physies, e formulated the classical theory of clectromagnetic
radiation. Maxwell's equations for electromagnetism [ias been called the second great
unification in physics. By the first unification in physics wag raised by Sir Isaac
Newton. In his publication A Dynamical theory of electromagnetic field" he
demonstrated clectric angd magnetic fields irave] through space as Wwaves moving at the

speed of light. On the bases of his idea in electromagnetism Gibs and Oliver
developed vector analysis, *

James Clark Maymwell
{183 1)-{1575)

Create an ant on 4 chant paper by hand or yge any
technological mean, Your creation shouly demonstrage
a topic from this unit, ¥

Create something using your imagination of use the
mathematical concepts discussed in this unit 1 Creaty e
your real world object

ey s
Find the areq between the x-axis and the curve ¥

f[x)=x*-2xﬁ'amx ==ltox=3,

First find out the X-intercepts of a curve S(x)=x"-2x that
can be found by solving the equation of 2 curve:

F2x=0 = x=0,2

The subintervals of the interval [~1,3] are therefore [-1,0], [0,2)and
[2,3]. The total area of the region in the required interval [-1,3] is the
sum of the areas of the syl regions in the subintervals [-1,0], [0,2)and

Figure 6.8

L] 2
4= [+f(x):a&+ji—f(x1m+f[+f(x}m. f(x)20in[-1,01,{2,3)
=] [ H
x_’£|

] 2 i | x) zxﬂ
=J:(f_th—!&hwd'*'fw_hw: %,'_2_;;'[, ‘!T-TEJr 3 2

' -1 8 ! 27 88,44 .4
=(0*—0:|—[—3——-l)—[;—-4)—(ﬂ—ﬂ] +[-;-9)—[;—4}—3—+3+3—3(3) 4

The sketch of the region is shown in the Figure 6.8.

WLE command “inf” to evaluate definite and indefinite integrals ™
€ use of maple common *ins” is illustrated in the following example, :
SEN21 | Use MAPLE command ‘int” to solve. : :
fa).  Indefinite integral of a function SO)=x"+x"+ 3%+ 541 wrtvariable r.
fb).  Definite integral of a function S(x¥)=x" w.r.tvariable x.
fe).  Definite integral of a function J(x)=xe" in the interval [0,1].

@ Command: iy
>+ 2 42 px g 1,x);

—}.ﬂ+%;"+3l.é+-,",-.r‘+:
Using Palettes: Use cursor button to select integral palette. Click-integral palette, insert the function

- Tequired, then press "ENTER" key to obtain the integral of a given function:

> I."+x‘ + 245+ e

1 b s, 1 o 5 -
5;’+4x+3x‘+2x'+:

b Command: ’ & Command:
> ind 2, x=0.1); > imt{x-exp(x), x=0_1);
; 1 1
3
Using Palettes: Using Plalettes:
i 1
> [2a > [ resploler
1] o
1
= 1
3
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UNIT-6 ' e i

i INTIDIG.R,\T]UN E .. e

[ F e e

1 Jo va 1 ] | f _unn‘-& INTEGRATION i
Do you know a 200 vear old problem o ;
The relationship between derivative and integrals as an inverse operation TN e
was noticed first time by \sqacbarmw{lﬂ&—gil}!.".'] in the 17° century. He Review Exercise
WaRa 'm'f”-"‘ IafSir Isaac Newton. Newton and Leibniz are knﬂw:;:;;!; 1. Choose the correct option.
inventor of caleulus. They made the use of calculus as conjuctor, i q A
a mathematical stat 24 which is suspected to be truc. But has not ::;.ep.;?f:‘:u {'_rﬁrﬂdlﬂl lﬂnﬂel‘l;atw‘elsnllzed. - _ .
proven yet. The fundamental theorem of integral calculus was not » I i rentiation (b). integration {c). probability {d). linear equations
officially proven in all its glory until Bemhard Riemann (1826-1866) . tanBedf=__
demonstrated it in the 19% century. During this 200-years a lot of (2). Injsing|+C (). Injcos8|+C  (c). —lnjcos|+C (d). —In|sind]|+C
mathematic like real analysis had invented before Riemann could prove L 2
that derivatives and integrals are inverse.

iii. jm- .
(a). ln|x+1"r‘+a*|+c (b). sin"%-l-(.‘ (c). sin"[ﬂu: (). ms"[§]+f.'

1. Evaluatethe following defiit integrals: : j ‘ : j'g,.,r& - w | ﬁ,& -
a,  |Sxdx b, |x'dx c. [(2x™ =3)dx A x 1. |t-6| 1, |¢=86
j} ljl y 1 {a). —z;lﬂ’ﬁ‘i'c (b). Elnlmi‘i‘ c
1 [ 3 1 : LY () LA I L LY
e [12(3-4)xdc T [i—f— —d g [m=(5+n]dx h. [sec’0dd : (©). 2['“ i ‘“L; ‘I*C] (). 6[1"'6*"*5}"5
2 _;{e +3] 5 2 o - J. o
1 v. [(x-4)dc=
" 14 Evaluate the following definite integrals: P 2
Ted_ H . ——dx+C . ==
IS_fz_éL:ﬁd, : . g 114 dr @). -dx+ ) ®). T-ax+C
1 -1 pt sl ©. -Ztdx+C ). 482 47 .0
3. Use definite integral to find out the area between the curve f{x) and the x-axis over the indicated | s i
interval [a, b]: vi [ fx)g(x)de=
5 j; :;-;:4; ";' T:][o 4] :’ ﬁi;zfx_if*-; '3[10'33 , @ S020)+ [ g ) () ). f(D)g(x)-[e(x)f (x)d
c. xX)=x" —6x 5 3 =a3x=x, (L , s
4. Setup definite integrals in problems a to d that represent the indicated shaded areas: ©- f6Y8t)~[g @S @) fx)g)-[g(x)flx)de
a. b, £, d. vii.  [tan'(x)dv=
! (a). %tan’(xh x—tan(x)+C (b). %lan‘(x)-o- x=tan(x)+C
3
(). zm*[x]-x-'- tan(x)+C _ (d). 3tan’(x)+x+tan(x)+C
vii. jxf:‘L¢=
@. Wnjx-g+c b). Linlet—sde LE oLy x
e8| _(b) 2lu]:: 641+2|s+1[ Emi_ili.c
1 1, |x 1. | x i B
(€). —In|x* -6d|- —ln|—+ l‘-o-—lni——l +C (i =laf=+1 +lm‘5..1| c
5. An il tanker is leaking oil at a rate given in barrels per hour by .‘;'_555':'_;%;_11 s : 2 2 s 2 I8 23 rhal P M
X, l:d*-
Where t is the time in hours after the tanker hits a hidden rock (when ¢ = 0). _Ee
a. Find the total number of barrels that the ship will leak on the first day. - | by £ = &
b. Find the total number of barrels that the ship will leak on the second day. L2 Sy T e @ ==
c. What is happening over the long run to the amount of oil leaked per day? X [Pdcm
Use MAPLE command 'ﬂ!l"t? evaluate 2 . S ame———
a. f{x) =2+3x+1lwrnl x b. F{x)= & sinx ward, %' {a). 1 {b) 2 (c). 3 . 4
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. 6) )  PLANE ANALYTIC GEOMETRY
et = STRAIGHT LIN
of f(x) if Fx)=Jf(x)-

Judx = F(x) +C, for any real pumber C. Itis called indefinite integry By the end of this unit, the stiudents will be Ble f0i ) -+ ++-+++«+x=++soeeeseessnissisiines
(I = L]

If F'(x)= f(x), then j f - | of the product of f(x 7.0 Division of a line segment 1
d g(x) are integral functions WL b ) migyy i Recall distance formula to calculate distance between two points given in Cartesian plae.
* ¥ f(x)lan : i Find coordinates of a point that divides the line segment in given ratio (internally and externally).
w.r.t X 15 =g (xX)dx: il Show that the medians and a bisestors of a triangle are concurrent.
judv=w-5"’d"- y=g(x), du=f(x)d¥ and dv=g Fﬂ A e 72 Slopeofa straight line oy .
the interval [a, b] and [, bl is divided into n eq ntervals whyy L Define the slopeofa line:

< F(x) is an antiderivative

-

« If f(x) is continuous on Jof f(x) fromx=atox=bis A it.  Derive the formula to find the slope of a line passing through two points.
ipht-hand points are Xy, Xyse- Xy then the definite integrato /¢ . Find the condition that two straight lines with given slopes may be
right- po 1 . _b-a *  parallel to each other, = perpendicular to each other
Hf{x)d'x= lim @-_—nl[f(x,]-" flx)+..t f(x)) Ax= = : 7.3 Equation of a straight line parallel to Co-ordinaie axes
I - i Find the equation of a straight line parallel to )
i n *  y-axisand at a distance a fromit, *  x-axis and at a distance b from it
= ﬁ"‘-z Sflxyhx,  i=L2 ERR 74 Standard form of equation of a straight line g
memi 3 i, Define intercepts of a straight line. Derive equation of a straight line in i
. functions # and v w.r.L X152 *  slope-intercept from, = pohl-slu!;efmn. *  two-point form,
«  The definite integral of the product of W, : " Tncepla Ty . Gmmemcform,  + nomalfom
[ 15 Im'u ii.  Show that a lincar equation in two variables represents a straight line.
jmswq iii.  Reduce the general form of the equation of a straight line to the other standard forms.
' Gy ; under a curve =/ 7.5 Distance of a point from a line ‘
o If f(x)is continuous and f(x)=0on the closed mcm::I ["!;]b]’ then the area g y=! i. * Recognize a point with respect to position of a line. v
is'gi integral of f(x) on[a, b]: ii.  Find the perpendicular distance from a point to the given straight lines.
on [a, b) isgiven ay S deﬁtl!’i!- g z 7.6 Angle between lines
- s =F ' i. Find the angle between twio coplanar intersecting straight lines. i
b If{x]ﬂ‘.t F(pr=71d) - L . ii.  Find the equation of family of lines passing through the point of intersection of two given lines. |
- 2 il Caleulate angles of the triangle when the slopes of the sides are given.
.  Ifafunction f(x) iscontinuous on the closed interval [, b], then 7.7 Concurrency of straight lines
web S L Find the condition of concurrency of three straight lines. .
j fdx=|F|, = F(b)-F(a) ii.  Find the equation of median, allitede and right bisector of a triangle.
m=a uL  Show that :
Where F (x) is any function such that #(x)= f(x) for all x in [a, b]. * threeright bisectors,  +  threemedians,  *  threealtinudes, of a triangle are concurrent,

7.8 Area of a triangular region
i Find area of a triangular region whose vertices are given.
79 Homogenous equation
L. Recognize homogeneous linear and quadratic equations in two variables.
i Investigate that the 2" degree homogeneous equation in two variables x and y represents a pair of straight lines
i through the erigin and find acute angle between them.

e e T T RIS S S TR —

We are familiar about Cartesian coordinate system. we have learnt
about it in our previous classes. This Cartesian ccordinate system may be
helpful to know the slope formula, Pythagoras theorem and distance formula.
In this lesson we will learn in details and write the equations involving arbitrary
points. Most of the geometric ideas can be expressed using algebraic equations.
Analytic geometry is defined as:

“The suudy of relationship between geometry and algebra is called
analytic geometry™. ;
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UNIT-7

For example to calculate the swpdgl'ﬂdlig'; it “Rise”
difference in the y-coordinates some f‘f"‘fx‘ “;_e F
between x-coordinates, some lime called it ‘0 &

PLANE ANALYTIC GEOMETRY STRAIGyy

petween tWo given points, the Numeratg, .

and the denominator is the diﬂ-u"!

Y—h o ———Rfse

Slop between two POINIS =%, =X, - Run

Analytic Geometry was independent and i -
fundamental idea of Analytic Geomelry andlf::m‘? P atary by them.
two variables say, x and y was given 'l'l_iﬂ";_.___.__

invention of Pierre De Fermat and Rene Desca
5Luuﬂon of curved lines by algebraic equaii

Mles,
‘“ﬁlch::

Division of a line segment B

We are familiar with the set of real mlmnu
natural numbers and real numbers. The hr:ﬁm
dimensional coordinate system call real num :

mbers can

bers as well as with several of its subsets, jny,s

casily be visualized by “sm

~
mlclﬂaﬂon of distance between two given points

The study of planc analytic geomelry 15 greatly
facilitated by the use of vectors. The distance between any two
given points can be calculated by using the distance !'ummla

If P(x,y) and Q(x,,y,) are two poml;sl m.the
x-plane and O is the angle in between I.hepﬂsiti\:t directions
of the x and y axes, then, PQ is the directed line segme.nt
associated to initial point P(x,) and terminal point

Qlxy, 3,)-

X

Pl
by

Figure 7.2

The components of the directed line scgment PQ are:
OP+PQ=0Q
PQ=0Q-0P, position vectors
= (%, }1)— (X 1)
PQ=(x—x,:—))

=[x —x )+ =1
Squaring both side of the directed line segment PQ to obtain
(PQY = [(x,~x)i+(y=3)i]  :(a+b) =a®+b*+2ab

= (x, =, i+ (py = WY LJ+ 205 =5 ) = )i

= (=) i+ (=3 Y 4+ 25 =)y -yl feos®

= (2, - %) + 05 —) +2x, —=5)(¥ -y )cosd
- (xl_xﬁ'z"'[yi-yl}a"'i(x:-I;KPQ‘J'JCDS—g

{PQ)L_" (‘ti -'rhli +(.}'l"y|]! m%=n

!mr = (% _x:)l +0s-0)

= (PQ)Y = |;-Q|z

Pythagoras Theorem: If P(x,y) =
Q(x,y;) are the two points in B¢
xy-plane, then the distance d betwesn I
given two points P(x,y)
QUxy,23)is obtained by apolyitt
theorem of Pythagoras to triangle PO%
(PQ)? = (PR +(QR)’
=(x,—x) +O" -y

PQ =15 -5y + s - =4

i = jj=1, ij=li]eos® ="

[==]
[}
taly

worFeRs®

UNIT-7
IPQ= e =5) + =3 =, say (i)

This is the di :
I 8 the distance rom point Px, 1) to point Q,(x,, ;) in the Cartesian coordinate plane.

PLANE ANALYTIC GEOMETRY STRAIGHT LINE

The distance from the origin 0{0,0) to point P(x,,y,)is obtaincd by insering, %, = y; =0 in result

(1 “'=|°Pi=~l"-'.‘+y.‘

The distance from the origin O(0.0) to point Q(xy, ¥,) is obtained by inserting x, = y, =0 in result
() d=[0Q|=[x4y?

® I the line segment PQ is horizontal, then the distance from the point P(x,,3,) to point Q(x,, y,)is

obtained by inserting y, = v, in result (1): d-—-tPQJl.:J(x: -x)
*  Ifthe line segment PQ is vertical, then the distance from point Plx,. »,) w0 point Q(x,, »,)is obtained

by inserting x, = x, in result (1): d =|PQ| =3, )

BTN, 1 | Find the distance between the two points P(3,-2) and Q(-1, -5).

-

EEMEED P(x.00)= (3,-2), Qlx,,y,) =(=1,-5) is used to obtain the distance d in between the two
points P and Q: -

d = (e =) + (= 30 = JA1=37 + (5~ (DF = J(R) +(3) =B =5

Co-ordinates of a point that divides the line segment in given ratio »

(Internally and externally)

Take P(x,, ) and Q(x,,y,) are the initial and terminal points of a line segment PQ and R(x, )
is a point that divides PQ in the ratio m, :m,. If ,, r, and rare the position vectors of P, Q and R, then
=)= 5t R m= ()= it pf, r= (G ) =xi+y

PR _ m, m,
If — =4 then, PR =—"1__pQ = " -OF)=—20 (- : =
Q m 4 m, Q m,+m, fed=Lr) m, +m, (3 =r) #OBFRQ =00
If OP+PR =4 +———(r;~r), OP+PR=OR v
my +m, s
then the position veetor of OR is: - Plon )
OR =OP+PR =7+ nt, l:rz_rl)=r;m,+qm= +rym, —nm, m, pisy)
o+ iy + 1y
L + e
p=—tl 0} OR=r
my+m,
x r
(x, 0= e, ) + 14 (%5, , compaonents form
‘ my 4+, 4 g Figure 7.3
Equating x and y components to obtain the coordinates of R{xy)
()= i x ? mysE @®
m+m, m,+m,
that divides the line segment PQ in the ratio m, 1,
[NOT FORSALE 180
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. and the coordinates of the midpoimt R of the

If R is the midpoint of the line segment PO (A '
x+n KWth J

@n={"7 "2

; ivides the line segment PQ joining two points P(%,) and Q(xi’-""zl
*  The coordinates of the point that di | IR BN ) o
(xy m-my  m—m,

line segment PO are:

i jve) are:
externally in the ratio m, :m, (mor My negative)

ow o w __-_-_-
divides the line segment PQ joining the two poing

: i ich -
B0l 2 | Find the coordinates of the point whic (3, 4) and Q(-6, 2) in the ratio 3: 2.

@). P(1,2)and QE3, 4) in the ratio 5:7.  (B)- P |
: : i io 5:7, then the coordij
@ IfR(x, y) is a point that divides the line segment PQ in the ratio inates. of
R(x, y) is obtained through result (B):
_| mxymyx iy, LY, ]
(x,y)r[ mmy oy,
_(5(3)+70) 5(4)+?{2)]=[1_l£]
L 5+7 5+7 66 . :
b If R{x, ¥) is a point that divides the segment PQ in the ratio 3.2, then the coardmat_es of R(x, )
is obtained throtigh result (B): ‘
_ | muxatmax miy,t M:J':]
i [ mtm my+ms

IO+ IO e oy . 3
(A0 A 24 =t m

Lm= 5, m,= 7,P(1,2),Q(3, 4)

The medians and angle bisectors of a triangle are concurrent
I The medians of a triangle are concurrent ¥
Proof: IfA(x,, ), B(x, 3;)and C(x,, ,) are the vertices of a
triangle ABC and P, Q and R are the midpoints of the sides AR,
BC and CA, then the coordinates of the midpoint Q through
mid point formula. Q[ﬁ—;ﬁzi—;h]

If Gx, ) is the centroid (in centre)
then, the coordinates of the point G that
in the ratiom, :m, =2:1are:

(55 {258).s
e T I T :[

Similarly, the coordinates of the
ratio 2: 1 are respectively:

Alx, »)

P R
Somy = n,
of the triangle ABC,

divides the median AQ <55

Y
B(x, ) Q Cland)

Figure 7.4

Tyt ] (i
3

PO G5, ) that divides the medians BR. and CP each n ¢

NO R RICA LS

=

oy
e

UNIT-T PLANE ANALYTIC GEOMETRY STRAIGHT LINE
X+
2[_ 2“'_1]4-:! (2:‘.’1__21 "'}'J
G(x, )= — ; 22 B [x,+xt+x,'y]+y;+.v!) ey
+1 3 3
22550, o225).,).
Glx, y)= . 2 = |t +x ytyty, (iii)
2+1 241 3 ! 3

Therefore, the point G(x, y) lies on each median and consequently the medians of the triangle ABC are
cancurrent.

Benth 3 | Find the centroid of the triangle ABC, whose vertices are A(3—5), B(—7, 4) and C(10,-2).
@D et AG, -5), B(-7, 4) and C(10, ~2) are the vertices of the triangle ABC, If G(x, ) is -
the centroid of the triangle ABC then, the eoordinates of the point Gix, ¥) are:

e T X X, +X, £ y,-t-_;.-,‘+y,]= [ 3-7+10 ; ~5+d4-2
3 3 3
ii.  The biscetors of a triangle are concurrent

]=rz.—n

Proof: If ABC is a triangle with vertices Alx, »),.B(x,,».) and Cix,y,), whose lengths are
[4B|= c,|[BC|= aand |C|= b, then, the position vectors of A, B and C are respectively:

r=E ) =xi+nj, =000 =xi+ v, n=05.p)=xi+pi

Consider AD, BE and CF are the internal bisectors of the angles A, B X

and C that meet at centroid G. This is shown in Figure 7.5.

If AD is the internal bisector of angle A, then:
BD_BA _ BD .

= STIC= g - : c
DC_ AC P DE b:: BD:DC=c:b ,m - 5
This means that D divides BC internally in the ratio c:b and O+ -
the position vector of I is therefore: E’%& Figure 7.5
: e
. BD_DC BD+DC a ac
A Hi — = = - s
o c b ct+b cth c+bh (1)
ac
mal bisector of the angle B, then, A6 AE. - RiCE DG:GA=a:(b+c)

br;
+(b+ 1 E‘L‘t.._?_
ar +{ c)[ b4+e

] =ditbrvon _ alx,y)+b(x,y)+clx, )
a+b+c

a+bsc at+b+e

The position vector of G(x, y) is: r=

boT FomsALE
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The coordinates of the centroid Gix,

Glx,y) = m_ﬁtﬂﬂ’l"-’ﬁﬂ] (iv
: obte " (athhe the point G
i ;
Similarly, the internal bisector of the angle C also paﬁ:s tlzr:;u(ﬁ_h concl.lljr?fl:ﬁcy. o Thus' the
angle bisectors of a triangle ABC are concurrent and G(x, ) s the po

components:

: : nt i s
Muhammad Ayaan hasa triangular piece of backyard where he wants to build a SWitnning

; built there?

pool. How can he find the largest circular pool that can be 3 )
@RIEE The largest possible circular pool would have the same size as the largest circle that cqy ,
inscribed in the tciangular backyard. The largest circle that can be inscribed in a triangle is incircle, Ty,
can be determined by finding the point of concurrency of the angle bisectors of each comer of the
backyard and then making a circle with this point as center and the shortest distance from thig point
the boundary as radius.

ISETII 5 | Find the length JO.

Here, O is the point of cancurrency of the three angle bisectors of ALMN and therefore is the
incenter. The incenter is equidistant from the sides of the :
triangle. That is, JO = HO = [0, L<
We have the measures of two sides of the right triangle
AHOL, s0 it is possible to find the length of the third side,
Use the Pythagorean Theorem to find the length HO.

=J(LOY —~(HLY =I3" 217 = Jigo1aa =25=35

Since JO = HO, the length JO also equals 5 units,

. )

1 'i:he three points are A (-1,3), B (21) and C (5,-1). Show that | AB[+| BC|=| AC|
b1 h idpoi i £ -
each case, find the midpoin of the line segmen PQ joining the two points P(x,,,) and Qlxy, 1)

a. P(1020), Q(-12,-5) b. Planb (0 1 PT iJ
a:-6), Q(-a, &) 5 p(E -IJ.Q(E,?

3 In each case, find the coord; 2 ; g
¢ coordinates of the pojnt R(x.y) which divides the line segment PQ joininé

Figure 7.6 N

the two points

* P12, 004 intheratio 57, 4, PG4, QC-6,2) in the ratio 312
¥ 10 =2,
¢ P(-6.7), O(5,4) in the ratio 2.,
=1,

4. In cach case, in what ratjg is the |
line g S
Q. ) divided by the pojny ey »: BTN PQ Goining the 1wo points P(x, ) ™

a PE10), ot—n.ﬁm.ﬂ[—;.i?]
5).

5, Find the centroid of the triangle

3
b, P(-2,4), Q(3,6), RG—-;J-
a. A(4,-2). B(-24), C(5,5)

ﬁﬂ& W}‘IDS{- Y
CHices i
(3.5), m’ﬁa;r‘c (_t‘?c foITowmg:

5
183 30 e AqLL, B2 C4F

y)is obtained from equation (i) by cquating the , ,,,

e

UNIT-7

[EEY Stopeofa Straight Line »
The slope of a line is a measure of the when

BC
“steepness™ of the line, and whether it rises, or falls when / [\ .
maving ffom leftto right. The linc from A to 5 rises up, while 4 D {
the line from C to D goes down are depicied in the Figurc 7.6; Figure 7.6 |

Slope of a line

The graph of a line can be drawn
knowing only one point on the line if the
“steepness” of the line is known, too,

“A number that measure the “steepness” of a
line is called slope of a line.”

If move off the line horizontally to
the right first or move up or down
(vertically) to return to the line, then the slope of the line is the “steepness” defined as the ratio of the

vertical rise to the horizontal run:  slope= %, the run is always a movement to the right

PLANE ANALYTIC GEOMETRY STRAIGHT LINE

RUN——

Figure 7.7

Formula to find the slope of a line passing through two points »
Mathematically, if any two points on a line are ¥
available, then their join makes a constant angle with a fixed E/TL
direction and the angle so formed is independent of the choice
of the two points on the line. This is a precise way of saying A L
that any line has a constant slope. It is customary to measure
the angle @ which a line makes with the positive direction of ¥4 ) N x
the x-axis. The quantity tan0is defined 1o be the slope of the K
line and is denoted by m. The slope of a line is also referred to = Figure 7.8
gradient of the line.
For illustration, if A(x, 3} and B(x,, y,), wherex, # x,, are any two points, then their join develops a
line L that makes a’ constant angle § with the x-avis. Draw AM, and BN parallel to y-axis and AL
parallel to x-axis.
The slope m of a line L through the two points A(x, ) and B(x,, 1.), is therefore:
LB _NB-NL_NB-AM _» -

: R ~ON—OM 5= ®
RELTI 6] Find the slope m of the line L through the points

(a). E(2,4) and F(4,6) {B). M(3,1) and N(-1,3)

The standard equation of a line is

a. The given two points E(2,4) and F(4,6) form a line L. whose |y = mx+ ¢ where m is a slope.
: -y _6-4 2
slope is; m=—-'l'—-._y J1;——=—=|
X1—x 4-2 2
b,

The given two points M(3,1) and N(~1.3) is form 4 line L. whose slope is:

Xa=x -1-3 :

T
2

KoT FoRGALE
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.
Condition for two straight lines with given slopes are
{a). Parallel to each other (b). Perpendicular to each other

a. Parallel to cach other ines L, and L.
If L, and L, are the two lines having slopes ny andm,, then the lines L, 24 Baralll

they make the same angle with the x-axis, that means they have the same slope. Conversely, if twg lines
h

{ L, and L, have the same slope, then they will make the same angle <
with the x-axis and the lines L, and L, are therefore parallel for b

@ L
b4

and L, are respectivelym, =tanc andm, =tanf. From the Figure 7.9, it is clear that

which:  m, = m, (i)
It is important to note that the lines parallel to x-axis have
zero slopes whereas the lines parallel to y-axis have the slope <. 0,
h. Perpendicular to each other : /
If L, and L, are the two perpendicular lines make the
anglesgand P with the x-axis, then the slopes of the lines L,

N O

Figure 7.9

n n
—=f-a =pf=—+a
-2 >pazre

tanf = Inll[%*i—ﬂ], taketan of both sides

1 ' =
=—m1tl=—la“—u (ii) ‘
The given lines L, and L, are found perpendicular, since the product of their slopes equals —1:
&

mym =lanma.n,ﬂ'=lana[———]-_—71

iy : e (iii)

mquaﬁon of a Straight Line Parallel to Co-ordinate Axes
m Equation of a straight line parallel to

© y-axis and at distance ‘e’ from it

© x-axis and at a distance 6’ from it.
I y-uxls and a1 a distance ‘a* from jt

Let PQ be a straight line paralle] 1o Y-axis at a distance ‘a’ units

from it see Figure 7.10. This is very clear, that all the points an the line PQ *
have the same ordinate say 'b", Therefore, PQ can be considered as th
locus of a point at a distance ‘a’ from ¥-axis and all points on th:s er

refore, the equation of straight line is parallel to

1. Ifa=0, then the straight line coincides wij,
ii. If PQ is paralle] and to the left of y-axis ap

the y-axis angd jis o

= quation becomes x = 0.
Adistange ‘", then *

its equation js x = —b,

PLANE ANALYTIC GEOMETRY STRAIGHT Ling
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1"';""-.“ Find the equation of straight line parallel to y-axis at a distance 5 units on the right side of

T Sivce, x=a (i)

. 5, the distance is 5 units to right side of y-axis, so, equation (i)

becomes x=35 4

i, x=axds and at o distance *b* from it T rs o
Let PQ be a straight line parallel to x-axis at a distance *5° units from it [ b

see Figure 7.11. This is every clear that all the points on the same ordinate say, ‘b,

Therefore, PQ can be considered as the locus of a point at a distance *b' from x- 0
axis and all points on the PQ satisfy the condition y = b. Therefore, the equation v
of a straight line is parallel to x-axis at a distance b from it ife.g,  y=b. Figure 7.11
Y
@ Remember ”—
i. [Ifb—0,then the straight line coincides with the x-axis and its equation becomes y = 0.
ii. If PQ is parallel and below the x-axis at a distance *b’, then its equation is 3 = =b. -

Standard Form of Equation of a Straight Line '

Because of their simplicity, linear equation (line) is used in many applications to describe
relationships between two variables. We shall see some of these applications in this unit. First, we need
to develop some standard forms that are related to linear equations.

(i) Intercepis of a straight line ¥
“If a straight line AB intersects x—axis at C and y-axis at D, A
then OC is called the x-intercept of AB on the x—axis and OD is D

called the y-intercept of AB on the y—axis.
AT 8 |Find the x and y intercepts of a line 2x+4y+6=0.

The x-intercept of a line is obtained by putting y=0ina
line: 2x+4y+6=0
2x+4{0)=-6= 2x=—6=x=-3
The y-intercept of a line is obtained by putting x = 0 in a line:
2x+4y+6=0 :
20)+dy=—6=4y=—6= y=-3
The general criteria are that a line in two dimensional space can be determined by specifying its
slope and just one point.
(i) Slope-Intercept Form
Let L be the line see Figure 7.13 develops the y-intercept ¢ on ¥

x'e "J‘I’ C-‘JB > X
yf

Figure 7.12

the y-axis. The line L also makes an angle® with the positive Pl
direction of the x-axis that develops a slope m = tan6. ¥
Let P(x,y) be any point on the line L. Draw PM parallel to y-axis and
CN parallel to x-axis that give
CN=OM=x, G : N
NP=MP-MN=MP-0C= y-¢ ER e e + ik

.. In APCN, the angle is ZPNC = 90" and the slope of the line L
s giving the slope-intercept form of the line L:

Ko7 FoRSALE

Figure 7.13
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NP y—c
CN—-ta.nB::u = =tanf .

= y—c=xtan® 5 .
= y=xtanf+c=mx+c i . . :
1f l‘.il: straight line L passes through the Uﬂﬁ:‘ (3: n?t.g;hfh: ;q:m?rci';.d] :I}t!?hzqil:.:::n;;i I:m L
'heuam:sy=mx.1ny=mx+c,mdenotcsthnslopea cde eaiky
ofy.

. - & - _- - ¥ 2 +3 =l
CRTLTANS | Determine the slopes of the following lines: b sy =g o Tehdy=h

a. . Forthe slope, solve the given line for y to u'mam:.x—-y=5_ = —x+5 = y=x-5
Thus, the slope of the line is the coefficient of x-term which is m = 1.
b. For the slope of the line, solve the given line for p to obtain:
2
2x4+3y=6 = Iy=-2x+6 = y=-§x+2
Thus, the slope of the line is the coefficient of x~term which 15 m = -% :
|':\:Illlp1l:'m Find an equation of the line with slope 4, when the p-intercept is 6.

MRmu (i) is used for the assumptions m =4, ¢ = 6 to obtain the required slope-intercept form

of a line: y=dx+6 v
i Point-Slope Form P r;,L
If L is a line see Figure 7.14 passing through the :
point A(x,, y;)and P(x, y) is any point on a line L, then the slope of the 4 y
line L is giving the point-slope form of a line L: Y
=2 BEW o, T e
X=X M
y=y=m(x-x) (i) Figure 7.14

SETIIAM 11 | Find an equation of a line with slope 4 and passes through the point (2,4).
maml( (ii) s used for the assumptions m=4, A(x, y)=A(2,4) to obtain the required poit-
slope form of a line: y-d=d4(x-12)

—4x+y-4+48=0= —4y+

y+Hd=0=dx—y-4=
Hin Two-Point Form gl

If L is a line see Figure 7.15 passing through the i
wo
Alx,, ) and B(x,, y,), then the slope of the line L js: e
mgy!-yl
5-x, (i)
* Ifthe equation ofaline L through the Alx, ) with slope m is
Y=n=mix-x)

iv
then the equation of a line L through the 1w pu'i:m? K
B(x;, ¥;) is the equation of the two-point form o 1)) and

ek fa line L
.?_Y|=;:'__JE:'(JC-J:,) W
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X% >x
. Parameter r, let us draw AL and PM parallel to y-axis and AN [ P

= T, . P

: PLANE ANALYTIC GEOMETRY STRAIGHT LINE
[BETTA 12 ] Find an equation ofa line that

e passes through the two points P(—1,-2) and Q(-5,0).
EEIEID Result (v) is used for the assumptions P(x,, ) = P(<1,~ =Q(- i
required two—point form ofa line: Ao bl il

0-(-2) 2
—(-2)=———[x=(- ===
y=0=2) _5_(_”[1 =N = y+2=—(x+1)
::,-4y.—3=2x+2=‘>2x+4y+10=0:>x+2y+5=0
iv. Double-Intercepts Form

Ifa line L intersects the x-axis and y-axis at points A and B, then OA = a and OB = b are the x and
y-intercepts of the line L.

Let Plx,y) be any point on the line L. Draw PM parallel to y-axis &
and PN parallel to x-axis. From the Figure 7.16, the comparison of

similar triangles ABNPand APMA s giving the equation of double- I
? 2 NE NP
t form of i 2 —_—=— i
intercept form of a line VT " g ~
OB-ON__ OM = b—y__x =5 Bk it v,
ON 0A -OM ¥ a-x A

B . 0 5@ Figure 7,16
—_—a = 1 —— = T
P i o

Exa mi'lli':"‘-m Find the equation of a line whose x and} intercepts are (3,0) and (0,4) respectively.
@EIEED Result (vi) is used for the assumptions a = 3, &= 4 to obtain the required line:

£‘I-z =1

3
4x+3y

T =1= 4x+3y=12 = 4x+3y-12=0

V. Symmetric Form
Let a line L through point A(x,, y,) makes an angle 8 with the positive direction of the x-axis.
If P(x, y) is any point on the line L, then AP = r, If we allow ¥

I to vary with any positive or negative values, then P will take any

position on the line L, Conversely, if P is given to be any point on

the line L, then the unique value of r can be found which in fact is

the distance of P from A. Thus, it follows that r serves as a N

parameter of point P.

To find the coordinates of a point P in terms of the

parallel to x-axis, that with the following assumptions Y -
OM=0L+LM =0L+AN Figure 7.17
MP = MN+ NP = LA+ NP (vil)
dvelops the parametric cquations of a line L through the point A(x,, »,) atanangle 6:
OM =0L+LM MP = MN+ NP
=0L+AN =LA+ NP

x=x,+rcosh, ousﬂ=-‘“;_—N 3 Y=y, +rsing, sinﬂ;&

{viii}
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The parametric equations automatically give the symmetric form ofa line L after simplification;
X=-1 3
it .
a0 | men R, (ix)
Y—» e cosB sinf -
i B 3 u . = = ']
14 Find the equation of a straight line with inclination 45° and passing through the p;,
(2+2).
@D Here we have inclination o=45°and point (5,)=(2,32). The equation of line j i,
i Ny
Substitute the above values in the formula to get the equation of a straight line.
222 _y=\2
cos45°  sin45°

- =>sin45°{x-z)=cus4s°(y-Jz']

1 : 1

aE(.t 2) E{y J?-.}

= x=y=2+4/2=0
vi.  Normal Form

'(henmmnlﬁmnofalineis'theequaliunofalhlcintermsnfthc
length of the perpendicular on it from the origin and that perpendicular
makes an angle with the x-axis.

If a line L hlmlhex-axismﬂyax:’satpahls;&md B,
then OA and OB are the x and y-intercepts of the line L. Draw ON
pempendicular to line L that provides the perpendicular distance p from
the origin on the line Lwhichisd:numdbyON=p. If ON makes an
angle Bwith the positive direction of the *-axis, then the x and y- Figure 7.18(b)
inmtplsofﬂleﬁncl.amrﬁpncli\ﬂy: ; : !

cosml i ik
OA:}DA psecd

x
sinB=E";—=aOB=pws¢uﬂ i
IfOA and OB u'clhermldy-inlmcpu ofaline L, Ihmttmugh:\:gujc (x), the equation of a normal
Iin:Linlmﬂfpﬂ'peudimh:diﬁmeepanﬂangkﬂis: L 2

—_—— ]

pma*'}fm_i;e'tl = xcos0+ysing=p (xi)

The normal form of a line is alsg referred to Perpendicular form, of a line,

s 15 Find the coresponding equation of

i if 3 5 o . from
the origin on a line is 3 units that mmm“sl““;:' the length of the perpendicular distance

Result s used i s
m ] ﬂh‘ﬂwﬂﬁl Umptions P=3, =120 obtain the required aqustinrlof‘ ling:

x4+ fiy=6= x=3y+6=0

NOT FORSALE

o . o_ -
xc05]20"+ ysin]20%=13 =-‘—2—x-|.-?y,=3=$

img :

UNIT-6

Now, use trigonometric substitutions in equation (ii)

u=m&%=s¢c’ﬁ=&d;.-=m’0,dﬂ

W, rtanf.sec’d tan D.sec’0
Iu’+ld"_! tan® 0 +1 ] sec’® .
Return substitutions in (jii)

x-2 o 0 "
fmcﬁ- In( cos(tan @)+c
=-1n.‘“‘"f +C
[E3T}
-1
g (x4 2 ic

1+ (x+2)

1
=— C
< Jl4 (e 2)° 4

=-1nkl+(x+2)’] 3

+c=%m{1+(x+z)=|+c

e

Hae, [ oiaers®=ghi+eraijec
=l|u|x*+4x+s|+c
2

x+2

PENTIE 9 | Evaluate the integral Imd"
X
amm s
X 4dx+s

By completing square in denominator
x+2 x+2 x+2
dy = ‘ﬁ‘= dr
V¥ +4x+5 IJ;'+4;+4+] 'I-J{x+2)’+1

Let uax-i-z.%=]=:du=dr

J' x+2 dx “I H du
;}(H 2) +1 '+l
Now, use trigonometric substitutions in equation (ij)
= txne,%=su’ 0= du =sec*0.a8
u tanf.sec’ 0
d,u =
Vi 41 J Jian?g +1
Retum substitutions in (iii)

tanBsec’ 0 Iumﬂ.sac’ ]

d’ﬂ-I N o sech

NOT RoRBALE

dﬂ:_[tanﬂ-mﬁaﬂ:sec&+c

INTEGRATION

.d:g-jmadﬂ=j%.dﬂ=—1n|msﬂ|+c (iii)

U]

(ii)

(iif)




UNIT-6 "
INTEGRATION
X4 2

jmj?dtzsu(tan"(ﬁ]]+f
= -Jl+u: +C = \,,']-1-[.\*+2f|z +C

Hence, X+2 ==
jmdx—dx +dx+5+C
mntegration by Parts

In previous sections, we have leamnt some of the basic techniques of integration to solve
problems like [x*dvand [sinxey. But, how.do we evaluate an integral whose integrand is the product
of two functions such as _Fxsin.\'dr. Ixe’cit. !xlhxdx

To solve integral of the type like that, we have a technique called integration by parts,
Recognition of integration by parts
For this technique, recall the differentiation of the product of two functions f(x) and g(x) w.r.t x:
SLr020)= 100 & () + 29 L 1= £ )+ 800 (3)
F00g (=2 17008 (9] g () @
The integral of (i) with respect to x is giving
[ 1 W= [ LU g~ [ 807 (ko= F(x)g00) - [ (e

The equation that can be transformed into more convenient form by substituting #=ffx) and
v=g(x), du=[(x)dc and dv=g'()dv:  [udv=uv~ fvdu i
This is the standard form of the integration by parts formula,

BTN 10| Evaluate the integral _[xe‘dn:.
@I The integral rule (ii) with « = x and %=e' is used to obtain:
[xede=xe - [e (dr, Hh=1 dv=e'dy, v =¢*
=xp'—p"+C

Applying method of integration by parts to evaluate integrals of the following

types [Va'-xdx, [Va'+x, [V¥ -2
i. Evaluate Ida’— x’dx
m The given integral is

! =j ﬂ: -x]dl: (l}

. dv
In this problem, we choose u =+/a”~x* and E:"l to integrate the integrand of (j):
TR (x)(=x) du 1,
I1=Ia*—x'dx= a’—x’{x)—fmc&' E;‘%(a’_xt)‘ (=2x), dv=ldx, v=x
2

e 5 X dr=xFd (@ = (a5

—1_ | i L x‘”m—. add and subtract 4°
159 BT FORGALE
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=xa -+ fﬁ%_jm<&=rm+a,l

A < 23
2'*1J;:+a}smlg+c, I g =sin '

b 1
Ja‘-x’ %

al=

1 T
X

a[trs}u:-f‘*a’ cax C
2 2 2
ii. Evaluate I at+ xdx
Souion SRS NG g
In this problem, we choose i =+/4*+»* and % =1 to integratc the integrand of (j):
l = J"\!ﬂi -I'xz{il‘

du N, s sl =
- Ty A0y (.I){X} e S—=—(a"+ 22 (2x), dv=lde, x=v
G gl a2

2 2 AL
=xa 45 —-Iﬁrﬁ:xda’ +xt= !'(aj-';)_ra_‘ add and subtract
a

a +x
a3 g e e | L
=X q=+x= +j7%—j a=+_~¢:l’h’=.‘: a+x +a Im -1
5 dx T ]
21=xa}a’+x=+arlltlx+\ﬂa’+.r‘i+C‘ jﬁ=lnlx+~.lla +x 1
1='¥——"al+'fl+“—=h1|x+«ﬂ'a"°+x*l+—f
2

2
Thus, I a"".t?ﬁ’-\'=§1| z'i~x:'+i2ll:i‘.1|.‘+~.‘ﬂ=-In:r!1+C
iii. Evaluate IJ:‘—azd::
[ Soiution IR RSP i

= dv P 1 _
In this problem, we choose u = 4 x*— g*and i 1 1o integrate the integrand of (j)

1= [y g .
il L s Rt re= =
=m“j (:—3(._13:# _-_i:i{r-‘q} e dv=ldx=v=x
: it x*
=x1fx’—a3—jJT;_i?dt=x\I|x‘—n jﬁ‘f‘
; 2 3
“-+(x i ] add and subtract &

NOT FORSALE
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e
1-xv’?—‘a‘=_a_=,n[m“].a
i :

+C

f 2 2
Thus, W= a2, [ ;] 4
. al
Evaluation of integrals using integration by parts
Ex:m'-plc"m Evaluate the imegml_[x In xelx.

m The integral rule Ir.-dv =uv— _fm‘n with substitution = In xand & x is used 1o obtain:
z
thm#:hx[ii-fg(l}h - L
2 2 x dx

2 2 t 2 2
X 1 x If x X x
=S he——|xdrt C=Zmg—- X o2, 2
> 2_[ + 5 nx 2[ ]«C ) In x 3 +C
Exn-;nplti"m Evaluate the integral [o"sin x .

m The integral is

I= [ &"sin xdx

The integral rule Iudv =uv
dv/dv=sinx is used to obtain:

I=[e*sinxdr = p"(—cosx)— J(=cos x)edx

(1)
— fvdu with substitution =e" (let u be either ¢* or sin x) and

- ¥ d" z
. '&;=e ¥ E =5Inx
=—g"cosx+ [ g'cosxdy Gy

It appears that we have not made any progress since we cannot evaluate the new integral.
However, the form of the new integral prompts us to apply the technique a second time and see what
happens.

Again, the integral of the integral part of equation (ii) with
used in (ii) to obtain:

I=je*sinm=—e‘msx+[fe'm]

:-e’cosx+[e‘ sinx—I(sin.r)(e‘}c&]«-C . du

i Ev—=cosx
T de

substitution u = »" and % =cosx i§

==t uosx-r-e'sinx—_[e‘ sinxde+ C

I=—¢e"cosx+e'sinx—I[+C

=2l=¢"(sinx—cosx)+C
e'(sinx—cosx) _'E
2 2

*(sinx—cos x
Thus, Jg’ﬁnxdx: e_[_z__l +C

=I=

| 161 ¥
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Evaluate the following indefinite inlegmls by method of substitution:

A Is:‘n"x 08 xdx b. I'U'si:l’ X cos xdx c dex
cosx
d e ; uot\"; ¢ sinx=cosx
Ie’s:n & - I Qx o !-Sill.'(-i-lﬁos.l'
- Use suitable substitutions and tables 1o evaluate the following indefinite integrals: i
dx sinx d i
B | b, dx c. i
j.,1.;’-146 -fms'x-;-l J:ieh_a |
2x+5 24x
d |s——a € dx
Ix’+4x+5 : J-:h_.h-f
3. Evaluate the following by using integration by parts.
A, Ix’e"dx b, _[zno:xd.: c. fea‘sfn[.rl o
d. Ie‘ cos xdx e jm‘n" (x) dr L. Ie"' sin{e™ )dr

Archimedes was a Greek mathematician, physicist and astronomer, He was known as the
leading stientist in classical antiquity. His mathematical work is to moderm in technique
ﬁlllitisbﬂc{ydiﬂiﬂgﬁs&uble&omlhﬂufl?*mmﬂmaﬁﬁw.llwnﬂdoﬂe
without the benefits of algebra or a convenient number system. He also developed general
method for finding the areas and volumes. He used the method to find areas banded by
parabolas and spirals and to find volume of cylinders, paraboloids and segments of spheres.
Archimedes also gave 3 procedure to find approximating values of = and banded its value

A ry
10 .1 (07BE-22BC)
[3ﬁ,3?].Htahoimmdamﬂmdwﬁnduusqmmmmdmmﬂmmmbamdmﬂnﬁmk

myriad for representing numbers as large as one followed by 80 million billion zeros,
i wasmonpqwdul‘hisdimv:ryut’anmhndfwﬁndingmcvohrneorasphem.ﬂcshm\edﬂmﬁp

&
volmmul‘aaphmlséhwlumorﬂucs-lhﬂmmm&nuhmmumm%{chmﬂumal F
Palimpsest found in the Constantinople in 1906, In that treatise Archimedes explain how he made some of his

discoveries that arc participating in the main idea of the integral calculus. i
;
|
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e e ——
Integration using partial fractions

e as a tool for integration. This process may be

Partial fraction decomposition has great Vﬁl“_ : : A3 sk
thought of as the "reverse" of adding fractional algebraic expressions, an it allows us to break y
rational expressions into simpler terms. Partial fraction’ decomposilion 15 an algcbra_.m procedure for
expressing a reduced rational function as a sum of fractional parts. For example, the rational expression
. P(x) : (i)
f== D(x) .
can be decomposed into partial fractions only if P(x) and D(x} have no common factors and if the degree
of P(x) is less than the degree of Dfx). If the degree of Pix) is greater than or equal to_the degree of D),
then use division to obtain a polymmial plus a proper fraction. For example, the rational function afier
; 42 —dx x-3 -1 i
division is: _"_—;_—_-‘—_-2——— =x' +3x+1+ s ] (ii)
+ +3x41 is our polynomial term

_g;‘”_]_z is our proper fraction ( this is the part which requires decomposition into partial fractions).

—x- 5

In algebra, the theory of equations tells us that any polynomial P(x) with real coefficients canbe

expressed as a product of linear and irreducible quadratic powers, some of which may be repeated. This

fact can be used to justify the following gencral procedure for obtaining the partial fraction
decomposition of a rational function.

Let f(x)= P(x)

Dix)

The steps involved in decomposing the rational function are the following: 3 _ -l

I, Ifthe degree of P(x) is greater than or equal to the degree of D(x), use long division to exXpress

,where P(x) and D(x) have no common factors and D{x)= 0.

P i : S

.—l:il as the sum of a polynomial and a fraction f--(I—:'i.n which the degree of the remaindet

D(x) D(x) .

polynomial R(x) is less than the degree of the denominator polynomial D(x). : B

3. Factorize the denominator D(x) into the product of linear and irreducible quadratic powers:

Px : +B

L% Express B{‘—\"- as a cascading sum of partial fractions of the form A and -'-4'['_"'-.
(x) . G-y GEretl)]

Verify that the number of constants used is identical to the degree of the dgnmqin'm;r__- 3

: P f partial fraction o find [ %% where f(x) and £() are algebral®

[+ @m“’*‘“h'&“gﬁ)#ﬂ. o "
Evaluate the following integrals:
8x-1 3 :
@ = dx @). [x=6x+3 22 +x° +2x+4
o leegp j : dx
X=X I I:x_z)] fc) I__I:_IT:_IF-—-—-
Bx—1
L le—x—idx

The integrand is a proper fraction, so we stan |
4 v b . ' +1)
The denominator factors are the two d?’ ’._ﬂﬂor!ng the denominator x* —x—2= (7 2)x i
equal to the sum of the two partial fractions 1stinet linear factors, so we can set the rationd
8x—1 .

=, 4
X=2 x4]

|

._—._-—-—"'r-"

|163 (1;ﬁmw .
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: : .ermme the constants 4 and A, we multiply both sides of the equation (i) by (x -2) (x + 1)
; :@11.1.2 ; . Bx—l=A(x+ )+ A x-2) (i}
et x =2 =0 =>x =2 in equation (ii) to obtain: 8(2)~1= 4,(2+1)+ 4
: H = 2-2) = 15=34 =
Set x+1=0=>x=-1 in equation (ii) to obtain : I . Sk
B—D-l= A1+ 1)+ A,(-1-2) = —9=-34, = 4,=3
Use these constants values in equation (i) to obtain: Sx-1 = l‘+ [ + i
; Tk p ¥-x-2 x-2 x+l x-2 x+|
Use this decomposition instead of rational expression in the given integral to oblain:
j 8x—1

Axt-x-2

UNIT-6

B

(4]

o LS T | 5 3
de= IL—_‘E+;‘;—l|_|dx=_[‘x_—zdr-i-]-x—ﬂ-dxn5'|n[x—=2)+3-ln.(r+])+ InC

‘=In(x-2)"+In(x+1)’+InC=In Clx-2(x+1)

: J- X = ﬁ:l": 3 e
(x-2)°
The integrand is a proper fraction, so we start by factoring the denominator
_ T (x=2Y = (=2 (x-2)(x-2)
The denominator factors are the three repeated linear factars, so we can set the rational function
x‘-ﬁrtﬁ-:'i_‘_ Az _3 A : (i)
(x=2) x=2 (x-2)y (x-2)
To determine the constants 4, A,and 4,, we multiply both sides of the equation (i) by (x= 2y 0
obtain: f—6x+3=;€l{x-2)=+n!l(x—2)+ff,:&{xi-4x+4]+,!l{x-?.)+,{, (i)
Setx -2 =0 =x =2 in equation (ii) to obtain: '
2 -6Q)+3= AQR-2 3 A2-D+ 4 = =5=4, = 4 =3
For constants 4, 4,, equate the coefficients of ¢*and x on each side of equation (i) to obtain:
1= 4, x' terms —6=—4d,+d4, x terms
Solving this system of equations for the unknowns A4, and 4, to obtain 4, =1 and A, =-2
Use these constants values in equation (ii) to obtain: i
X —6x+3_ A A A _ 1 2 5
Fooxrl Al 2 e
x-2F *-2 (x-2 (x-2) =x-2 (x-2) (x-2
Use this decomposition instead of rational expression in the given integral to obain:

= oy gy
2 6x+3¢_=£[x1_2_ 2. 5,]dr=-m(x-1)—2“‘ Y et L) B

equal to the sum of the three partial fractions

(x-2) (x=2 (=-2¥) —2+1 =341
=I:|[.1:-2]+—2—-+ 5

——aC
(x-2) 2(x-=2)
o [ ax+2x44
3 .[___—’ -
I:x =1
The intergand is a proper fraction and the denominator factors are the two repeated quadratic
factors, so we can set the rational function equal to the sum of the two partial fractions:
20+xi 42044 _AxtB  Ax+B, :
(x+1) E+)F @+ ®

To determine the constants values, the similar procedure is used to obtain A=04=28=38,=I
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With these substitutions, the equation (i) becomes:

21’+x’+2x+4_ 3 + 2x+1 (ii)
P+ (F+) (D)
Integrate this decomposition to obtain: 1
3 2 +x*4+2x44 . ¢ 3 JP i Y
I (x* +1)? ‘I(x=+|}= +j{x‘+])
2+ x4 2x+4 3 2x ¥ 1 3
] A1y ‘#_I(,r’ﬂ}’dﬁj-{xzﬂ) +I{x’+l)

MNow the readers are in position, how to find the complete solution of the' question.

T B T e i T R TSR -]
Hint: I—(I,“)dr-lan -‘\:.I{:;+1)d‘ uu=x+

Iﬁ‘ﬁ:?’ x=tanf,dx =sec’d
+

B Evaluate the indefinite integrals after decomposing the following rational functions into partial
fractions: 3
1 b J»a:’+2x-1 j4x'+4x +x-1 q .[ 1
Ix(x-!] x(x+1) x+1) L~ |
x—x'+2 dx -x=-3 . x -1 de
b j x(x=1) '[x’—l E sz’-'i-l{& . h. Jf.-zx-ls
x + X432
U [ e i | S
- j[:ﬁ-l){x' +1) ] I(x‘-t-l)’
v 1 The rate at which the body eliminates a drug (in milliliters per hour) is given by
R _ 60
dr (t+1(1+2) : ;
where £ is the number of hours since the drug was administered, 1f R(0) = 0 is the current dru%
climination, how much of the drug is liminated during the first hour after it was administered
The fourth hour, after it was administered? - : 3 2
3. The rate of change of the voting population of a city with respect to time ¢ (in years) is estima
dN _ 100r
1o be dl l:l + 'I 2 m-
where N(t) is in thousands, If N(0) is the ¢ Y E ; h will this
population increase during the next 3 years? urment voting population, then how muc
4. An oil tanker aground on a reef s losing oil and Producing an ol slick that is radiating ?u[wnfd 2
Lo dr  top : e z ; :
at a rate approximated by _J- f1+9'f20 .
where r is the radius (in feet) of the ¢ : . - 1 after
4 minutes if the radius is r= g mc:::ucr: stick after ¢ minues. Find the radius of the sl'ck‘ :
s £ : *
'165 m@ﬂ
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INTEGRATION
X Definite ntegrai
“A definire integral is an |,
fa, 5] are limits or boundaries, = * " "' ©OMalnt start and end value, say a and b, where interval

Look at the follcwing figures, Fi 6.1 : . B g ; y
showing definite integral, gure 6.1 is showing the indefinite integral while the Figure 6.2 is
».

y

a b
Sx).fr.
Figure 6.2
Y as we have leamt in previous section for
definite integral simply calculate

Figure 6.1
Definite integrals can be caleulated in a same wa

calculation of indefinite integral, but there is slight difference, 1o find
indefinite integral at point a and at
£

point b, then subtract the result.
E:.\umplﬂ"'-.m Evaluate J-Izdt

1
D Herea=1,6=4andn=2.

4 301 |0 a? 5 wd ¥
[Pete=]Z—| +c=X] s¢ frrav=*—| +c
. 2+1), 3| = n o+l

For q=|,:,_1-+c 0}

For =481, ¢ (ii)

Subtract equation (i) from equation {ii)
. 44 2 64 1
Thus, _’I'x‘dr—[?l _T+£"-.-3--_z’_.21

Meﬁnlte integral as the limit of a sum

This limiting process is what we mean when
J(x)= * from x = 0 1o x = 2. It is written symbolically as

A= szt&=g

To calculate the approximate arca of
any mountain we use integration.

we say the area is the definite integral of

(1)
=0
We read symbol as "the area A equals the integral from x =0 to x = 2 of
The number 0 is called the lower limit of integration, the number 2 is
the function f(x)=Xx" is called the integrand and the dv tells

function f(x)= x* with respect to the variable x.

If £ (x) is continuous on the interval [a, b] and [a, B] is divided into n equal subintervals whose
t-hand points are %3 X3y, X,,, then the definite integral

of f{x) fomx=atox=his:
a=h
[Seae=lim @Dl rixys ot pie)

Tag

=hm3" f(e)Ax, i=1,23..n
i=l

NOT FoRSALE

the function f{x)= 2
called the upper limit of
us that we are integrating the

n

i
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UNIT-6 i
m}" d the actual area of the region bounded by the curve f(x)=x" and the x-axis i the,,
ind the ac N

interval [0, 2). i Sap S j
o-d_t——== )

m For n subintervals, the width of each rectangle is Ax=—p -

; a5
The right end points of the subintervals are =, 2,7

e S

2 2 x. 4 x. T -.-2—:-inaqua:inn{i]mo’otainthcaﬁiuaiam:
Substitutea=0,b= y H= =5 By =g ta .

A=:Ix1dt= !‘Lﬁlif(xi)&x
o il

= mlkx[f(xlhﬂxz]-r ek f(2)]

=lim> [_r[z]a,f[i'-]q[9}»..,.,+f(z]] : - f)=x
i) | " n JT. . 4”:
=m%[%+%+%§++%] | 4=?
-l_i_n_«:%[nz*ﬂ’+,.,..+n’]=\iﬂ:sl[méz"—+ﬂ]
=!mf;[1ﬁ3::ﬂ];]m[%+E+ﬁ—?1?]=%+0+ﬂ=%

Wnnﬂm&nw theorem of integral calculus g

: : i definite
ious section, we leamed that we can determine the area of a region with a d
imegmll.n]-lf::?cf with the tools available to us at this time, m‘raluating_ a definite ;t:i;yl‘lﬂ: using o
summation process is rather tedious and time consuming. Te provide us with a more gt
evaluating the definite integral, we now consider a very important lh::orcn:le e el
"fundamental theorem of integral calculus”. This explanation will show that the defin 4
lied in a general manner and not only to the concept of area, ot
=y To hl:lpgpmvidc a better understanding of the meaning of the fundamental theorem of
caleulus, let us begin with area of a region using definite integral -

Araa-T Six)k, (i

¥y y
y=fix)
xka x=bF

Figure 6.3
To develop the theorem, we

M.S )

)
(m. f (m))
T [¥=fx

X ﬂﬂ‘

Figure 6.4

ot ° need 10 introduce a new function called the area 1Y Coge
function indicates the area of the region under the graph of he Fatalon Eor s A% in the
| w
3 167 o7 FOR
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‘| drops out as illustrated below:
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INTEGRATION

from a to x that must be continuous and non-negative on the interval

_ IJTI_‘wc :r;c;casc x by Ax, then the area A(x) under the curve will increase by an amount that we call

A din Figure 64, We can see that A 4 is slightly bigger than the area of the inscribed rectangle and
slightly smaller than the area

t : of the circumscribed rectangle. In Figure 6.5 th i
inscribed (within the curve) and the large rectangle is circumicribeﬂ. ol i b

For the area of the inscribed rectangle, we take the minimum value of S(x) within the closed
interval [x,x+ Ax]. We call this minimum value f(m).

For the area of the circumseribed rectangle, we take the maximum value within the closed
interval [x,x+Ax]. We refer to this value as f (M). Hence the minimum area is Sim)Ax and the
maximum area is (M )Ax,

Algebraically, we can write  f(m)Ax< A A < F(M)Ax

The area function A(x) is the area
[a, B].

f(m) < ir—”s F(M), Ax20 (ii)
If we take the limit as Ax —0, then § (m) and f (M) approach the same point on the curve and
i A
both approach f(x) S(x)< lim el ity
- dA . AA dd
which states that . E_—=f(x], .!.!Tn g (iii)
Integrating (iii) to obtain Alx)= F(x)+C (iv)

Here F(x) is the antiderivative of f(x). To détermine a real value of Afx), we must solve equation (iv) .

for C.
Putx=ain (iv) to obtain:  A(a)=F(a)+C =0=F(a)+C, Ala)=0 = C=—F(a)
Putx=kin (iv) to obtain: *~ A@)=FB+C = Ab)=Fb)—-Ffa), C=—Ffa) (v)

The last equation (v) tells us that if it is possible to find an antiderivative of f(x), then we can
=k

evaluate the definite integral j' f(x)dx. This is nicely condensed in the fundamental theorem.

Statement: If a function f(x) is continuous on the closed interval [a,b]. then the definite integral of
afunction f(x) in the interval [a,b] is:

=h
[ f@)de=|F|Z, = F(b)-F(a)

Proof; Here F (x) is any function such that F'(x)= £(x) forall x in [a, b].

It is important to recognize that the fundamental theorem of integral calculus describes a
means for evaluating a definite integral. It does not provide us with a technique for finding the
antiderivative. To find the antiderivative of a definite integral, we use the same techniques we used to
find the antiderivative of the indefinite integral. But what happens to the constant C? This constant C

[rtde=[Fe+ 7 =[(F) +C)~(Fla)+ C) ]
= F(b)-F(a)+C~C = F(b)~ F(a) (vi)
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UNIT-6

Basle properties of the definite Integrals

fien I to use the seven basic propertjeg
In computations involving integrals, it is often helpfu Telateq
fundamental theorem of calculus that are I'md below:

L [f{x}dx

Proof: By the definition of the definite integral
[ £(axdc = im " 1) = 1im 3 1) (0)
") g ] i

-! () = F(c) - F(a)

U]

b
If (e = F(8) - F(e)

Challenge (i}

By adding (:j and (ji)

Show that i dx = g
al J.ﬂ’.l’) Oby Using Jf(xlc&i—]f(ﬂd; m F(#)“‘F(b]-—ﬁ{{f

fundamental theorem fomgn]
calculus.

=F(B)-F(a)=| fixide
R T, ol A '[ Use definition of the definite integral to
n show

") Hm f':‘rm f': m 4 € ]
= i,;n;[o] =0  hence, If(.r)dt =0 I I ¢ +_[f(x)dr |hﬂlff[xki== I_."{x):k+ jf(.t)d\.- :

I 0 e 2 f(xﬁ' when (— =
il jf{x)tﬁt: _I'f(y)etp V. :I'f(-r)dr— .! S=x)= f(x)
Prun' i 0E 1 fle " # when f(—x) = - f(x)
Proo x) is integral on interval
Let F(x)= f(x), [a, b] be an interval then by the fundamental theorem of integral calculus. éeinit negal o 7 s Imiﬂ;‘:z: d‘:rntl':'l'“:‘fm;“:'"bﬂr jmﬂf';:; foerval Eo, . e
_[f(xldt F(b)-F(a) (i)

Jf(x)dv =I ftx)mf flx)de= j f(—x)d(~x}+_|' S(x)de = —j S(=x)dr+ I Sx)dx
alsu,[f(y)aw= F(b)~F(a) i - Show that j‘ fxxde= f(y}aj»br

using the def nition ::f definile
integral.

=

g f(—x}dr+J S )+ o= { ks - esattr g

0, when f(-x)=—f(x)
| Extend beehnlquu of integration using properties to calculate lllﬂhi‘lklllw.‘
D16 Evaluate the followmg definite integrals:

] &
Hence, by (i) and (i) [ £(x)de= [ f(y)ay (proved)

I, j,r(m:- -If(x}dr
Proof: By using the definition of definite integrate
[ fdc= hmE ()

Example!

fa). I(zx +Hax+l)dr @), I{zf+4x+1)a& j{zy +ayil)dy @), j‘(x +Dedv=— f{x + e

Challenge .
Use fundamental th
integral calculus to

slmwj' Jf(xkir:l-“!"f (x)dr:

(. fo’+])dr= J’(; +l}dx+I[x +Ddx (), j' K= Ix’dﬁjrdz 2]:
2
ma. i(lr*+4.r+l}dz ‘—zi-i-g--u‘

16 16 4 92 11_70 35
[3 2 2)‘[3+2”J=?'?=?=?

1
b, 1[(2x=+4x+uas:=j'(2y’+4y+ll@-
I

and Ifmwc-ygz,ffm where Ax= 2=
L] = .

=Eﬂif(-¥.}[ﬂ]=lim[-—2‘r{x)bt“ J

._nmEf(x.}-—— =-[ F(x)dx Hence, I f{x}dw-f ()
iv. ]'.."lx)dx jmm[mmmq,

] 2x 4.!’ 3 2
N S o T 35_35 .
Proof: Let F'(x)=f(x),a<x<p i < ”,‘ -_+Ty.+ R
By using the fundamenta] theo ‘ f
- "em of integral caloylys, @ [ e nden o
[ f @)= F(b)~ F(a)where fis “OMituous on [, 41t - 2 g
" a, n
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UNIT-8

d. 1i(st’ +1)dx= ](:’ + 1)+ j(xul}d‘»
L] o ]

: 1 14 14
x x P I_‘!=5+E+2—[—+1]='_=_—

\TH\,=T+’[.+?+ S T e e
al : 1 a 3
e I:’dr:jx’dﬁ-[l'ii"zjx‘“'
=1 - o ’ =
Pl 222
‘2[5 >4 =

il =lﬁ|a +£[=2
3l 3y, Ve
2e*" -3

1
Evaluate the following definite integrals: (). !—'?“ﬂ‘x @)

P‘:—f' de= [(26 -3¢ de
[F] L]

Ax z 3 i y 3 =2 o 3 Vil AT Sy
& e . 11 = S By '. et ="+ 1 5.092
=i1__3_[ =g +=p "[81 e (g = - 28 2 s

b. We need to substitute a new variable u(x):

du du du
=u, i"(x’]=— AR R

S dodis i
x_ —t==0+—-4+
3[:3+3 3

xsin x*dy

| B Mt | 2

dx dx
The lower and upper limit of r=§aud x‘% areused in x* =wto obtain the lower and upper limit of &

x.%;x?="=>[§]l=u:;-§=u

2
=&x=%:x:=|r=b[§].mu=-ﬂ:=w
Substitute all these in the given integral to obtain:
’!

£ = ol
e _|meosuls  yf 2 5
xsin fﬁ—5£3|nu¢| —lﬂ%—-i[ws?—m?]
£ -

=
£l '

='—;[m(z.mﬂ—wsu.ﬂ?ﬁll=%‘(4.7313-0A555)= '?1(_1*3313}= 0.6189

I .
[EEIETE) Evaluate th following definte integras (@ ;'xe‘dx ®. [esineE
| ]

m a ':'hclmhﬂi‘!.“ﬂfi.mmﬂﬂnbymnswiﬂl “=x and %:g‘ is used to oblai”
[xete=fxet|, - [e* 1
- Ll

INTEGRATION
=|:'EI -O}-IGIE_-'(é-o:'-[ﬂl*e.J:el—e’-l-e'_—,l

1
b. The integral is l-.-[elsjnm
o

The integration by parts rufe with substitution y = &

3 [:

and — =gijp x 15 used to obtain;
| de
1= [ ¢*sin xd

o

1 "
=J¢’('°°”]E '!':"W”}ﬂ'dt, u=g* o= e'dy, %= sinx, v=—cosx

n-{e’msl—e‘cusa)-r-je*mm
a

I 1
=~2.718(0.540)+ 1+ fe* cos.xd = -0.468+ Jetcosxax  Use radians
[ = L]

I}
=~0.468+ [e” cos xdr Again integration by parts
L]

=-0.468+ le" sian; -j'(sinx)(g"}a::
[}

u-?,%—ms:, veginx
by ‘1
=~0.468+ (¢'sin1 - ¢°sin 0) - [e” sin xdx
(]
I'=-0.468+(2.718(0.841)~ (1)(0)) 1
21=-0.468+2.287=1.819
1=188 o
2

m:‘]nite integral as the area under the curve

If f(x) is comtimeous and S(x)200n the closed interval [a. b). then the area under a curve
Y =f(x) on the interval [a, b) is given by the definite integral of f(x) on [a, B):
1]
Area= [f(x)dc = F(b)- F(a) M
Area between g curve and the x-axis

The steps involved in finding the area between a curve and
the x-axis are the following;
i

The definite integral [ f(x)dx presents the sum of the signed

ﬂeasbeuvumhngmphofy =f{x) and the x-axis from x = a to x = b,

ere the area above the x-axis (peak) are counted positively and the
areas below the x-

Figure 6.6
axis (valley) are counted negatively. This is shown in the Figure 6.6.
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UNIT-6

ii.

x-axis from x = @ to x = b can be found using definite integrals as follows:

: b
o  For f(x)2 0 over [a,b], the area is: Area= I[+f(x]]ctl:
]

s For f(x)<0 over[a,b], theareais: Area= [[—f{x-)]dx

If £ (x) is positive for some values of x and negative for others on an interval (as in Figure 6.6,
then, the area between the graph of and the x-axis can be found by (dividing the interval iny
subintervals over which f (x) is always positive or always negative) taking the sum of the areas of
subregions over each subinterval:

€ )
Area= [ (e = [i= )]+ [+ Ide) =4+ B (i)

In Figure 6.6, A represents the area between y = f(x) and the x-axis from x = @ to x = ¢, and B
represents the arca between y = f(x) and the x-axis from x = ¢ to x = b. Both 4 and B are positive

quantities. Since f(x) = Oon the interval [e, b], the area is
] &

[(+f(x)}dx = Band f(x) < Oon the interval [a, c], the area is [[-f(x)eix]=~A.

WAppllcnﬂnn of definite integral as the area under a curve

(AEIII 19| Find the area between the x-axis and the curve
flx)=x"-4 fromx=0tox=4,

First find out the x-intercepts of a curve f{x)=x*—4 that
can be found by solving the equation of a curve:
¥ -d=0= x=2,-2
The subintervals of the interval [0,4] are therefore [-2,0], [0,2]and
[2,4). The total area of the region in the required interval [0,4] is the
sum of the areas of the sub regions in the subintervals [0,2]) and [2,4]:

Fl I
Area= [ f()dx+ [[+£ (s, f(x)S0in(0,2)and f(x)> 0in[2, 4]
1] ]

4

i [ T
=_[[x"-4]¢:+ l(x - 4)dx =—I—3—-4;L+.r4,

2
g 64 (B _o)_16 16 16
=_\-§—S-(ﬂ—{])]+( 3 16] [‘3"8) T+?+?=]63‘?muniu
The sketch of the region is shown in the Figure 6.7,
Ao e [0‘4] A ](11—4)# = :lmd-riziﬁ
: 3
is not the correct area. This definite integral does nog o

is just a real number. represent the area over the entire interval [0
is j :

173 : oT FoREALE lF
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If f(x) is a continuous function over the interval [a, b], then the area between y = f(x) anq the

4], but F

Sy T

UNIT-6

_ : INTEGRATION
Fid e sss. bewocn e

f(x)=x"-2xfromx=~1tox=3,

First find out the x-intercepts () =i
can be found by solving the equation of :::::lm Gie i L
X -2x=0 = x=0,2

The subintervals of the interval [=1,3] are therefore [-1,0), [0,2]and
[2,3]. The total area of the region in the required interval [-1,3] is the
F;’?]ofﬂm areas of the sub regions in the subintervals [~1,0], [0,2]and

-] 1 3
A= [+ [l- £+ [br £ 0, £3)2 0im[-1,01(2,3)
=1 o - b
2 20 |2 20f |0 2¢ff
3 il A 302
=] 8 27 8 4 4 4 4
=““""[?"Hi“‘]‘“"“’|*[?'°_H5'-“]=5+5*3=3(s]=“
The sketch of the region is shown in the Figure 6.8.

MAPLE command “inf” to evaluate definite and indefinite integrals
e use of maple common ‘int" is illustrated in the following example.
AETTIEN 21| Use MAPLE command ‘int” to solve.
(@). Indefinite integral of a function f(x)=x"+x"+x 4+ x+] w.rtvanablex.
(b).  Definite integral of a function f(x)=2x" w.r.t variable x.
fc).  Definite integral of a function f(x)=xe" in the interval [0,1].

@ Command:
> it + 20+ 7 +x+ 1,x);

x-axis and the curve

Figure 6.8

- J 20— 2 20)de - 20
=1 [ 2

1 ] 1 1
-;-z’+71"+-j-s’+-i'x"+z

Using Ralettes: Use cursor button to select integral palette. Click-integral palette, insert the function
required, then press "ENTER" key to obtain the integral of a given function:
> f:‘+£ +xF x4 I

s la Lo L
5:’+‘;+3£+1;‘+:

b. Command: ¢ Command:

> i, x=0.1); > inleexplx), x=0.1):
% )

Using Palettes: Using Plalettes:

1 1
> | Pk :
_I; > L: explx)de

1
3 1
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UNIT-6

Do you know a 200 year old

The relationship between derivative and inicgrals as an inverse operation
was noticed first time by Isaac barrow (1630-1677) in the 17" century. He
was a teacher of Sir Isaac Mewton, Newton and Leibniz are known as key
inventor of calculus, They made the use of calculus as conjuctor, that is as
a mathematical statement which is suspected to be true. But has not
proven yet. The fundamental theorem of integral calculus was nol
officially proven in all its glory until Bernhard Riemann (1826-1866)
demonstrated it in the 19% century. During this 200-years a lot of
mathematic like real analysis had invented before Riemann could prove & 4
that derivatives and integrals arc inverse. :

problem o

1.

Evaluate the following definite integrals:

a 20
a. [Sxdx
]

L
-
5
E
-1
—
0
v

| ey
o
&
e
b2 =
+
F‘E
-
e L

b. jx‘dx

n

3
c. [11{;’—4}’;&

1 - ¥
. |[-2—=d g sec” 040
Ale™+e")

Evaluate the following definite integrals:

;51*-3.-+|s t4
! 9-1) 144

Use definite integral to find out the area between the curve f{x) and the x-axis over the indicated
interval [a, b):

a. fl(x)=4-x,[0,3]

¢ flx)=x"—6x+8, [0,4]

b, f(x)=x"-5x+6, [0,3]
d. f(x)=5x—x", [1,3]

Setup definite integrals in problems a to d that represent the indicated shaded areas:
gE % b.

c. d.

ﬁ _ 80In({s+ 1)
: o dt (1 +D)
Where t is the time in hours afier the tanker hitg g Iy;

a. Find the total number of barrels that the s;ipwmrxﬂw’ﬁem =0).

b, Find the total number of barels that the ship will Ieak on the seom da

c. What is happening over the long run to e ot of ol second day.
Use MAPLE command ‘inf" to evaluate ot oil leaked per day?
a SR =x2+3x+1wrt ¥

An oil tanker is leaking oil at a rate given in barrels per hour by

b. f(x)=e® sinxw.rr. %

475 _ me

iif.

viil.

Choose the correct option, :

The process of finding antiderivative is called.

(a). differentiation (b). integrati

_[taquB= integration

(a). Infsind|+C (®). Injeost|+C

J ==

@. nf+VErZre b sinac
x

J' L s i
311-36
1 =g
. =—In—
@ 2a .l'+5+c

©. —%[h‘é«u:{-m‘é—llw]
(2 -a)ate=

(a). %—4.:+C‘

{c). - -’fT. +dx+C
[fogwde=
@) f 2+ [2'(x)f (x)dx
(). Y gle)-[gx)f ()
[ tan* (x)ate =

@. Zuan’(x) +x=tan(x)+C

(c). i-tan! (x)—x+tan(x)+C

[

64
®). Infx-8+cC

X

1 1 1
(e). Elﬂl.\;’,—ﬂjnih

x
—+1
8

2

a
}'.!.&_
L]

| |
l::t}- = ). ===

H& =

|
(a). 1 {6y 2

NoT FoRSALE

X
+=In|==1l+C
1

(b).

(d).

(b).

(d).

(b
(d).

(b).

(d).

(b).

(d).

<)

INTEGRATION

. probability (d). linear equations

=Infeosé|+C  (d). ~In|sind] +C

sin” [i }; C (d). cos [f ]+ c
a a

1, [r-6
2%frel™C

é[lu é-ﬁ;l{d—ﬁ}{ﬂ'
-";—4.r+C

2, 40 4

4_+ 3 2 4x+C

S()g(0) = [g(x) f(x)dx
S()e(x)- [g(x) f(x)de

—;-mll:'{x]+.'r- tan(x)+ C

3tan’ (x)+ x+ tan(x) + C

1. 1.2 1)x 1 v
—In|x* — 4]+ = L
5 lafx |+2E§+| L A
1. |x 1. |x
21n3+1+-2-lnlg—1r+c
e-1 e'+1
2 (d). >
-3 ). 4
176




UNIT-6

4  F(¥)is an antiderivative of f(x) if F'(x)=7(x).
% 1 F(x)= f(x), then [ f(x)dx=F(x)+C, foranyre

al number C. It is called indefinite integral,

& 1f f(x) and g(x) are integral functions w.r.t. x, then the integral of the product of f(x) andg (y

Ww.rt. xis:

Iudv=uv-jvdu,vsg(x).du=f[x}¢hm1ddv=g‘(lx)¢%r_: ‘ :
If f(x) is continuous on the interval [a, b] and [a, ] is divided into.n equal Sllhmtenr:.:ls whose
right-hand points are x;,X,...,X,, then {he definite integral of f(x) fromx=atox=pis:

b-a

Tf(ﬂdx= 1@9?1[f[x,)+f(x,}+...+ fix)], Ax= =

=limy f(x)Ax, i=123,..n
. L ] £ ;
The definite integral of the product of two functions u and v w.r.t. x is:
] [}
[ud'v - uv1 - [m'lr

n.nlh::closedinimralﬁa,ﬁ],thmthemundcrnmy#(:

If f(x)is continuous and f(x)=0
on [a, b] is given by the definite integral of f(x) on [a, b]:

&
Area= [f(x)dx= F(8)~F(a)
If a function f(x) is continuous on the closed interval [a, 5], then

[ fCae=|F, = F(8)- F(a)

Where F (x) is any function such that F'{x)= f{x) for all x in [a, b].

177 WWW &
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We are familiar about Cartesian coordinate system, we have learnt
about it in gur previous classes. This Cartesian ccordinate system may be
helpful to know the slope formula, Pythagoras theorem and distance formula,
this lesson we will learn in details and write the equations involving arbitrary
Points. Most of the geometric ideas can be expressed using algebraic equations,
Analytic geometry is defined as: '

“The study of relationship between geomeiry and olgebra is called
analytic geoneny
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PLANE ANALYTIC GEOMETRY
STRAIGHT LINE

Division of a line segiment

Recall distance formula to calculate distance between two points given in Cartesian plane.

Find coordinates of a point that divides the line segment in given ratio (intemally and externally),
Stiow that the medians and angle bisectors of a triangle are concurrent,

Slope of a straight line

Define the slope of a line.

Derive the formula to find the slope of a line passing through two points,

Find the condition that two straight lines with given slopes may be

*  parallel to each other, - *  perpendicular to cach other
Equation of a straight line parallel to Co-ordinate axes
Find the equation of a siraight line paralle] to :

" y-axis and at a distance a from it, T
Standard form of equation of a straight line
Define intercepts of a straight line, Derive equation of a straight line in

" slope-intercept from,  *  point-slope form, .

*  intercepts form, *  symmetric form, r
Show that a linear equation in two variables represents a straight line.
Reduce the general form of the equation of a straight line to the other standard forms.

Distance of a point from a line

Recognize a point with respect to position of a line.

Find the perpendicular distance from a point to the given straight lines,

Angle between lines

Find the angle between two coplanar intersecting straight lines.

Find the equation of family of lines passing through the point of intersection of two given lines.
Calculate angles of the triangle when the slopes of the sides are given.

Concurrency of straight lines

Find the condition of concurrency of three straight lines.

Find the equation of median, altitude and right bisector of a triangle.

Show that 2
®  three right bisectors, = three medians, "
Area of a triangular region ¥
Find area ofa triangular region whose vertices are given.
Homogenous equation
Recognize homogencous linear and quadratic equations in two variables,
Investigate that the 2* degree homogeneous equation in two variables x and y represents a pair of straight lines

x-axis and at a distance b from it

two-point form,
normal form

three altitudes, of a triangle are concurrent.

threugh the origin and find acute angle between them.

mac e




UNIT. PLANE ANALYTIC GEOMETRY STRMGHTLIHE
For exa

mple to calculate the slope/gradient between two given points, the numerator
difference in

denominator js ¢ i  the
the y-coordinates some times called it “Rise” and the denominator is the differenc,
between *-coordinates, some time called it “run” e.g.

ints = Y1= 1 = Rise
Slop between two points = 3 == B0

i i i i i Fermat and Rene Descy ™

i ndent and simultaneous invention of Pierre De ; . e

zTc}aﬁzﬁ:P:::wofw;:r;gtﬂm and the representation of curved lines by algebraic equations relating
twa variables say, x and y was given in seventeenth century by them.

e . ™
m“smn of a line segment . o b
familiar with the set of real numbers as wel as with severa of its su s, including
natural \ﬁzr:br:;r:ﬁfr r:I numbers. The real numbers can easily be visualized by using a gpe
dimensional coordinate system call real number line.
Calculation of distance between two given points

The study of plane analytic geometry is greatly
facilitated by the use of vectors. The distance between any two
given points can be calculated by using the distance formula,

If P(x.») and Q(x,,y,) are two points in the
xp-planc and § is the angle in between the positive directions
of the x and v axes, then, PQ is the directed line segment
associated to initial point P(x,y) and terminal point
Qlxs 33).

The components of the directed line segment PQ are:
OP+PQ=0Q
PQ=00Q-0P, position vectors
- (xhyl)"'(‘q'yﬂ
PQ=(x,=x,5,-)
=l =x)i+(n-»)j
Squaring both side of the directed line segment PQ to obiain
Q=[G =x)+0a =y U]  (a+b) =a? 457 4205
= O =X+ 0n = 1P S+ 200 =)= i
= G =Y+ 0 =30 17+ 2, =Xy, — )l ileose
= 06 =) 05 =2 4 25 - )y, —,

X

Figure 7.2

Pythagoras Theorem: If P(x,, ) and
Qlx;,3,) are the two points in the
xp-plane, then the distance d between 3
given two points P(x,»)

+¥3)is obtained by applying the
Il? (% yﬂ;;m;mmm'ansle POQR:
(PQ)’ = (PR)’ +(QR)’
=(-%) +0r=-»)

PQ=/(x, -x.l’*"i”:m

cid=jj=1, i =] jleos, i =l1=!

Jeos@
= (% =) +(» =9+ 205 =% )y, - y,)cos X

3 o=
(PQY= (x, - %) + (3, = 3,) .'.f-os§= 0 |
[PQI' = (=) + O3 =" - (PQ) = [pqf?

3 179
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PLANE ANALYTIC GEOMETRY STRAIGHT LINE
L= 2
1PQI=J(x, ~x) *O0r-x)'=d, sq (i)
This is the

distance from paoint P(x, 1) to point Qi(x,.3,) in the Cartesian coordinate plane,

¢ The distance from the origin (0,0 1o

(1) d=jop= 57

The distance from the origin O(ﬁl,

(1): d=|0Q|= i+ ]

= If the line segment PO is horizontal,

point P(x, 1) is obtained by inserting =¥ =0 in result

D) to point Q(x,, ) is obtained by inserting x, = 3, =0 in resuls

then the distance from the point P(x,, y,

obtained by inserting y, = Yy inresult (1): dzIPQi=‘f x, —x,)
¢ Ifthe line segment PQ is vertical, then the distance from point P(x,, y,

by inserting x, = X in result (1): d':quz‘ﬂ(yz s ) i

) to point Qlxy, v)is

) to point Q(x,, ¥, )is obtained

Find the distance between the two points P(3,-2) and Q-

EEIED P 31)= Gi-2), Az, p,) =(-1

points P and Q: ;

L. -5).
,=5) is used to obtain the distance o in between the two

4=V =)+ (3= 3) = 13+ (5D = N (O T

Co-ordinates of a point that divides the line
(Internally and externally)

Take P(x, ) and QCx,, ) are the initial and terminal points of a line segment PQ and R(x, y)
is 4 point that divides PQ in the ratio m, sy Afr, ryoand rare the position vectors of P, Q and R, then
B 0)= xit g, n= ()= %+ yoj, r=(x,p)=xi + 3 -

g B Lty then, PR = —™
RQ m,

=0 opye M X 5
mﬁm_.,PQ m|+mz(OQ O-PJ iy + m, (2 =n) Setsm

segment in given ratio

IfOP+PR =, +—"(r=r), OP4+ PR=0R
my +

then the position vector of OR is:

OR =0P+PR =r -|———m;l_.._|:r= -n)= A
m' +M'

AL +nm —rm
-+ m,
reHEmy

+m,

I:J:,y] = F—mm‘ components form
my+im,

" OR=r

Figure 7.3

Equating x and y components to obtain the coordinates of Rxy)

(x.y]={£'u—_ux s , LT,
my "+ m,
that divides the Jine segment PQ in

NOT ForsaLE

0}

the ratio m, :m,.




UNIT-7

IR is the midpoint of the line segment PQ, then, m, =m; and the coordinates of the midpoint R of g,

+ »
line segment PQ are: ()= ﬂ';_xa' 4 2y2 .
*  The coordinates of the point that divides the line segment PQ joining two points P(x;, ) and Q(x,, )
i _| mx=mx my, —myy,
externally in the ratio mr, : n, (m, or m, is negative) are: (x.Ji) -[ﬁr m _-mz ] (B)

Find the coordinates of the point which divides the line segment PQ joining the two pojn
(a). P(1,2)and Q(3,4) inthe ratio 5:7. (B)- P(3,4) and Q(-6, 2) in the ratio 3: -2,

a If R(x, y) is a point that divides the line segment PQ in the ratio 5:7, then the coordinates of
R(x, ¥) is obtained through result (B):
(x_y)=[m.r=+mza*ﬂay:+mar. ]

mytmy
i [ 5(3)+7(1) 5(4)+ ?(2:-] _[_11 EJ
ST BT

comy =5,my=7,P(1,2),Q(3,4)

6'6
b If R(x, y) is a point that divides the segment PQ in the ratio 3:-2, then the coordinates of Rix, »)
"is obtained through result (B): .
(x,)= [MrX::m:m 'm:}'a"‘m:.l’l]
my+ma iyt iy
_[3(-6)+(-21(3) 3(2)+(-2)(4)
o 3=%.: © -3~

]=(—24, -2 Lo =3, my==2

The medians and angle bisectors of a triangle are concurrent

I The medians of a triangle are concurrent

Proof: IfA(x,, 1), B(x;,y;)and C(x,, ;) are the vertices of a
triangle ABC and P, Q and R are the midpoints of the sides AR,
BC and CA, then the caordinates of the midpoint Q through P R

mid point formula. Q[-x%tl I’ﬂ"'—]

X Az, »)

» 2 .'.MI =m,
If G(x, y) is the centroid (in centre) of the triangle ABC,
then, the coordinates of the point G that divides the median AQ S
in the ratio m, :m, =2:1are:

B,y @ CE)

Figure 74

2

X+ +
2[_22_”‘1.]+ x z[l’l_&} »
2+] ¥ 241

Gix.y)=

= (ﬁi‘fﬁ_‘!’_ J"J'{'J";"'Yg) ()
/ 3 > 3

Similarly, the coordinates of the
ratio 2: 1 are respectively:

]

ro7 FORSALS

Point Gx, ) that divides the medians BR and CP each ™ [ T s
2 ns
!

UNIT-7
PLANE ANALYTIC GEOMETRY STRAIGHT LINE
] 2 ﬂ_;_ﬁj+x' (ﬁf_)’x +,
Gy 2L " e [3123::&212%&) i)
2(5‘—;-‘5 !+.r, 2! z%f-?ii- ¥a
G{I’y_)= 241 o 2+1 E [ﬁfﬁ'&ﬁﬂﬂ) o

Therefore, the point G(x,

¥) lies on each median and consequently the medians of the triangle ABC are
concurrent. )

ST 3 | Find the centroid of the triangle ABC, whose vertices are A(3,-5), B(=7, 4) and C(10, -2).

&P Let AG, -5), B(-7, 4) and C(10, ~2) are the vertices of the triangle ABC, If G(x, ) is -
the centroid of the triangle ABC then, the coordinates of the point G(x, ) are:

G(.r.y]:(x' +.'I.; +.r:,y.+};z+y,]3[3-'i;+|0rw5+:—‘2)=(2._1}

Il The bisectors of a triangle are concurrent
Proof: If ABC is a triangle with vertices Alx, 1), Blx;, ) and Clx,,y,), whose lengths are
[4B]= ¢.|BC|= aand |Ced|= b, then, the position vectors of 4, B and C are respectively:
ri=(x,») =xi+ Wi, n ={x:,y:}=x=.f+ylj, K= (I,.y,]lle'+]1,f
Consider AD, BE and CF are the internal bisectors of the angles A, B 24
and C that meet at centroid G. This is shown in Figure 7.5.

IFAD is the internal bisector of angle A, then:

BD_BA  BD_c

—==t . 2.¢ :DC=c:b C A
DCﬂCorDCbiBDDCC (i) :
This means that D divides BC intemally in the ratio c:b and 04 i u

the position vector of D is therefore:  <32% ::" Figura 78

¢

. BD_DC BD+DC a ac £2
A —_— e — D= — i e
i b oHb  oth ct+b @ e
ac
I BG is the internal bi £ Bythen, 26_BD_b+e_ a_ T b
: emal bisector of the angle B, then, A B e R = DG:GA=a:(b+c) ]'

I

grr-l-(b"'l.‘].[gﬂ} ;
bre ) _anitbnten _alx.y)+b(x, y)+e(x, y,) Gii I

at+bh+e a+bh+e a+b+e ) E

NP FoR

_132'\ 1
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The coordinates of the centroid G, y) s obtained from equation (ii) by equating the  gpy
ax, +bx, +cx, ﬂ)'.+by=+cyi]

components: G(x, )= [_;:Tr::?_ ~atbte

k. & : through the point G(x, y). Ty

Similarly, the internal bisector of the angle C also passes th ? U5, the

angle bisectors of a triangle ABC are concurrent and G(x, y) is the point of concurrency. ) :
[EETTS 4 | Muhammad Ayaan hasa triangular piece of backyard where he wants to build a SWimm

pool. How can he find the largest circular pool that can be built lhcfe?_ :

The largest possible circular pool would have the same size as the largest circle that can he

inscribed in the triangular backyard. The largest circle that can be inqcrihfz_d in a triangle is incircle, This
can be determined by finding the point of concurrency of the angle bm"“’}'s of each comer of the
backyard and then making a circle with this point as center and the shortest distance from this point g

(iv)

ing

" UNIT-7

PLANE ANALYTIC GEOMETRY STRAIGHT LINE

Slope of a Straight Ling
: The slope of a line 5 a measure of the when
“steepness™ of the line, and wheth

BC
. i e it rises, or falls when ‘\
mumgﬁnmlcﬂtonght.'I'helineﬁomA:oBrisasup,wM]e gé”gkp
the line from C to D goes down are depicted in the Figure 7.6; Figure 7.6
Slope of a line

The graph of a line can be drawn
knowing only one point on the line if the
“steepness” of the line is known, 100,

“A mumber that measure the “steepness ™ ofa’

the boundary as radius. line is calfed slope of a line. "
- : If move off the line horizontally 1o :
RTINS ) i e et o Pt P 77

Here, O is the point of concurrency of the three angle bisectors of ALMN and therefore is the
incenter. The incenter is equidistant from the sides of the
triangle. That is, JO = HO = 10.

We have the measures of two sides of the right triangle
AHOL, so it is possible to find the length of the third side.

(vertically) to return to the line, then the slope of the line is the “steepness” defined as the ratio of the

vertical rise to the horizontal run: slope= F”‘:'E— the run is always a movement to the right

Formula to find the slope of a line passing through two points ™

Mathematically, if any two points on a line are ¥
Use the Pythagorean Theorem ta find the length HO. - available, then their join makes a constant angle with a fixed g/"!'
= JILOY —(HLY =+13 <127 = 169-144= /25 =5 direction arid the angle so formed is independent of the choice
Since JO = HO, the length JO also equals 5 units. \ of the two points on the line. This is a precise way of saying 4 L
Figure 7.6 N that any line has a constant slope. It is customary to measure
the angle @ which a line makes with the positive direction of  *+— x

the x-axis. The quantity tanis defined to be the slope of the
line and is denoted by mr. The slope of a line is also referred to

04/ M N
¥

Exercise

gradient of the line. Figure 7.8
1. The three points are A (-1,3), B (2,1) and € (5,~1). Show that | AB|+| BC|=| AC|. For illustration, if Alx, ) and Blx,, p,), wherex, # x,, are any two paints, then their join develops a
2. In each case, find the midpoint of the line segment PQ joining the two points P(x,, y,) and Q(xy, %)} line L that makes a constant angle 8 with the x-avis. Draw AM, and BN parallel to y-axis and AL
: i 1 3 :l_] parallel to x-axis,
a. P(10,20), Q(-12,-8) b. Pla,~b), Q(-a, &) c. P(E,FE]-Q[S 7 . The slape m of a line L through the two points A(x,, ») and B(x,, 1,), is therefore:
3. In cach case, find the coordinates of the point R(xy) which divides the line segment PQ juﬂl“'F m=tang=LB_NB-NL _NB-AM _y.-y

the two points MN ON-OM x-x L

Find the slope m of the line L through the points

a P(1.2), 034) inthe ratio 5:7. P(3,4), Q(-6,2) in the ratio 3:-2. ). EQ4)and Fia,5) ®. MG,1)and Ne-1.3)

¢. P(=6,7), O(5,4) in the ratio %:I. %

. 3 The standard equation of a line &

& The given two points E(2,4) and F(4,6) form a line L, whose [y = my + ¢ where m is a slope, 5

m=—-i—--J'II -y'=—6-4=2=|
xn-x 4-2 2

The given two points M(3,1) and N(=1,3) is form a line L, whose slope is:

h [ oach e, in whal niio s the Kne. sgment PQ (oining the twis points. PN ™

Q(x,, ;) divided by the point R(x, ): slope is:

a. P(8,10), Q(-12,6), R[—?,?)_

5. Find the centroid of the trangle ARC
a. A(4,-2), B(-2.4), C(5,5)

b,

s whose vertices are the f; llowing: 5
b AGS,BAS), 0Bty :

c.

b. P(-2,4), Q(3.,6), R[%-%]' i
|
|

AQL1), B2 O
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: =
EEEF Condition for two straight lines with given slopes are

fa).  Parallel to each other (b). Perpendicular to each other
a. Parallel to each other
If L, and L, are the two lines having slopes m andm,, then the lines L, and L,are paralle i
they make the same angle with the x-axis, that means they have the same slope. Conversely, if twg lines
L, and L, have the same slope, then they will make the same angle ¥y
with the x-axis and the lines L, and L, are therefore parallel for

which:

m=m, (M
It is important to note that the lines parallel to x-axis have
zero slopes whereas the lines parallel to y-axis have the slope co.

b. Perpendicular to each other
If L, and L, are the two perpendicular lines make the
anglesaandP with the x-axis, then the slopes of the lines L,

Figure 7.9

and L, are respectivelym, = tana andm, =tanf. From the Figure 7.9, it is clear fhat

%=ﬁ—u =>|3=%+u

tanf= T.a.n[g +a], take tan of both sides
1

=—cﬂta=—m ; (1i)
The given lines L, and L, are found perpendicular, since the product of their slopes equals <1:
1
=1 t =tang| -—— |=-1
mm, = tan a tan 3 a[ tana'] (i)

Equation of a Straight Line Parallel to Co-ordinate Axes

m Equation of a straight line parallel to
. © y-axis and at distance ‘a’ from it,
© x-axis and at a distance ‘b’ from it

1. yeaxis and at o distance ‘4 from §i

Let PQ be a straight line parallel to y-axis a1 5 distance ‘a’ units
from it see Figure 7.10. This is very clear, that all the points on the line PQ
have the same ordinate say '5'. Therefore, PQ can be considered as the
locus of a point at a distance 2" from ¥-axis and all poins on the PQ
satisfy the condition x = g therefore,

Figure 7.10

the equation of strajghy fine ¢ distance @
ight line is paralle] ¢ y-axis at a dista
fromit. e.g x=a. pematiel. o

i. Ifa=0, then the straight line coincides with the y-axis arq 1 5
nd itg heco
iil. If PQ is parallel and to the left of y-axis ara dista Myl =0

16 "a", then its equation i x = =b.

oo B
5, the distance js 5

; (i)
R S nits to right side of y-axis, so, equation (i)

il X=axls and at o distapee 4 from It

Let PQ be a straight line parallel to x-axis at a distance *b" units from it
see Figure 7.11. This is every clear that all the points on the same ordinate say, 'b", .
Therefore, PQ can be considered as the locus of a point at a distance ‘6" fromx- T % 3
axis and all points on the PQ satisfy the condition y = b. Therefore, the equation »
of a straight line is parallel to x-axis at a distance & fromitifeg, y=s, Figure 7,11

i Ifb -0, then the straight line coincides with the x-axis and iis equation becomes y = 0.
ii. If PQ is parallel and below the x-axis at distance *", then its equation is y=—bh,

Standard Form of Equation of a Straight Line

Because of their simplicity, linear equation (line) is used in many applications to describe
relationships between two variables. We shall see same of these applications in this unit. First, we need
to develop some standard forms that are related to linear equations.
() Tntercepts of a straight line

“If a straight line AB intersects x~axis at C and y-axis at D,
then OC is called the “-intercept of AB on the x-axis and OD is D
called Ihc_p-interntp.t of AB on the y-axis.

RARIITIT 8 JFind the x and y intercepts of a line Zx+d)r+6=0.

X X
m The x-intercept of a line is obtained by putting y = 0 in a 01' )
line: 2x+dy+6=0 J‘F_
2x+4(0) =6 = 2x=-6= x=—3 e il

The y-intercept of a line is obtained by putting x = 0 in a line:
2.¥+4)‘+'5 =0
20)+4y=—6=dy=—6= y:-%
The general criteria are that a line in two dimensional space can be determined by specifying its
slope and just one point,
(i Slope-Intercept Form
Let L be the line see Figure 7.13 develops the y-intercept ¢ on ¥
the y-axis. The line L also makes an angle® with the positive R
irection of the x-axis that develops a slope m = tan#. ¥
¢ P(x) be any point on the line L. Draw PM parallel to y-axis and
N parallel to x-axis that give c
CN=0M=1y, 7 ic N
NP:MP-MNzMP-OC:)'—-L' D T y T
. In APCN, the angle is ZPNC =90° and the slope of the line L ¥
' giving the slope-intercept form of the line L:

NoT FersALE
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NP =
_Cﬁ =tanf :}l—g =tan@ .
X

= y—c= xta_nﬁ ‘
= y=xtanB+c=mr+c (1) .
ight li igi = 0 and the equation of |
If t through the origin (0, 0), then c : Eap
becomes y‘ttnixﬁfi‘:tah:; :-‘ opa;ﬁnatﬁ the slope and ¢ denotes the y-intercept of the line L on axis
of y.

STITIM, 9 ] Determine the slopes of the following lines: (@). x-y=5 (B). 2x+3p=¢

a. For the slope, solve the given line for y to ohIai.n:x—y=§ =‘:~-—y= =X+5 = y=x-5§
Thus, the slope of the line is the COBﬁ'chEI.ll of x-term wh!ch ism=1.
b, For the slope of the line, solve the given line for y to obtain:

2
2x+3y=6 = Jy=-2x+6 = y=-5x+2
Thus, the slope of the line is the coefficient of x-term which is m = —-§-.
Find an equation of the line with slope 4, when the y-intercept is 6.
@JIITETD Result (i) is used for the assumptions i =4, ¢ = 6 to obtain the required slope—intercept form
y=d4x+6 »

ofa line:

ii. Point-Slope Form #
If L is a line see Figure 7.14 passing through the

point A(x,, ) and P(x, y) is any point on a line L, then the slope of the

ling L is giving the point-slope form of a line L:
Y
X=X

y=y=mx-x) (i)

Figure 7.14
m Find an equation of a line with slope 4 and passes through the point (2,4).
mmll (i} is used for the assumptions =4, Alx,»)=A(2,4) to obtain the required point-

slope form of a line: y=4=4(x~2)

—dx+y—448=0= —dx+ p44=0 =dx=yp—q4=0

iti.  Two-Point Form y
If L is a line see I'wure 7.15 passing through the two points

A(x, ;) and B(xy, y,), then the slope of the line L is:

mZ)‘a"ﬂ

51, (i) "
Ifthe equation of a line L through the Alx, 1) with slope m is
Y=r=mx-x) (iv) X!
mumnquaﬁonofahneLthmughmmnmm A(x,3) and ¥
B(x;, ;) is the equation of the two-point form ofa line [.:
P e f A
oy - X -x (x=x)

Figure 7.13

™
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Find an equation ofa fine thay passes through

["Salition ) the two points P(~1,-2) and Q(-5,0)
Result (v) is used for the : g )
required two-point form of a Jipe: oms Pl ) =P(=1,-2), QU y,) =0Q(-5,0)to obtain the

0-(=3
y-(—z}—_s_(_n[x—(q;].::. y+2=—_2z(.r+|]

=y -8=2x+2= 244y +10=0 = 2y+5=0
iv. Double-Intercepts Form
Ifa line L intersects the x-axis and
y-intercepts of the line L, ¥
Let P(x,y) be any point on the line L. Draw PM parallel to y-avis L
and PN parallel to x-axis. From the Figure 7.16, the comparison of
similar triangles ABNPand APMA is giving the equation of double-

y\-axi.ratpoimsAuﬂB.ﬂ‘mOﬁ-aanﬂ(JB:bmﬂ!exand

b
. y NB NP
i I f L —_—
intercept form ofa line Ty I,{% 5
L Y T S _
- 0N OA—OM g a3 e ot
Figure 7.16
£x.+5-£z] :;f.'.l'l (vi)
ab  ab a b

Find the equation of a line whose x and y intercepts are (3,0) and (0,4) respectively.
@EEIEID Result (vi) is used for the assumptions a = 3, b = 4 to obtain the required line:

5.4.2 =]

3 4
4x+3y

12

=l=d4x+3y=12= 4x+3y=-12=0
v. Symmetric Form

Let a line L through point A(x,, y) makes an angle 8 with the positive direction of the x-axis.

lfP(x,y)isanypoimonihclimL,lhtnAP=r;lfweallow ¥
710 vary with any positive or negative values, then P will take any
Position on the line L. Conversely, if P is given 10 be any point on
the line L, then the unique value of  can be found which in fact is
lh'!dislanneanﬁ-omﬁ.mus,ilfouuwsmatrmesasa o
Parameter of point P,

To find the coordinates of a point P in terms of the . =
Parameter r, let us draw AL and PM parallel to y-axis and AN OJ', L M
Parallel to x-axis, that with the following assumptions Y

OM=0L+LM =OL+AN Figitre 7,17

MP = MN+ NP =LA+ NP (vif)
dvelops the parametric equations of'a line L through the point A(x,. ¥,) at an angle 6:

OM=0L+LM MP = MN+ NP
=0L+AN =LA+ NP (wiii)

Y=y +rsinb, sinﬂ:ﬂll_E

Wm@m@ 188

X=x+rcos0, cuse=-i"‘:_ﬂ
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The parametric equations (i) automatically give the symmetric form of a line L after simplificatioy,
ﬂ =r
=l IO (i
=i . cosf  sind o
sin@

[EETR4) Find the cquation of a straight line with inclination 45° and  passing through the ;.
(22). _ _
EIIM® Here we have inclination a=45°and point (x,,y,):(l-ﬁ}. The equation of lipe "

tric fo - X=X 4 i A1
: g cosa  sina _ -
Substitute the above values in the formula to get the equation of a straight line.
x=2 _y--ﬁ

cos45°  sind5°
= sm45°(x—2]=ms45°[y-~5]

§ 1
a%(;—zh:,;(y-ﬁ]
= x—y—2+~4r'm

vi. Normal Form

The normal form of a line is the equation of a line in terms of the
length of the perpendicular on it from the origin and that perpendicular
makes an angle with the x-axis.

If a line L intersects the x-axis and y-axis at points A and B,
then OA and OB are the x and y-intercepts of the line L. Draw ON
perpendicular to line L that provides the perpendicular distance p from
the origin on the line L which is denoted by ON = p. If ON makes an b
angle Bwith the positive direction of the x-axis, then the x and y- Figure 7.18(b)
intercepts of the line L are respectively:

cnse=é=> OA = psecd
A (x)
sinB=-— = OB = pcosech '
oB
IfOA and OB are the x and y-intercepts of a line L, then through result (x), the equation ufﬂ"""'d
line L in terms of perpendicular distance p and angle Bis: % 4%
0A

OB
xcosO+ ysinb=p (xi)

__'_+___}"__= =

psecd  peosech
The normal form of a line is also referred 1o peniendjmlar form of a line.

RPL0] (815 | Find the comresponding equation of 5 line, i <cance o
= : if the length perpendicular dista
the origin ona line is 3 unnstlmmakuananglggfug'_ ot s

IV Rl (v o e asumptions =3,

xc05120°+ ysin]20°=13 =.__1H£
2 5 y=3=

to obtain the required eq
=x4\3y=6= x— Gy +6=0
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A linear equation in two variables is 5 straight line IGHT LINE

A first degree polynomial
pAiix) =@x+a,is . £
HEHAE0,=0 wit gy R monof e
axtbyse=q hrly=h
is then called the general equation of |k

¢ straight linc. Here a, b and ¢ are

WWMxmd;-m variables, Remiember )
Consider, If P(x;, ), Q(x,, y,) and R(x.3)are the three points on the i The first degree
represented by the straight line polynomial p, (x)is
ax+hy+e= ako called the linear
then, P(x J)on the hue:'y _c '-0 i 'Iwi:mw.a
s ; 1) gives: ay by e =0 (ii) and s by
Q(x,. y.) on the line (i) gives: axs+by,+e=0 ~ (i) Pi(x)= f(x).
R(x,, yy)on the line (i) gives: ary+by, +c=0 (iv)
The three lines from equation (ii) to equation (; .
ki il S ) to equation (iv) develops a homogeneous system of three lincar
5 »n 1)fa 0
5 ¥ H[b|=|0|= 4x=0 )
X % e 0

The homogeneous system of linear equations (v) defines a nontrivial sohsion i
determinant of a coefficient matrix A ofthe system (v) is zero; Bl

det(A)=0
X )l
X =0 (i)
X w1
%03 =33)= 2106 =%,)+ (6,3, —x,3,) =0 Equation (vi) is rearranged to obtain:
408 =3)+ 500 =3+ x50, —p,) =0 {vii)

: : nl 1 :
Muh:plybo:hs:desufeqmmn(vmbyE to obiain the area of the triangle formed by P, Q and R that

1
Squals zero: S1R05 =2+ 205 - 0) 501 - 3] =0

i Area of the trianglePQR =0 (viii)
Py mm?,ﬂmklmmhbms(nmmumﬂmﬂnbmmma
General form of a straight line is reducible to other standard forms ™

Any standard form of a line can also be determined from the general form of a line ().

* To reduce the general form (i) to the siope interoept i imvolve the Bllowing
bl (i) to slnp: form of a line, we need to the T
ax+by+e=10
by=—ax-c
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UNIT-7
ax#E
- 2
a . i
=mx+¢, slope=m=-=, s
. To reduce the general form (i) 1o the double-intercept form, we need to involve the ftl“b“"i.ngm
axtby+e=10
ax+by=-c
& % _ ) dividing by-c iow _
- -c _ s
iRy g o \
JE e ' . 2. Ineach case, find the slope, if it is defined:
a b | n. f;S.;B]andz{;,G) b. 4x+Ty=1]
L o =a,=-%, y-intercept=b=-%< | s el o d. P i gk
o RS hoLy Whtm;::wsx—andy—mmﬁrmﬂnhﬁ[hnﬁslzg?mwhw& e
. : involve the following steps: - Bl i b. y=-3x+9 c ymg+2
i, To reduce the general form (i) to the normal form, we need to invo ; . i =32+ ¥
From the Figure 7.18(5), the angles along the positive directions of the x and y-axis are the a"‘ ‘:‘Tﬁf&s"wzﬂ 2':1!;'5 ﬁoﬂmsmmuﬂ or perpendicula or either:
following: c. 2x-y-7=0, dx=2y-5m0 a ht?;to& ::-?;;;::zo
cost=L, sing= £ | % Ineachcase, find the equation of a line that passes through the pair of poiats:
5 s Ly s ' o O00)and A6 b E(10)andF25) c I1,1)and)33)
The values of cos® and sin are used in the trigonometric identity cos”8 +sin'0 =1 to obtainp: " ‘“‘"‘“’”-W‘b‘q'mmofamwmﬁmmu@umnntq.y,)mm-bpem
: ki i : :
mﬂ-:-sm';ﬂ—-] a A(l2),m=4 b. A("!a"z_]-ﬂ!"% c. A=35),m=-3 d A(7-8),m=5
_:;;+%=I | 7 Jneach case, find the equation of a line that exists the y-intercept ¢ and slope m:
,[ b 1]_1 . L e=2, m=2 b c=4,m=8 o c=gm=1
P ? n: T (IK] : 8. mmmmbﬂ7x—lw+13=0m; 2
I 2. slop intercept b.  symmetric form c. normal form

L

3

#| ;:Z"}i

2 1
k] mn mrn
*

o r e = - Jm* +n? :
School/College

This p is the Mw distance from the origin to the line = +2 =1 (ie. nx+my—mn=0k of
m n

course, the perpendicular distance from the origin to the line ax+ by +¢ =0 must be:

@ Your Home

3 ) : 1
For converting the general form (j) to normal form, divide the line ax+by+e=0 by [+ A

mhthmmhnofhmhm{nhmmmm

o + b} + g =0 1
'ﬂ:_‘_bl Lt+b: ;‘d""&: (xi) ‘

191 mmﬁﬁg L
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ey
m_l)istanmoiapointtoahne

. [ distance from a given po;

3 : a untnalmcmhes'tmrtcst_ ; point

e In.mlwwmtmsgaitﬁﬂ;m po o distance of the point o the line, the lengih o
any point on an infinite straight linc. perpend

hm‘ewwﬁchjnhsihupuhmmeﬂpohﬂmﬁm:im.
Position of a point with respect t0 3 line

. . ide or on the other side of the straight line
that the point P(x,y)1s on one Si
ax + byT: csr‘r'lwaccnrding aspthc expression ax, +hv € =0 or ax,+hy+c>0, the procedure

developed is as under: _
Let AB be the straight line ax + by +c=0and P{x, )i a
point above the line AB Figure 7.18 and P(x,,y,) is also a point belo\:v
the line AB Figure 7.19. From P draw perpendicular PM on the x-axis
{hat cuts the line AB at a point () whose coordinates are Q(x;, ¥3)-
If Qlx,, ¥,) lies on the line AB, then it give:
ax+hbyte=0 :
ax,+ by, +c=0, Q(x,, ) lies on AB
by, = —{@x,+)

) o

IEP lies above AB as in Figure 7.18, then:
MP-MQ>0

»=y,>0

qu.ﬂx_{i—”}l:l :;m:.[)

ax, +by, +c>0, b>0
1f P lies below AB as in Figure 7.19, then:
MP-MQ<0
»—¥a<0

yﬁ-EF{D: 5—‘-“_2&2{0

ax, +by,+c<0, b>0

x"—"l'

le{ M \ >X
3 B

Figure 7.18

¥
Figure 7.19

Hw?ﬁummsﬂzmwﬁnmsﬁaofmumnx+by+cno

Hn‘q-byl+c>ﬂu-1‘ﬁl+h‘f|+c{0.

i Shot
Determine whether the point P(10, —6) lies above or below the line 9% + 1oy -3=0

that the point and the origin lic on the same or on the opposite sides of the given line.

e

ik |
The given line 9x +10y—3 =0 is compared to the line ax + by + ¢ = 0 to obtain th '
ofyisb=10>0: 3
i. The given point P(10,-6) is substituted in the given line to obtain:
O(10)+10(—6)-3=90-63=27>0

UNIT-7 i

e

: FMNEAN.hL\'TICGEDMm‘H STRAIGHT LINE
2115, fhc point P(10, ~6) lies above the given line 9x + 10y-3=0
ii. The given'point P(10, -6) and the origin 0(0,0 tuted i
i g 0) are substituted iven li in:
SO A0 o in the given line to obtain:
9(0)+10(0)~3 =3 <o} feaitals oo

Hence, the point P(10, -6) and the origin 0(0,0) lie on the oppasite side of the given line 9x + 10y-3=0

Perpendicular distance from a point to the given straight line >
If Q(x,,,) is any point on a line
ax+by+c=0 (M
and n={(a,b) is a nonzero vector perpendicular to the line
(i) at a point Q(x,, »), then the distance D is the scalar projection
of a vector QP (associated to any point { P(x,, »,) ) onto n:

D =|proj, QP|

If
jQp.| ofem
1 I ¥ ax+by+e=0
qa |Gy =53 = 31, b Figure 7.20

at +b

o a(x, = x)+b(ys - 1))
a' +b* :

fa v, + by, —ax, -by.)lﬂlax.-rlmm]l (i)
@+ b Jat +b

the perpendicular distance from a line ax+by+c=0 to a point P(x, »).
F-t'-lnlph‘"ﬂ Findthepnpmdjmludismnceﬁuma&n?x+3y—9=0tuipoimm)-

@IITITED Result (i) is used for the assumptions P(x,, )= P(2.3), ¢= -9, a= 7,b=13 to obtain the
perpendicular distance d from the line 7x + 3y -9 = 0 to the point A(2.3):

Fe ax, + by, +¢ L T2y +3(3)-9 2 14
[EFYE ]'.-':1-3: 7'5'5
W Angle between Lines

If the two lines are available, then the angle between these two lines can found as follows:
m angle between two coplanar intersecting straight lines

n=(a,b) |n|="a* +b*

The unit vectors are the vectors lie in the same directions of the given lines. The unit vectors along
the line AB and CD are respectively u = (cos8),sin@,) and v=(cos8,,sin8,).
The unit vector u of a line AB is:

u =(cos,,sind)) o5 =——

NOT FORSALE
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.(;Eﬂ) =1

sech, sech,

)

The unit vector v of a line CD is:
v u{mﬂa.n{nG,)-H =1
o W E‘E:]
Il'.'.l‘-'Bl g Emgi

fis i M| sectd,=l+tan’0, =1+m;
1 [m':]Hmf]

sec’0, =1+tan’ B, =1+m

The angle of int
their unit vector u and v that can be found by

and v
cosf= ——, |uf=vi=1

[ulivl
"[J,l,,g ml.;]‘[,;ﬁ@ 'Jffig]

2 1 i ity
Jlemf Ji+m ] Ji+m

~ lemm
;iiﬂnf?,]l-tm:

The standard form of the angle is obtained if
m’ﬂ-gu‘.’ﬂ-l
-1, use value of cos 0

1
cos’ 0
_emdem)
(14 mym,)

Q) n) = (emmy)' G —m,)
Q1+ mym,)? (L4 mm, )

(my, —m,)

g (L+mym,)

AL il 3
t1+m.ml U]

; PR T
{ e

Figure 7.21

ersection between the lines AB and CD is the angle of intersection in between
taking the dot product in between the unit vectors

e

hom

THmR 18 positive, then result (i) gives the acute angle between the lines AB and CD,

. e : e
-_-'-_LH e 15 negative, then result (l)glmuneobm:mgjebumuulim AB and CD,
. lfuneuflhegivenlincsispamﬂtlwﬂleﬁris,tbmlm

tanb=+2"
I+ mym,

Because 90" is the angle made byllmlinr\m'.ﬂi;he iti i
Ppositive x-axis and
anglebﬂwmﬂmlinmﬁllbemhuhzdby&aummﬁm e it ¢

¢ The Iinumepmllel.ifthe:rmpmductinbawendmu:ﬁtvmnndvkm
uxv=0 .

'ﬂdiﬂ'isnotpmihlewoulhbyfunuh:

[JI:m,’ = ]"[41:...; fior ]‘"

i, —
TJ—J:=D
(1 m1 (14 )

==y =0 = m =m,

where k is normal to the plane of the lines.

*  The lines are perpendicular, if the dot product in between the unit vector u and v is zero:
w.v=0

["l':’"" 'J‘T#]'[Julm: T ] &

1+
Jasmiemy °

2'.>]-I-Jl;|-,||.||-:_l‘:l_’)::..m-g‘m2 ==]

mlf"ind the angle from the line 7x + 3y —9 =0 to the line 5x - 2y +2=0,
@I The siope ofa ine 75 + 3y -9 =01 m==1

2

Theslope ofa fine Sx -2y +2=0is  m =§

If s the angle from first line to line second, then
7 5

tanp=S4m  T373 39 29 't i
L4-mym, i+21.3 of, 35 A eas
e 3 2 6
angle = 45° is aeype,

NoFFoRsAMLE
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m The equation of family of lines passing through the point of intersection ot |
two given lines '

Suppose, the two lines are ;
Li:ax+hy+gq=0 @ p
L, ax+by+c, =0 {ii)

and P(x,, y,)is their point of intersection. The given lines L, and L,

Lk,
musedtnobtamaﬁmdegmecquatmnof'astralghtlmemxand : Leg
y:(ax+by+c)+ h{ax+by+e)=0,2is constant (iii) ‘ |

The coordinates of a point P will reduce each line in (iii) to o £
zero, since, by hypothesis, P is the point of intersection, i.e., it lies ’I —-gL

on cach line. Therefore P satisfies (iii) and represents the family of
lines through the point of intersection of L, =0 and L, =0. Flgum 7.22 |

oy ; [
Rt l10 | Develop the Family of lines through the point of intersection of the lines 2x -3y + 4 =0and |
2x +y— 1 =0. Find the line from the family of lines which is
fa). parallel to the line whose slope ism,=~—%. (h). perpendicular to the line 4x + 3y -1 =0, |

@IIEED Resul (i) is used for the lines 2¢~3y+4=0, 2x-+ y— 1 =0 to obtain the family of lines:

(2x—3p+4)+ A2x+y-1)=0 } (V)
(2+22)x+(-3+ Dy +(4-1)=0 j
The slape of the family of lines is: :
(24+20x+(=3+)y+(d-D)=0= (-3+A)y==(2+2)x=(4- 1)
st 2y, A=1, o -(2+2d)

T R TS L e T ]
a. The family of lines (iv) is parallel to the line with slope m, = —%if and only if their slopes &

H2+24) 2
-3+4 3

The value of A =-3is used in (iv) to obtain the particular line from the family of lines (V):
(2x=3y+4)-3(2x+y=1)=0 = -3y +4-bx-3y+3=0

= -4x-6y+7=0 =d4x+6y=-T=0

equal: =6+6i=-6+21 =41=-12=> A=-3

. . . i0
B Thadlopeafibe ghwaling dx-+yol = @ i~ -5 . The family of lines (iv) is perpendict!®
the line 4x + 3y+ 1 =0, ifand only if the product ol’lhz;: slopes equals —i:
=(2+24) -] = 8¥82 |
3+4 3 2,3 12 848=0-3 s 1A =12 A=)

o - : Gl
The value of 4 —rm used in (iv) to obtain the particular line from the family of lines:

(2;-33;4-4)4- [Z,t-l-y ~ly=

0 =22x-33p+ 444 254 y—|= 0 = 24532+ 430

PLANE mlmccmm o =y
- Y STRAIGIT LINE
m he angels of the friangle when the slopes of the sides are given

HEAG, ), B3, 3y) and
k %, J,) are 1he verti
AB,BCﬂﬂdCf\C'f‘ﬁemangkmc“: Ir'ﬁﬁuraims
m, = —2-.__|.

= slope of side A8 ,

le ABC and the slopes of the sides

ar’

my= ;JL—;’- slope of side BC

Sl e L

"

b
My, }'——L¢ slope of side CA
1= %

Figure 7,23

4

IfB,. 0,and B, are the angles in between their sides AB to AC, BC to
BA and CB to CA respectively, then the angles can be found through results tan@= tM

The angles from the sides AB 1o AC, BCmMmmmCBofamnghaBCmmmb'

taﬂa __"‘. Ianﬂ Iz-—l——m' 5_ ¢]
L+ mym, l+mm," M., = 1+ mym, o
BETUEA20 | Find the angles of the triangle ABC, whose vertices are A(-2,-3), B(4,-1) and C(2,3).
@I 1£ 4BC is a triangle and the slopes of their sides AB, BC X 5
and CA are respectively:
SR o Wl < [0 50 [P 2 1
my P T e slope of side AB

=ll_—l=—3+_l=__.=_
ms PP e 2, slope of side BC

._J-' ¥y_=3-3 _-6_3 :
=== __——2_2 = 1, slope of side CA

Rmhrv}mobmmmms from the sides AB ta AC use:

Ry

Result (v) to obtain the angle 9, from the sides BC to BA use:
=2-1

I+M.M; mL] ~‘j e Sasn()

Result (+) to obtain the angle 9, from the sides CA to CB use: tan, = M=
: +mym,
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1.

are

i

Pierre de Fermat was French lawyer and a mathematician. He was credited for the carly B
development of caleulus. In particular he
an original method of finding the greatest

s

o

-

Show that the point P(x,, y,) lies above or below the line ax + by + ¢ = 0. Also show that the Poing
P(x,, ) and the origin lie on the same side or on the opposite side of the line ax + by + ¢ — o .|
a. P(4-5), dx-3y-17=0 b P(-3,8), Sx+Ty+9=0 g
In each case, show that the points P(x,, %) and Q(x,, y,) are on the same side or on the Opposite
side of the line ax + by + ¢ = 0:

a. P(-42),Q(11,-3); Sx+14p-11=0 b. P(-3,5),Q(1-2;  2x-3y—10=g

In each case, find the perpendicular distance from the line ax + by +c=0to a point P(x W)

a. P H4), dx-3p+6=0 b P58), 3x-2y+7=0 ¢ P(3-1), Sx+12p-16=0
In each case, find the angle ® from the line L, to line L,, if the slopes of the fines L.

, and L, are |
the following:
a. LI'.m|=%, L,:m,=3 bo Liim=2 Li:im=3
In each case, find the angle © from the line L, to the line L, : :I
a. L, : joins (1,2) and (7,-1), L, : joins (3,2) and (5,6). [
b. L, : joins (2,7) and (7,10), Iy 1 joins (1,1) and (-5,3). ; :
Try to obtain acute angles,
In each case, find the angle © from the line L, to the line L;: |
a Ly tx—2y+3=0, L,:3x-y+7=0 b. L, :2x+4y-10=0, L,:5x=3y+1=0 |

In each case, find the angles of the triangle ABC whose
a. A(1.2), B(4,2) and C(-2,3)

Find the equation of the straight line from the fa
intersection of the lines

1 2x-3yp+4=(, Eqr+4y-5=l)andispcrpe.udinularmll1¢Iineﬁx-?y—18=0.

b. 3x~4y1l=0.5x+y—lauaudculscﬂ'equnlintmpufromtheaxcs. ‘
c. x—2y=a.x+3y=2aandispam1lelmthelimsx+4y=u |
d. h-yn{l,?.x+2y=l}miisperpenﬁicula:tal.belhmﬂx+y—-6=0- |
15t

vertices are the following:
b. A(3,-4), B(1,5) and C(2,-4). )
mily of straight lines through the point of

Was recognized because of his discovery of

and smallest ordinates of curved lines which

very important for the differentia) caleulus. He alsg ma

:’:".”E the system of linear equations (i)" The system (i

PLANE ANALYTIC Grnnm'rm; -
: IGHT LINE
a«?mumr;hmq of Straigh¢ Lines "
T to t the oncurrency ight Ti ancent

lines. Logically, the solution ofthe a}mn?t;??mguﬁ w|c n:cdhm by ewﬂn e
For illustration, the two lines ¢+, 1 =0 formi g T lnes int ;

e F=landx—y=yjs forming the system of two linear equations

X=y=0

that in matrix form is

L0

‘The augmented matrix of the system Ax = b is

Alb= | LI i |
.,I P g:%wmw:ummesmof
mduwdhianwhehnﬁ)mlhmughmwepemions *rty=landx-y=0i gvinga
Alb= 1 11 { PR R | !mlqllem]lnionsu,simclhclimsm
o L Bisdiacg by R, + R (-1) m:rm;ngujmuuglepm
. X * xty=landx+ y=101is not giving a
tl'mtgwesthesyslmofaquatm: b i LA TE
sulnﬂmsu.smthelmcsmm
x+y=] y=-—:r=l intersecting.  because the line are
=2y=—[|™ 2" 3 parallel.
D S, e . * xty=]and2x+2y=2is giving an
The second equation s giving y 2k 7 which is used in first infinfte set of solutions, since mnns
i S | - il | mmmgm&mnmm
equation to obtain ¥ Z.Th:soiulmsﬂ (xtv)—[?EJ of the because the lines make a semse of
system of‘t\-{ohnearequnmmnunm(onc solution set). This st
unique solution is the uni

unique point of intersection at which the given two lines intersect,
Condition of concurrency of three straight lines ®
. The condition of concurrency of three straight lines is the
Straight lines interseet, For illustration, if the given three lines are
ax+hy+e =0
ax+by+e, =0
ax+by+e, =0

point of intersection at which the three
(i)

then, thlj;thealincs develop a homogeneous system of three linear equations

By Qljl x 0

a b afy|=|o

@ boglll ]

Beneous system of three linear equations lines (ii),
G

i’ i 'v

? 1
Concurrency means

(i
In hg A
the homogeneous coordinates are ysed:

(iii)

that the three lines must intersect at a point Gix,y), say, that can be found by

4 i) has a nontrivial solution if the determinant of
1C1ent matriv 4 of the 5 s

ystem (i) is zero:
NeTF FoRsALE
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a b q .

ax by oo|=0 (iv)

as b B ;
This is the condition of concurrency of three lines.

required poi currency follow the steps given below:
I:H Choose ::;Twzrlm from the given three system of linear equations (i).
*  Develop the system of these two linear equations.

| two linear equations and reduce it in an echeloy forn 1o
Dcwlopihuugmmdnnmxgofthesymmof - |
e mpl;:n;c:fc;upnd m?;ﬁimmm in the remaining third line. If the point of intersection satisfics the
Substitute 1

remaining third line, then that point of intersection should be taken as the point of concurrency of the given thyes
i —_—

lines,
Example'%T] Shaw that the three lines x +4y+3 =0, 5x ~4y~ 5 =0 and 2x + 2y + 1 =0 are concurrent, |f
LA Il"-_. :
ines are concurrent, then find out the point of concurrency. A ‘
W ";'nhc onn::.t'l.ion of concurrency (iv) in light of the given three lines is going to be zero:
1 4

5 4 -5=1(-4+10)-4("+10)+3(10+8) =6—-60+54=0
Fale TR |

The given three lines are coneurrent. For the point of concurrency G(x,y), choose the first two lines
x+dy=-3,

e e i i in an echeba
that develops the system of two linear equations, whose augmented matrix A/b is reduced in

P43 1 4 =3 ey -5)
form A.l'b=[5 e 5]-—[0 ha 20] by Ryy(=5) = R, + Ry(

to obtain the reduced system of linear equations:
Xt dy= -3

=24y= 20 . : =.1-'ﬂ:ﬂw
ﬂle:wcndequal.iﬂnisgivingy=-% which is used in first equation to obtain x 3

i
line with substitution of the point of intersection (x,y) = %_._

%J is going to be zero:
1 5 2 5
Lo+p+l=0= 2 [2[5]-#2(—3—]1-]2[5]‘—[;}!-] =0
Mthﬁmﬂn&lhﬁmmmmuamm G(l 5]

Equation of median, altituge and
A. Equation of median of a triangle

A median is a line segment from an inferior angle of triangle to the mid point of ;ﬁ’m“ﬁfs
side. Look at the following example, the procedure to find the equation of median ©
illustrated in this example.

right bisector of a triangle

Rl

UNIT-7 .

rj\:uu[al._-"'-'.m

a(-6,9).
I 11 C'is midd point of 4, 4B of adsc

5 . ; 8+6 —545
Then-its co-ordinates are given as (T'T] =(7,0)

. , PLANE ANALYTIC GROMETRY STRAIGHT LINE
Find the cquatig, of the median of a y

riangle having vertices are A(8, -5), B(6,5) and

Since, the median CC* pagge

s thro i : y \
straight line, the equation ormhnﬂﬂﬂiﬁ:ﬁg using the Iwu.-mml form of the equation of
_V‘—':|= x=7 22 ' x=7 -6,9)
E__ﬁ :5‘:5 ;i*j}-;:a 13y+9y-p3=9
If A"is the midpoint of side 5¢ of A4BC then

its coordinates are given as
6-6 549 014

[ 2 _2_] [E'?J":"‘”

Since, the median A" passes through

using the two point form of the equ.

A(8.~-5) c
Figure 7,25

B(6,5)
the point A and 4 respectively. By

ation of a straight line, the equation of median A4’ can be found as
F=7 _x-0_ y-3

x
7-5) ﬁ#'l—z-—=3=-3y—]2:+40—0
s the midpoint of side AC of AdBC then its coordinated are given as

8-6 -5+9) (2 4
[T'TJ (33)-02

IFB' i

Sinee, the median BR*

Ppasses through the point 8 and g respectively. By using the two point form of the
equation of a straight line, the equation of median 88" can be found as .
Y=2 x-1_ y-2 x=1
T— i — _—=e— 3 -S T= D
T i = i el
B. "Equation of altitude of triangle
Altitude of a triangle is a perpendicular drawn from the vertex of the triangle to the opposite side.
This is also known as the height of the triangle, Mostly it is used to find the arca of the triangle. Look at
the following example the procedure to find the equation of altitude is illustrated in example 22,
I.\:unpi;}'-El Find the equation of altitude of triangle ABC having vertices are A(=7, 4), B(3, 6) and
07, -10)
First we find slope of side
P L |
™o9+7716 T3
The altitude ce js perpendicular’to side A8, so, the slope of
CC'= i ==8 C[?D—lo) .
| ] Figure 7.26
fbm the altitude CC" passes throug

h the point C(7, ~10). by using point slope
M of the equation of a line, the equation of OC" is
: Y=(-10)=-8(x-7) *
= y+10=-8x+56 = Bx+y-46=0
Which is the equation of the altitude from Clo 48,

The slope ofside BC=m, ==10=6_-16 o

NoT FoRsanE
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UNIT-7

HT Liyg el ot
; LI | .
The altitude A4’ is perpendicular to side BC, o, the slope of "= 1.~

pum;mm;m. | e
Since, the altitude passes through the point A(-7, ), by using the point slope form of the equation op, 5 2" g 'E[ a1 F(ﬁiﬁ Yty
‘1 o the slape of the B F ]

lin:.th:gq,uaﬁonof.»l.d’igy-4=r§(x+7}=91+3y 27=0 mgcw'h“hwdﬂwnmwz

. BC - m=2ts L ol e DG"fﬂ"”'d'BCmreSpmwc]y
Whic'h.isthcequatinnufth:sllrludi:ﬁ';}mﬂ;ﬂ _ { Hs Wt - =

: ~10-(=7) _- ; *is perpendi : ; g 2 T

The slope of side AC;,,-.,:._T—_-:— =T=-].T|Ha'ﬂﬂud.¢BB is icular to side AC, So, dgn,lhcoqlmlbncflhenghlbmmof s'dﬁ-ﬂf.'i'smjmw

; : ¥ty = Ppoint-slope form of a line:
The slope of BB’ = -L”'(_ll_)ﬂ'sm’mahmmm'muwhﬂwmtm’m' By using the [’H E ]h:--_i_-;;t(x'ﬂzi] “

my = : 2 A
pint slope form of the equation of @ line, the equation of BB'is y—6=1(x~9" »X=¥=3=0. Which iy {Ji‘yi:l(-"-zf_&J:(I —x )| x- 22X
the equation of the altitude from B to AC. 3 =) x- 22 .J
C.  Equation of bisector of a triangle ) . ; E . | *(x =)+ y(y,=p.)=L (2 41
The bisector of a triangle is a line perpendicular to the side and passing through its midpoint, Te TR0 (35S (d-a)= 0

three perpendicular bisectors of the sides of a triangle meet in a single point. The procedure to find the Similarly, the equations of the right bisccrors £ (of 2
equation of a bisector is illustrate in the following example. | (of side CA), FG (of side AB) is respectively:
eI 24 | Find the equation of the right bisector of a triangle having pints are A(-7, 4), B(10, 8) and x(.r' '_xlJ+y':y;_J'|]"2'(,P:-y:]—-;(xj_xll}=ﬂ
C(6,-12). ' Hia =i Pty I
@IIEED Since, the equation of a perpendicular bisector is given as, Th sarbicnd E{y"’;}'if“f—xﬂﬂ

e, e right bisecio

,,_z%ahi;;_:;[pﬂ:fa) ) H biectoen DG B
|

Fore bisector of A(-7, 4) and B(10, 8) put the values in equation (i)
B mn[x_m—T

the related system of equations of the
17{ .3

k- Y 7 4 [Pt I4x—-8y-3=0
= = 5 ):sy 6 4[x 2]:& X=8y

X FG is concurrent, if the determinant
I‘Ighlb'ﬂednlsm,f(;mmmk

of the coefficient matrix A of
ZETO:

- AN '
L2 T e "5(?:2')’1})‘%(15‘:?]
Fnr'bisactﬂrnfﬂ‘(l\‘;,szzndQi.":i].wtﬁ:a:ﬁmmm[ﬂ - Tt T Xl -—%(_y:—-yf]—%[zg_xﬁzu o)
e o " e
A c6-12) KT RE T R T
=y+2=-§{x-3]=:-.t+5y+2=0 Theopcrmionofadditionufmwsﬂﬁkz+R,Iutowk,ismdmnl:ua-.in:
For bisector of A(-7, 4) and (6, —12) put the values in equation (i)
4-12 _ [6+1 )[ —T+6] B(108) g ’ 9
y= =- x-
= A(-8.4) ~|x, = 2 1 1
2 i 1i+4 2 € Figure 727 R —205’-)1’)—5(;;‘—:.’1=° (i)
:y+4-?[x+5)=326:—]6y-51=ﬂ e —%{M’-}f)-%(a‘- 3]
. ]
mm'mw“'ﬁhtmmmmmwd' ! The valye :
oo . s | . -l:lfthedetermmm is zero. Hence, the right bisectors DG, £G and FG of a triangle ABC are
L Three right bisectors of 2 triangle are concarrent 4 m :
% i e ot e . ’ lﬂAﬂCbeatianglcwithmiuﬁA[D.ﬂ].B(&G}m 1 iobt bi
procedure developed is as under: Gk of & trisogle; fhe F E | DG'EGMFG“‘MWNSIEA&Cmmm ke
Let ABC be 2 triangle, whose verts .
_ 2 Wanps, whose vertices are A(x,, ), B(x,, ;) and
C{‘)l?}]rﬂizlpmmmmofhmm
ABC whose coordinates are respectively:

CA , AB of a triangle

vertices A(x, 3 )=A(0,0% B(x,y,)=
ABC H 1 »¥2)= B(8,6) and Clx,.»,)=
r 7] ¢ 1 “wmﬂhdﬂmninmﬁ}tun&ah: !

J! WP Reremg

€(12,0) of the triangle




T R et ) S FT Y
. ANALYTIC GEOMETRY STRA;
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Lpi-ph—seE - :
Xy =Xy y:=¥s -EU’I Y 2 _:4 6
1,2 2 _le2_g=0= 12 0 -724=0 I
5-% N=h —-2-[?3'1’.} 50 x o g i
1:a Lo2 2
n=x N~ -E[}'| "."'h' 2(:"! xi] i

= —4(-432) —6(600 4576‘]-1-22(-‘?2} =0 |
=1728- 1728=0 |

The determinant (i) equals ze
concurrent.

. Three median of a triangle are concurrent

Smiwic?.lSmpagumlSl. o
fi.  Three altitudes of a triangle are concurrent

Let ABC be 2 triangle, whose vertices arc Alx, ), Blxy, ¥2) and £ i
C(x,, ). The altitudes of the triangle ABC are AD, BE and CF.

1f the slope ot'thcsi:\:BCandtheshpeoﬂheahimdc AD are
respect Ny | S D g
i mE e TR ek Figure 129

X=Xy m Y
Mﬂweqmﬁumoftheahmmhobuinedhypoﬁn—shpﬂbmufa line:
= _A:'_Elj(x._x’)

=% L Y

=)y y) = (=5 )Mx—x)x(x —x)4 Py, )~ H (B %) ~yilyymy)=0
Sﬁnihrly.thaeqmimsufﬂndthmdﬁ BE and CF are respectively:
x(x -5 )+ (= 2) -5 (5 =%)=vs(r=2)=0
I(-“t*‘:)*”'()’l'?ﬂ—-‘:{ﬁ “xz)"J’:(J"i_-'ﬁ) =0
The altitudes AD, BE and CF are concurrent, if the determinant of the coefficient
related system of equations of the aliitudes AD, BE and CF equals zero:

matrix Aof&

-x ¥imh —EEG-x)=p 0y
5-% oy —ElEn-p)-y0a-wni= 0. (i)
=% »-¥ -5x-n)-y»n-y
The operation of addition of rows R, + R, + R, to row R, is used to obtain:
0 0 0 |
==X vy =l =p)=yidy=3)|=0
5.5 hmn mxE-D)-y0h-Y s’
The valne of the determinant is e of 8
shaseri 2210, Therefore, the altitudes AD, BE and CF e

The conclusion drawn from the abave . anf'
ot tesults . and
Jﬂumﬂabunnhmmygl iy Bﬁﬂﬂummmmﬁﬁf

ro. Hence, the right bisectors DG, E£G and FG 52 triangle ABC g l
[

UNIT-7 Bl

Let ABC be a triangle with vertices A(05, B3.6) SE :?mﬁ' i ."'
4E and CF of the triangle ABC are copeurreat B s sl S i
@STTIER The vertices A(x,,y,)= A(0,0), &
¢ ’ s X Y= E(BE) o s CIUEGY off the trimmple
ABC are used in the detenninant (ifif to obtsine i b
=X WY G -xy-gly-yl H & |
5% By —RE-y-yeyi=0={iz 0 960
n=x%  ¥=¥: -5EH-2)-7kn- 50 &k -6 0§
~4(~576)—6(1 152~ 768y = 0 = T304~ 6384) = = 1304 T4=0
The determinant (iif) equsls zero. Hemce, the ahnudes AD, BE ard €F oF the rimngle 48 C areemmuurmen-

“Area of a/Triangular Regiox '
Let ABC be a triangle whose vertices ase: i, 5.0 Fil 2 V2 y
and B{x;, ;). Project B4 PE and RCogom the s fhat I
develops the trapezia FACE, F,CBE, sad FASF;- |
&
]
i

=

i

¥ A

i

—

The arca 4 of the riangelss region FEF; & the sum of e #

arcas of the mpeﬁsP,ACﬂ,ﬂCﬁ'&mdPyiﬂuﬁmmmﬂm
trapezivm FABP;.

oA Sud

Ie . ¥ per.
“’l—,[fy-"'!f'sx% “-3]*lzﬁfﬁrzﬁfx*rﬂl‘—guﬁfwfﬁxr-m: Figuree 710

i ; . ;
= Elx,y.-ahﬂ;yrxm IR e Tt O S J i

l .
=“z‘i‘tf?:'.?':)"'1:(}%")';3“&!}':-?,)1

x w1
-3s %0 L
2
x5 Y
It is important to notc that the arca A of the whanguiae regions FEE caqualss zoros, witerm disvestieesoTilly
' triangular regiomare colifoesr pois.
BRI 77) Find the e of the mianguiar rogiin. BEE; wifvse vertiees 2re: Bk =50 R 63-6)) awai!
B(3,1). ; :
(D Result ) s nsesd 5 90559 P,'H,—ﬂ&;ﬁaﬁ);.?,ttﬂmmmuwaﬂ'ﬂwww |
P._PTP:‘; 5 |
-5 1 S
A:-lrs -6 ﬁ first FoW expISiON!
2
3 1
Mip s w55 o
= %i4(-s-n+515—3)+15+mﬂ}m—1ﬂ-am—m-— :ﬁfrri-ammumm
BT RRGALE v/
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Eeneral, any ipe equation in two variables that passes through the origin
homogeneous equation, e
——
Homogeneous linear and quadratic equation in two variables -
i Baomgeneons EBnear equation in two variabice

“An equation of the fi rmx in two variabies « -t i
15 called g nonhomay encous e+
kmmm*fmqﬂfmﬁm

that passes through the origin definitely, T

]

D oe20,a band Care CONSiangy {i

Vi lie ! Fore= g the nonhomegeneoys equation (i) giyes the

Cavthy=0 (i)

is also defines 4 homogeneous equation of degree 1, since the
smnple, the equation of ling  +
lhnmmmsmuﬁ-u;uﬁm
“An equation of the form 4,7 4.2
is called o hemogene ws

Mmgufrandyh

iz two variahles
by +by* =0, ga 0,
quadratic equation of second degree
every temm are the same number “2", For
31-1-"-1]'1-5}': =0
are homogenecous quadratic equations of (he

wherea, b, ¢ are constangs
in variables x gng »". Since the sy of the
erample,

: . second degree in x and y. On the other hand, the equation of
the form 3xy*—4xy 453220 is not @ homogeneous equation, since the sum of the indices of x and y are
mtlhesamehqchandmrylenn

mm degree homogeneons equations represe I

Presents a pair of stra ht lines ™
tllrnnghﬁleoﬁgin o w
i Mﬂhiﬂmﬂmkﬁﬂmqnﬁm
lfu,xﬂ.gy-l-q =Uilndng+bly+t2 =0are the two strajghy [; i
) : = Stight lines, then the simple product of the
mmmﬂlummuhmdu&nsajnheqmbnofﬂim: -
(a,x+hy+q}(ag+b,y+q)=o “a il
The join: ;quaﬁunol'ifzhemkmeoussl ight Ij

(i)
homogencous equation, = Y g e i form of the second degree
(ax ”&P)(a,rﬁ:,_y) =0
q“!“*‘*”’ﬁ’*ﬂ%‘f%y‘zﬂ
. ﬂlﬂﬂ’:"'{ﬂ'.l&z*'ﬂab':l.lyd-w:‘__u

lfqﬂz =a, (c.blﬂra,b.):u_ =b,then (i .:

Any point P(x, y) that satisfies PRy (i) gives; ax'+ 2hay 4.y 7a
lﬂisﬁm&ejninthmgﬂwoua%or“u
o7

(iif)
(iv)
=% or second Jine @x+b,y=0 will also

PLANE ANALYTIC GEOMETRy ““"'ﬁﬂ;‘i.m
E

UNIT-7
i Represenlation as pair of straight lines

PLANE .'aNAL‘I”I'ICGEDM'ETRYm.MGm LINE

The product of (V) to constant quantity & is giving the
joint equation of the two first degree homogenecus equations in
x and 3

.ﬂ_[m-’ +2hy+by’ | =0

- a'x’ +2ahxy +aby’ =0, Add and subtract Ky

(ax+hy)' =1y +aby® =0= (ax+ hy)’ - y(h* —ab) =0

(ax+ Iy —(y\’(&: -ab))z = D=:+[ax+hy+ yq‘h’ -ab]{az-i—ﬁ}'-y\llk'-ﬁb ]50

ax+_h}»+y\jﬁ‘—ab=ﬂx+{&+\.l'k’-d}y-ﬂ ]

a.t+.‘|y-Nﬁ’—db:nx+[h—dk'—ab|y=0 {vi)
MIM(V)M(Vi]mﬂmcfurcﬁmdweq‘uﬁurmh:mdy b
[EEETz8) Find two first degree straight lines in x and y when the second degree homogencous
R —8yi=0. oo
equation is Sx” + 3xy -8y ; o
m The Standard form ufmddegc:hmmgmz - e:qtmmﬂ_s‘ M=3m=h_%. bg_:ﬁﬂl
degree homogeneous equation 5x*+3xy-8y =0 to e e
= - i ines (v) and (vi) 10 obtan
9:;:1 lues are used in the standard form of two first degree homogeneous lines (
va

3 £ lines:
required two homogeneous ::r+(-’l— r'*:,,b]y-l)

ﬂ+[k+M]-"=G
; 3o =0
S == (K-8 |¥
) ol e K
5:+[%-J§:0]P=°

3 ’9_ 40 [y=0"
Sx+[5+ 4+ ]

The lines are

*  real and distam, if b —ab> 0.
*  rcal and coincident, if h* —ab =0,
" _imagioary, if ¥ ~ab <0.

3 13] 0
——y=
ir+[2+']13:|r=° 5'“[1 :
2 S5x=5y=0
Sx+8y=0

x=y=0
: ht lines A : and
iil.  Angle between pair of straig tion in two variables x and y
Ift:esmndud form of the second degre

(vii)
m=+m+by== 0

wp = mxand y=mx:
strsight lincs. = mx '
15 decomposed into the product of two homogencous
(mOGEmg.
= " —myxy —mpxy + mymyx "= 0
¥ = (o, 4,y + iy x =0

208
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The comiparison of equations ;| and.- i/ gives:

bt et s e e B, g S

The angle® in hetwnss; the given two straight lines is:
mnd=T1"M_ (rm, = m;

wla

H] ("ﬂ -mi:lz =':m|+m2}:“_4m|m1

L+mm,  1+nym,
}_da
(m, +m,)—4m,m, 2 _2 h*=ab ret
L+ mym, +2 a+h :

Result (ix) developed the idea that. o R
*  the given two straight lines are perpendicular, if the angle between them is 90" that makes a + b= g

ﬁl:gi\'enmmidrlIinumeohnidingirunangkhctmlhemismumtm;f— ab.

N i thﬂnanghhhamﬂmtinesrcpmmﬁhy
X —xp-6yi=0

m‘rh.-andud form of second degree homogeneous equation (7. is compared to the given second

degree homogeneous equation x‘-:_:y-ﬁy‘:l:llo obtain: a=1,2h=—] = p==1 b=-p
Thacwhmmumdinmﬂt:;a‘-tnoﬁhhihe i '2 ight li

 Wactiog angle in between the to straight lines represented

the second degree homogeneous equation

1
o 28 000
a+b
B=tan™'(-1)

2574 B s
1+6-6) . BT T

===

P AT
In

==
3 135°

3 1 Find the first degree straight lines in x and

is 3x" —4xy-3, "=0. Show that the resultant lines are

mmm form of second degree homogene

second degree homogencous equation 3x° =4=3pi=Q o “-::qunmm {iv) is compared to the given
These values are used in the standard forms ; ovain: a=3,2h= 4= h=-2,b=-3

lines to obtain the required two bomogencous liner ' “™ (/! Of the two first degreé homogeneoss

mt-i-(&-i-\'fr'—ab}}yno

coincident or perpendicular.

nx+|:rr-q'h‘-ab]y.0
3x+[-2+ @9 |y=0 3.\:1'[-2-47::3}3,,0
3x+[-2+413]y=0 34[2- i3], 20

mmﬁnﬂmpﬂpendhuhr.ﬁrna+b-3.,3=nhmﬁ“ s
a= uﬂb!!—]._

e

(loT FoRSALS

PLANE ANALYTIC GEOMETRY STRAIGHT LiNg

iy

=

G

i
1n each case, find the point of intersection P(x, y) of the pair of lines:

a. 2x+4y-10=0, 5x=3y+1=0 b. 2x4+y-8=0, 3.:+2y_-2=0 .
Show that the following lines are concurrent. If the lines are concurrent, then find out the point at
which the given lines can make concurrency:
. x—y—2=0.1t—y-5=ﬂ, llx-5y-28=0
b. J:+2_I'-3=U. 2[-}'+4=D,x+4y-1’=ﬂ
= —2=0 !
¢ +2y-1=0, =-3y+d 0,x+y-2
If ABC is a triangle with vertices A(0,0), B(8,6) and C(12,0), then show that
. the right bisectors of the triangle ABC are concurrent.
b. the altitudes of the triangle ABC are concurrent.
c. themediansofihchimtgkhﬁ(!mmncunm. ‘
Find the mof!huhnguhrmmwmm?mluh;bﬁﬂpﬁn
B -ﬂ(“-“]-fifl“):ﬁl'?-:z}-' - R(-L-2: K 3
c 3(4.-—5),1_’,(5,-45).}’;(3,11. , &
#mmmmmw:mmkﬂcmmﬂ)ﬁgﬁwﬂ}
a. A(-3,6), B(3,2) C(6,0) : g
c. tbewrticexinpm'tsamdbnfm';runsk llinear? ceabie
Findm:vn &ﬂdmmighﬁwhxandy,whm&mmew
the following: g
b, d4x* -9xy+5y =0
asm“r‘ e incident, perpendicular neither, when
3x&w1t:ryoﬁ;tdcgmesmighllinﬁinxmdymwm _ or
mymmmdbymmmmmmfm;y:;w‘o
. f-!-Sxy-—y'.—-D : . : o Aoy el
F‘mdajnmtequmwnomnmighhn:mﬂpaﬁul lh-uushz =-umgn
a. perpendiculartmhelwmptmedbﬂx =Txy+2y o .
b. pﬂpﬂﬂbuhrwﬂnﬁmupmdw;’vzmﬂay-: =0.
¢. perpendic uhrtolhc]inﬂrqn:ﬁlﬂaﬂh]'ax:+2hy+by =0.

21C




UNIT.7

PLANE ANALYTIC GEOMETRY STRAIGKy g . oA
UNIT-7

I o e .

PLANE ANALYTIC GEOMETRY STRAIGHT LINE

e

1. Chnuse thel: = e : S
: . Orrect option,
L. :
-l..be;ql'!_';t-;m between point A(7,5) and B(-5,-7) is: i : )
i To fim the g oee, 2 122 (e) 2v2 (d)0 % The distance fom point P(x, )10 point O(s, i the coordinte plane i
. ﬂHdNMofalhuwgm[he&,mh: . l n¥z :
() A/ M-y B=hx d = POl=(xz~x)"+(y,~ )
2 2 (b) = e il ) " IfL,and L ,are the two lines having slapes m, andum,  { these two lines are
4% Y4y 2 2 i, and m, , then, .
(c) "‘2":-'-'—5——"- (@) B my, sy : a _mmﬂzlffandt{nIylfﬂyfnawummshp?:q=m,,
iii, Furthepohu;(a 5) and (5 . 2 7 b. perpendltular:l'andunbflftheprodumummsbpsequ—l:m,m, =-1
T=b : (5.7) tho slope of line is; . *# The equation of a straight line parallel to the x-axis and a1 a distance a from it, is y = a. The
{a) 5- (b) = 52 equalionof‘ihex-a.risisy=l)andthcveclor¢qualionofmisisnj-0. s
iv yi . fthe [i ME (d) - L 'I‘heecjualiancfnslraighrlineparailclturhe,wa.u‘.sandataq:'sumclr from it, is x = b. The
? m;’“““ 'hehﬂﬁl'r'i-q}'t-éis; 3 equation of the y—avis isx=0andtb¢vmgrcquuﬁnnufy—am' isri=0
fai = v oy =3 2 % The standard forms of the line are the following: _
: 2 (b) 3 fc)i fd!*-z- a. y=mx+e, Slope-Intercept form b. y-y=m(x-x), Point-Slope form
. A Py, ; 3 : - ' :
v o o B 2 .P-y.=f-i:"f"“'-} - Two-Pointform  d. Z+3=1 Double-Intercept form
3 mr
(a) slope intercept form . ;
: fc}winrshptberp;a (b) two point form ; s XX =!'_;Ja'1=, Symmetric Form i xcos@+ ysiné= p Normal Form
vi T‘hcmnmlfcnpofanoqum,;mjs: rd)daubhmlmeptﬂ]m E _; 3 mewsem:::mufalineisax+by+c=ﬂ
(a) .rc::s&-h}'&mﬂ:p (B y | n Sfo}'dmmmommmwmmgh&m
. 15m3+ylauﬂ_-.u (r.iJ x':osg‘.}'ﬂnﬂ=p < F:::#ﬂthehﬁneisnonhomngmmmihalduﬁ'nﬂmﬂmnghmcﬂﬁsﬁ
vii.  Two given line ara atr 1 X058~ ysing =g d ; . ag+byte
(a) "oty =1 pﬂpeﬂd:':u_'f 1ﬁ=|‘le(‘;'esjup¢5ml aﬂliﬂlzare ' |I v The perpendicular distance from a line ax + by + ¢ = 0 to a point Plx), y,)is: d-jﬂ’—q.llb-’_
Viii, S+ ly=0izg o () mym, =] (d) mym, =—| [ i tapp="M
(2) bomogeneous lincar equation (b) pon-ho | “ The angle between the two lines y= my+c, and y= mx+cis: 1+ mm,
e badratic equation only o TOEEnC0uS lines equation . ; the point of intersection of the lines
i ; - ; . i ight line that through the point o
" i A 5 i | e e i ey oo 6 4 s
| a b g
| it sl =
% The condition of concurency of the three lines is: 2 S ek
& 6

i 24 2hey+ by’ =0, a#0,b,care constants e
4 a:mﬂ:ls,:::;xusmoqum of second degree in x and y when the sum of the indices of x

o - being 2.
nd very term is the same, the sum being 2 5 '
B -au.:;.::; between two homogeneous straight lines y=mxand y= m,xis:

tang = 2VA—ab
, Th:’;:m two straight lines are perpendicular, if the angle between them is 90° that

i g‘;{;ﬂ;:’ 'straight lines are coinciding if the angle between them is zero that
makesh® = ab.

(1586)-(1658) =

d & well versed in mathematic

coordinated system was named 118
: ey




;. ﬂﬂ'mbcé;ri. 2ad derive jis ?igm m;ismizard form i.e. (v-) + (AP =2
Recopn Esnemal aquation of a gircls 2 + b e e
e Findthe oguation ofa circe passing "m,g;’: +2gx+ 2+ ¢ = 0and find g eentre and radiys,

" Miree non-collinesr pains ints an :
. v n 1w points ine i T
- m:'ﬁpafl:.'suﬂd equzifon of angent at cpp nf&i::mehaﬁ:gmwm NPT
. momandkmhinga given line, Ty R,

Fanzent and Narmal

ind the

i Pm;;:umlnlim]{y the fallowing properties of acircle,
pwﬁﬁfmorany cf:ﬂ:itfmm ? et e chon
&pe : acmele
gﬂ::]ndm:m the centre of a cirele to the mﬁdpo;&:: ::hlﬁjdg?s - mg'e hr
gruent chords of'a cirle are cquidistant from its centre mﬂ?mri:l:.r G

double the measure of ghe angle subtended by the

"« % 3 8 a

coresponding major are,
* Anangleina semi-circle is g right anple,

tbooks of calculus depart from this

[EEW Conics and members o its family

A canie scction (or simply conic) is o curve abtained g the i
plane. The three types of conic scotions are (he hyperbol,

type of ellipse, and is sometimes considered to be he parabols, and ghe cllipse. The circk

& fourth type g1, conic section,

UNIT-8
CONICS-T

Conic sections can be generated by intersecting a plane with a cone. A cone has two identically shaped
parts called nappes. One nappe is what most pooplcmnhy'tum,“mdhzsﬂnshpeufaputym

Conic sections are generated by the intersection of a Plane with a cone. Ifthe plane is parallel to the axis
of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating
line, the conic section is a parabola. If the plane is perpendicular 1o the axis of revolution, the conic
section is a circle. Ifthe plane intersects one nappe at an angle to the axis (other than 907), then the conic
section is an cllipse.

Figure 8.1
In this unit, we look at one of these canic sections that are the circles.

m Circle “ o
A circle is a shape that has a continuous and constant curve. Though it is always curving; it has
an algebraic expression that describes its nature. .
Circle and its equation in standard form

“The ser of all poinis in the plane in stch a way o, 18
distances from a _ﬂwd{:.-m’m in that plane (called the rﬂ:-‘"} is Py
equal to a fived distance (caled the radiis) of the circle. :
Derivation of Circle Equation: This dcﬁ:mqn ::lps us in
[ andard of the equation of a crcle. .
dﬁ"'ﬂp{:% :31.’:, k) beﬁzﬂnﬁ:ed pogr at the center of the circle
and r is the radius of the circle and P(x, y) is any one of the g 5
collection of points on the circumference of the circle ﬁf:;: )|
the distance from the fixed point C(k, £) which ]
radius of a circle. The position vectors of P and C rtlnlw;)tu
origin are respectively. OPsf.r.y},OC-{.’tJ) Gac bt o= S
From the Figure 8.2, the distance from the center C to point P is distance equa

radius of the circle:  OC+CP=0F
= CP=OP-0C 1

= CP=[.t.y;l-—[-'l.-t}=|:x-h.y-k}
|cr|= {x—ﬁ]l+[.v1.t}". distance formula

o =(feRy T (rAY | - e both i

H={;-h]’+[)“‘)l- P =(cPy =r*

Figure 8.2




UNIT-g
The standarq g, CON|
m . = ; 1
TP i ofalc:rcrew:th radius r and center (h, k) is: (.r—-.’;]=+(a_“2=ra e Cs
eircle is at the origin (h, k) = . e ; ii)
i =ﬁ2 )= (0,0), then the circle equation (ii) becopmes.
equation of 3 eircle with center at (iii) \

(=2,1) and radius r = 3:
™ of the equation of circle is (x—p)? =kt =p?

Whe!'e (1, &) are the coordi
In this equatjon h=-2 p=
substitute these valyes in

to the standard equation,
=(x —-[—-2}11-{;.--1]2:(3]’

= (x+2)? +(¥=1)"=9 is e quation

I;ET |1Ifemeral form of an €quation of a circle %
] arrangement of ¢ i

circle through the following pi::ciz:erzl Trotioe i :

Beneral equation of the second d in var;
g:l;czhxy‘-b 2+28,+2j.+c zoegrec In varighles (.rj and y js:
e out both s; ion (j ;
i sides of equatjgp (1) by a to obtajy:

2, 2h .2
-t +TJT+:'V +23|x+2ﬁy‘*‘¢‘| =0, 7
The rearrangeq equation & T

(i) of the genera] eqya:

; equation o

general equation of a circle i and ol 2 _ wa 2 _ P1ihe second degre )i xandy gives e
a a =u: .

.t:+)':+2g|.r+2j;y+q=‘g

x=+y=+2gx+2 +e=0

X +2gr4g? aﬁf (i) g = '
-p; —E +y +2fy+ﬁ‘ﬁ+c=0p,dd' 1 Esj?:f.a’.‘,:c

(x+g) *r+s)=gtepr,

: :

[e=Cell - sy

The locus of a point {x, y) which moves in such 5 way that jig
constant and equals y/g? + £7_ ¢ i Of course represents

a

in equation (i)

distance from a fixed point (—g,~/) i
circle,

Eor gencral squation of cirele 4% 4 2

] 2:‘}:4' E,iﬁ"‘l' O
* Center and Radius: The

r=y(-e) +(-ry .

* Independent Constant: The general equatio

can be determined from the three independent oo 4" three j
= Nature of the Circle: = * conditions, Mependent constants g fand c. They

"g: +f’_c>0,ﬂuﬂ. ihtlrchkruhnddlmumh
m zerg,

of the cen Teal '
L lf-g,—f) and the radius is

" Consider the general equation a circle is given by

UNIT-8
CONICS-1

lrg’+f’-c=l‘-'.-hu.1mlummmm.m{-g.-f). It s called polnt clrcle.
If g’+f’—¢'<0,lten.thefnulmqu.mrm-l.
= The cocfficients of x* iuqmmmem.cimwf.mmam-,nmmmwmymme
square of the radius ¥ > (),
Find the center and radius of a circle 450" +45y" =60y +36x+19 =0,
W The given circle equation is rearranged ta obtain:

f+y’-§x+§y+%=ﬂ, 0] Dividing by 45
‘The circle equation (i) is compared to the general form of a an equation of circle to obtain the values of
O T 2 W
R o o T e

The center and radius of the given circle are therefore:
28, [ A B [0 _{§
['g‘-”{??}“ 9725 as V25~ 15

The equation of a circle passing through

A. three non-collinear points =X
B. two points and having its centre on a given line 54
C. two points and equation of tangent at one of these points is known
D. two peints and touching a given line ) ¥

A. Equation passing through three non-collinear points

4y 42042 f4e=0 :
If the given circle is passing through thmﬂc;nn?hn.:lhn;:

points, say, A(x, ) B(x;, ) and C(x, y.,) :::m

must satisfy the general equation of a circle. I:NE'":'F

above three points in the given equation of a circle, Le-: i

547+ 2 $ 2 +e=0 e

X747+ 20 + 2/, +e=0 o
%+t 2gn, +2 4 +c=0 (iif)
51 Find the quation of a ircle which pases through the three points A(10), B(0,6) am

Examiple

LIENA)

Figure 8.3

C(3.4) ; iy P A
which mml Mmmqnguhilx m:i:;ﬁ:{fll}fsﬂ(;-ﬁ'; i;::‘(g?:-i].fhi:h gives a system of three linea
£quations in three unmuwnse.ﬂ'ﬂ: Fon ‘
361—-::;:::: = =12f +¢= -i!'ﬁl (i)
25+ 6g+8f +c=0 = bg+8f +e==-23

ROF RORGALE =4




/ A |I|

- RIS W L ST
UNIT-g
The s i P i
memoflhrecllncarequationililinnutrixfoﬂtl 0 -12 | f’ 3[5
] [ ] A.I.' b
6 8 1)le =25 p
2 0 q =1
whuseaugmcmedmlrixis: Ab=0 -12 | |36
6 & i [
R
educe this augmented matrix in g echelon form to obtain
2 0 1 =1
RO -2

6 1o -3, = Ry +(-3)R

2gte=— ]
=12f +e=_3¢ (iif)

-4
(T]“““’J ;
Third equation of the system (i) is giving ¢ =
obtain the vahyes off= 3 4ng g = =71
B S 2

The \.rnlues Ofga =7 f 47 69
S Em — and ¢ = 2 . 2
3 4 & €7 7 ¥ used in equation (ii) 1 opy
equation; x’+y’+2(" l) [4? G
— |xsa| 27 69
4 8 ]}’1- 2_=0
ey I 47 6o
A T

ain the required circle

:

4x'+4y’-l¢2x+4?y+133=0

UEH WO points ang gy

f'the given circle is passing through two poings, 5 i
|B(x;, 33), then these points must satisfy the My (x,.
r:i!:zlc. r:'ow put these two points in the gimq“atiunar:?mm,
%7407+ 286 425, 4c=0 (i) ele, L.
"'::'*)’::*‘25‘:“’215’: +e=0 {ii)

Also, the given straight line ax+byse =

senter (—g,~f) of the circle. e Passes through the

b7

r Oty 2ot 2 frromp

Figure 8.4

R i

B
5~ Which is used jn second and first equations to

= RoTroRSAE e —

V@ i 4 | Find the equation ofa ¢
center on the line x4+ y—-3=q,
mrcq“mquilionofnchleis f+y’+zgx+z,5a+.,-=n
which passes through the two points A(3,1)and B(2,2) that Bives a system of two finear e
10+6g+2f +e=0 = bg+2f +c==10 i
S+dg+df+c=0 = dg+dfe=-g } finy
If the center (~g~N of the circle lies on the
linex+ y=3=0, then the line x+ y~3=0 becomes:
-g-f-3=0 = g+f=-3 tiii)
The combination of equations (ii} and (i) is giving the
system of three linear equations in three unknown g, fand ¢
6 21)g) (-0

ircle which passes through the points A(3,1) and B(2.2) having its

4 41flrl=[-8| ax=p : x
1 1 0)le) \=3 - \
6 2 1 |-10 x+p=1=0
whose augmented matrix is: dlb=|4 4 1 |-8 Figere 85 °
1103
Reduce this augmented matrix in an echelon form to obtain the unknowns g, fand c:
59 W fdo
I R R |
Ro = =I5 [PPR—3% h=g T
2 | |-4
e
6 2 1 [-10
s 1 (3 u(n-te)
o i ol L
-1
= |=1
o0 3
6g+2f +c=-10
8 1 24 (iv
y{3)=-3
(:1];-.—1
: givm:-dwhkhklﬁtﬁhmnﬂmdfh‘slmm' I

Third equation of the system (iv) is

. i =2 s Gy ; ’ :

mml‘?‘::luzc:f{i‘g I-‘—‘:if"' 1 and ¢ = 4 are used in equation (i) to oblain the required circ
val ] A

cquation: ¥ 4 ¥ —dx—-2p+4=0 :




~_:" BN
- 3 1
-35_. i i l'\ - =S o i e s_{' * SR
LNl i-pn = B .__E%'E_g. -k
C. "
The Cquation o UNIT-8

F
. Points is kngy, a circle Ppassing through two points and equation of tangent at gp

Consid : i i
| o lir the genera| Cquation a circle is given by
Y242 4 eag (M
| - If the given cirle is passing through two points, say
»¥) and B(x,,),), then these points must satisfy the

&eneral equation of 5 circle, N
‘ . Now put ints i
£ven equation of circle, j.e.: PP TR =

xlz +y|"+2g:. +2J'j.l +C=D
2

%+ 2, +2fi+e=0 (iii)

Also the given straight line ax+by+d =0

\;.mph— Find the equation of 4 circle which

:Ic two points A(0,-1) apg B(3,-3) and 3y - 2

angent line on the cirele at a point A(0,-1), 4
Let C (, ) be the center of the requireq cirle, If -

A(0,-1) and B(3,-3) are 1h6 WG toinre 1t

4 @ points lie on the cirgle,

Square of the distance circle, then the
distance from C 1o B: ffom C to A equals the square of the

ICAT"=[CBF A~ (h~0,4.41),cBo (4
(B=0F 4 (k+1)" = (h-3)" 4 (k4 3y et

ﬁ:+k’+2k+1=;,?_5;,+9 3
6h-dk-17 =0 okl :
The slope of CA s (i)

=ik kel
0-4 h
and the s?opcoflhetangmt line 3x=2y-2-9p is
Ix-2y-2=p .

_2y=—-3x+2‘:.>_y=§'x_]'ml =£

Le. mym, =—] 3
’ k+133
(3w
;‘ 31’-!-3-:-2,&:2),_,,3*1_3-0 o

The equations (i)and (ii are solved to gbtaj
(‘) (“) 1| obtain the “I-L&B of k =3 eud § -.3
The required circle with center h, k) = s and A
: (2' 2) Tadiug

L& L TR

r=lCA|=[cal= J# + 1y “*ﬁ %]*lz"—qii.r.
2
(x=1) 4yt =
["'%] +{y+2]’-%=;=+f-—ax+4y+3-u

n. The equation of a circle passing through two paints and touching a given line

Find the equation of a circle which passes through the two points 4(0,0) and B(4,0) and is

touching a line 3x + 4y +4 =0,

Let C(h, &) be the center of the required circle. I£ A(0,0) and B(4,0) are the two points lic on
the circle, then the radius of the circle from center € to point A equals the radius of the circle from the
center C to point B

|CA* =|CB[, CA =(0-4,0-1),CB=(4-h,0-k)
(i +k’;l= =[,j[4-.&}’ +£r’J

Bk =16+ =Bh+ b = Bh=16= h=2
The radius of the required circle is »=|CA|=+/4+ £ and the center is C(2, &)
For the values of k, the perpendicular distance from the center (2, &) on the line Jx +4y + 4 =10
equals the radius of the circle:

3(2)+4(k)+4 _ [y
9+16

L (Y ryre
5

 4k£10=5JA+ K, squaring bath sides
16k° +100+ 80k =25{4+ k%)
' 80
0k +80k =0 = —k(9k-80)=0 =k=n,t-?

' 3 i =v4+0=2 and
_Th:cucrrdﬁmtsoflhecen'cﬂmﬂ.ﬁland[z.?]milbera{umr K - PR

"1i4+%.; - ’_5;?‘ ’:1_2'
The equations of the circles with the above centers and radi are the following:
(x=2)' +r*=4,

g0 6724
(x—z)’*{.v-‘g‘] T
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Exercise

O

center and radius are the fnuowins:

In each case, find an equation of a circle, when the

ca (0)0), r=4

6.

fC

|
b (3,2),r=1 |i
. {—4,—-3], r=4 |
d. (~a-b),r=a+b o
In cach case, determine the equation of a circle using the given information:
a. C(0,0), tangent to the line x = -5 : '
b, €(0,0), tangent to the line y=6 :
¢. C[6,-6), circumference passes_llnuugh the origin. g |'
d. C(-9,~6), circumfierence passes through the point (- 20,8).
¢ C(=5.4), tangent to the x-axis.
[ C(5,3), tangent to the y-axis, - ’
In each case, find the center C(-g,~f) and radius r = \,'g’ +f*—¢ ofthe following:
. x"‘+y*—3.r—-6y+9=ﬂ "
b 4x +4y* £16x-12y-T=0
e X+ 4 dx—6y+13=0
d xP4y? —x—By+18=0
In each case, find an equation of a circle which
a. (-3,0},(5,4}.{6.'—3}
b (7-1),(53),(<.6) o
e (L2),(3,4),(5.-6) .'
In each case, find an cquation ofa circle which '
2. contains the point (1,6].(6.4} and has its center on the line 3x+2y-1=0.
b contains the point (4,1),(6,5) and has its center on the line 4x+y~16=0, |
Find an equation of a circle which Passes through the points
#. (0,0),(0,3) and the line 4x—5y =0 js tangent o it at (0,0).
0. (0,-1),(3,0) and the line 3x+y=9 is tangent to i ot (3,0). '
Find an equation of a circle that is concentric to eircle
a 23" +2y7+16x=Ty=0 and is tangent to the y-quis,
b. x4y’ ~8x+4=0 and is tangent to the line T+2y+6=0,
c. X+ +6x—10y+33=0 and is touching the x-qyis, . ! |
Find equation of circle which passes through origin and whose intercepts are on the Oﬂ,""“w
a, Jand4
b. 2Zand4

passes through the three points:

NoPRoRSEZ

UNIT-8

E Tangents and Norma

. Ifa secant PQofa circle is mg
: E ved u
of its points of intersectiop P, then the mabont b
intersection Q is moving gradually along
tends to coincide with P. The limiting position PTofPQ s
then called the tangent 1o the circle at the point p,
The point of the circle o Wwhich a tangent meers the
circle is called point of contaet (Say P) of the tangent,
. Tlic normal at a contact point P 1g 4 circle (or canic)
is the straight line PR perpendicular to the tangent PT to the

circle (or conic) at that point p. Figure 8.8
The condition when a line intersect the cirele
The circle and the line are ¥4yt =g (i
yEmx+e (ii)
which develops a system of two nonlinear equations:
4yt =gt
yY=mx+c (iii)

v The solution set {(x, ¥)} of the nonlinear system of equations (iif)exists only, if the curves of the
system (jji) are intersecting. That set of points of intersection {(x, ¥)} is the solution set, can be found by
solving the nonlinear system (iii) simultaneously. ]

The line (ji) is used in a circle (j)to obtain the quadratic equation in x:

24 (mx+c) =g’

2 (14m? )+ 2mex+(c* ~a?) =0 (i)

The equation (jv) being a quadratic equation in x, gives a sct of two values x and x, of r which
will be used in a line (ii)to obtain a set of two y values y, and y,.

The solution set {[.r,,y,},[.::,;e,]} of the system (jii) is of course a set of points of intersection
ofthe line and eircle. 4 - £ "

The points of intersection of the system (iif) are real, coincident or imaginary, according as the
Foots of the :uadmic equation (jy)are real, coincident or imaginary or according as the discriminate of
the quadiatic equation (jyf y

dise = 4me* —#HI bt m’j (¢ -f;l]# 0,  realand distant

dise = diet _4[(“”:]{:: -ﬂ)_]]'_'ﬂ- coincident

dise = 4m’c* —4[|fl+m”} (c* -a';l]< 0, imaginary

Find the points of intersection of the line 3x—4y+20=0 and the circle x* + ¥ = 25

3
The equations of the line and circle are:  3x—4y+20=0 ::_;-_:l_“.s @
=25 : : : (i)
The line (j) is used in a circle (jj)to obtain the x-coordinates of the points of intersection:
T
;=+[§;+s] =25
9 é-wo -
.r’+ﬁx*+25+ 5= 25
WoT RepeaLE 222
— !




ar

x +EI +—x=0= 25" +120x=0 =>x=0.—5-

The x-coordinates x = 0, % are used in the line(f) to obtain the y-coordinates:

92 430 24
4

x=0givesy=35

x=_—2i ives 2[:;1];,.5 __—-72+]m533¢?
5 B ¥ al s

20 20 5
y - . =24 7 <
Thus, the points of intersection (0, 5) and [Tg] are real and distant.

WCnndiﬁon when a line touches the circle »*+)" = aty
To determine the position of a line with respect to the

circle, we need to find its distance from centre of a circle and
compare it with radius then:
i. If distance is less than the radius, the line will intersect
at two points.
ii. If the distance is equal to the radius, then the line will-
touch the circle.
iii. If the distance is greater than the radius, the line will
completely outside the circle.
Let AB be the straight line y = mx +cthat intersects the

: ¥
Fignre: 89

circle x* +»* = a” at points P and Q respectively.
Join OF and put it by OF = a, which is the radius of a

given circle. Draw OM perpendicular on  PQ. 1f OMis perpendicular to PQ, then, the perpendicu

|(0)-(0)+4

distance OM from O(0,0) on a secant line mx — y +¢ =0 (line PQ ) is: OM = e
% m-+

From the right-angled triangle OMP, it js known that:
foef =[om] +arf
[ = [oP[ -fom] 7
ot =a1[:l+m’ )-cl
14+m* 1+m®
a* I:] +m’)- e

1+m’

[MP[=
The secant line PQ is 2 times of DM, and the length of the intercept PO is therefore:
— 'ﬂ=[| +m¥)-¢* 5
FE&:leM!-Z __l'l'ml ':’..”‘
Condition of Tangency: The line y=mx + ¢ touches the cirele x* + 1* = ¥, if the lengt

a*(1+m')-¢ ¥

PQ is zero: 2 1407

[4

e

L+m? !
m'—‘ﬂ, W""'"Ebﬂhsidu
; . a’{l-rm“}—c’ﬂlac‘-aa(“m:J:c_mm
Tbecqwmﬁr']isIhertquil'edﬁonditiﬁnuwhichmhy_m+=mmﬁ.ﬂ 9 )
SELIEN 8 ] Find the length of the wmdhﬁﬁnslhtpoiﬂsrmdt)onlhelmc:j;i:y;ﬁl'
the::ir::lex:+y’=l‘=73hﬂwthmifth!lhemm“!mmE_'”'_;:r_: a t =1 which cus
mT&sIﬂpeofagimﬁm f“%ﬂ :

Fmatl

.)"-’-gx-i-b,m;-g

IFPQ is the chord of a circle x* + y* =7 ol POV 2 imes TP
Y times , then the
PQ through resule ¢j) is: length of the chord

Iﬁ:zi@[:z' fi[‘]%;g:ﬂ

by Bt
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UNIT-S il :
L = ST
bl—rla-_'-b: a't’ =r=nf":ﬁﬂ'_-:b: "=::_1'+'?"ﬁ i
5 : a +h' o e chord which the cirgle

i int of th
Find the coordinates of the n‘n:ﬂlz pomt ©
14 o 4 Ay =2y —3=0 cutsoff on the line x=p+==" NI
- Th:.céaue: of the given circle is C(—g.-f}=c':"7-’:"“d the line x=y+ ; (line AB)
efsects the circle at points P and Q and M{(x,,)is the middle point of the chord PQ. Join C and
nt sthe ¢ ;
that develops a line CM perpendicular to chord PQ. '
© IfM lies on line AB, then, the linc equation X=J
x=yp+l= 0
The slopes of the lines (1) and CM are respectively:
m, =1, coefficient of x
m,:-‘—-y = , slopof CM
x+2
I CM is perpendicular to AB, then the product of their slopes equals —1:

RN e L
. # 4

Figure 8,10

2l li)=m1 2 y-l=x -2 45 +1=0 (i)
x5 +2 ]

The equations (i) and (ii) arc solvied to obtain the coordinates of the middle point M:

x—-pn+2=0 -3 1
n=—= y=c
x+y+l=0 2 2

Thus, the coordinates of the middle point is M[*%. %]

The equation of a tangent to a circle in slope form
1f m is the slope of the tangent line to the circle  x™ +)" =a* (i)
then the equation of that tangent line is of the form  y=Smx+c (if) ]
Here ¢ is to be calculated from the fact that the line (i is tangent to the circle (i). The live ()%
used in cirele (i) to obtain the quadratic equation in x:
Ha(mxsc) =a’, y=mx+c
(14m*)s2mex+(c -a*)=0 (iii)
If the line (ii) touches the cirele (i), then the quadratic equation (iii) has coincident roots
which the discriminant of the quadratic equation (iii) equals zero:
Disc=0
amict —4(1+m’ )(c’ —-a’ ] =0
am’c’ =4(1 +m'](c‘-g‘]
I'-II’L'] = m’cﬁ -h:‘ —a! —-nimz
Pk ew)m oetall? )

for

sio7 FORSAE

{ii) to obtain the required equation of the tangent;

y=mx+e=mxtaflemt

The equation of any tangent to the ¢j S S
= Y EneEHO T sl X747 = inhesope formis y = avfram? v

" [r etioe = +cshoud wuchth il 457 =" wdeconiion: = taxinT (i
: : : : om i
The interpretation of result (v) is that the line x+my+n=0 should touch the circle * + y* = a® under

condition: a:(Lz +m2J—n2 =0 = n=tal+nf

The interpretation of result (V) that the line

2+ y? +2gx+2f y+c=0 under condition:
(c=s*) +2fg m+(c-g")m* ~2n(g+ £ m)+n'=0 (i)

o Lot y:mxiam be.a tangent to a circle (i) at a point (.r.. ), if the circle equation (i) is

identical to xx, +yy =a®, then the coefficients of like terms of y=mx:l:a\f'1+7 and

Cxx+yy =a’ = yy =-xx+aare compared to obtain the point of contact:

(wiii)
x+my+n=0 should touch the ecircle

-

Thus, the point of contact is (x, ;) "[3_2: W‘::] (x)
1+m +m

LRI 10] For what value of ¢, the line x+y+c=0 will touch the circle x°+ ' =647 Use that
Value of ¢ to find the tangent that should touch the given circle. Find also the contact point.
The slope of the line x+ y+c=0 ism=—1. The value of ¢ at which the line x+ y+c=0 will

fouch the given circle x* + y* =64 is: c=avl+m® , result (vii)

=18 l+(-1) =842, a=§, m=-I

The required tangent line that should touch the given circle is:

© y=mxtadl+m® = -x+8J2, result (vi)

mPOi.mnf ; i o ! }:[s 3]
contact through result (x) is: (%) {ﬁ'm Bh
m equations of tangent and normal to a circle at a point

The equation of a circle is: x° + y* +2gx+2/+c=0 (i
. If A, ) is a point lying on the circle (i), then the circle (i) becomes:
x 4 2g +2 5 +e=0 (ii)

HOT ForsaLE
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CoNIcs,

the center (I';(Jg, —f) of the circle relative to origiy
— fj then, from the Figure 3.1?:

UNIT-8
If r, and r, are the position vectors of A and
n=(xp 9)=5i+0is R=(-&-f)="F

QC+CA =0A : -
CA=OA-OC=r-r=(x +8 3 +/)=(n+8)i+On+ )]

Let P(x, y) be any point on the tangent line AT, whose
position vector is OP =(x, y) which gives:
OA+AP=0P
AP=0P-0A

'—‘r—rl

=(x ¥)-(x0)

=(x-x,y-n)=(x-5)i+(r=0)J

The equation of tangent to the circle (i) is obtained if

AP is perpendicular to CA for which the dot product in
between the vectors AP and ﬁC equals zero:

; AP.CA=0
‘ (3 +g + ) (x-xy-0)=0
(5 +g)(x=x)+(n+S)(y-»)=0
( n["‘}%"’ﬂ"’ﬁ"("f"’ﬂ*'ﬂl"’-ﬁﬁ):l}
X g =5 Y e+
T =—gx, — fr,—¢  result (ii)
xg+ 3y, +g(x+x)+f(y+y)+e=0 (i)
p The tangent equation to the circle x +3* =a® at a point A(x, ) :hmughrcsult (i) is:
ot =a (iv) e
The procedure for .the normal equation at a point (x,y) on the cif
1t x4+ +2gc+2f y+e=0 is as under:
i If C(~ g, — f) is the center of the circle and Alx,n) is a contact point, then the slope }ﬁ%u
f, the required normal line develops the normal line CA at Alx,y):
i B +f
c e s

(=) +x)=(r+3)(x-x) |
Mnt)-y(x+rg)Hoi-f)=0 )
The normal equation to the circle yt=g at a point A{x-"y.) through result (V) &

'wl y‘tl ‘u : {“-)

UNIT-8

: CONICS-]
Find th i
i © equations of the tangent and normal to the circle x* 4 =25 at a point (3, 4)

m Result [fl‘u} 15 nscd to Ubfall'l the tan qua 1] I'IC
nt e t i 1 ‘
r s gel ontot Eiven C!lﬂle.

3v+4y 25, ot =25, {Iu.l’u}=[3.4]
Result 1(w):s used
X ==
AP
mﬁnd the equations of the tangent and normal to the circle * #) =2rsap+3=25 ata s
point (2,- 3).
Result (iii)is used to obtain the tangent line to the given circle:
o+ g (x4x)+ S+ )ve=0 .
2x=3y+(~1)(x+2)+(2)(y-3)+3=0 2g=-2,2f=4,¢c=3
2x=3y—-x—-2+2y-6+43=0, (x,,y:]={z.-3)
x=y=5=0 3
Result (v) is used to obtain the normal line to the given circle:
(v +f)-y(x+g)+(gn~fr)=0
x(-3+2)-y(2-1)+(3-4)=0,2g=-2, 2f =4, c=3
-x—y-1=0
x+y+l=0 .
Length of a tangents to a circle from a given external pl}int_\
The procedure for finding the hngth of the tangent drawn ﬁ'om ¥

the externnl point P(x,y) to the circle x*+y +2gx+2fy+c-015
as under:

Let P(x,y,) be the given external point and PT be one of the
two tangents drawn from point P to the circle

X4y 4 2gx+2f pre=0 (M
__ JoinCP and CT. C(- g, ~f) is the center of the circle (i) and o)
CT=\Jg + f7_¢ is the radius of the circle (i)

From the right-angled triangle PTC, the length of the tangent PT
drawn from point P 1o the given circle is:

pef - o

[P =[Pef ~fc1f
=(x+g) +[y,+f}=-{:g*-i-f‘*-c]-
=x -lky,"‘+2g.'r| +2f y+e

IP_TF- g'l'.t? +yi 42 +2f 0+ (ii}

HoT ForsALE

1o obtain the normal equation to the given circle:
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CONICg,y
UANIT-S
ircle x4+ =gt o
v o e pnt PR 0 I EIER FRISE
« The length of the tangen i
\ﬁl s gl " ¢ i } on the given circle are equal.
hs of the two tangents drawn from the point P(x. 0
»  The lengths of the two =
int P(3,4) on the circles
g ind the length of the tangent drawn from the po
(EEEIRES) v e o
fa). x+y' =9 : B
2 —y=3= -
). x4y =2x-y -
PT|=4
21 |
a \f]ﬁ\ is the tangent drawn from the point P(3.4])l cm-lh: 4 T
I T on the given .
| given circle, then, the length of the tangent P ! B
cirele through result (ii1) is:

( [T =+ -9 ; :
y =J0+16-9 =+16=4 (x%2)=(3,4),a° =9
5
d

Figure 8.13
b, 1f PT is the tangent drawn from the point P(3,4) on the £u

given circle, then, the length of the tangent PT on the
given circle through result (i) is:

=- R - == i = 3,4
(i |P'I‘|=1fxf +)7 +2g0 +2/ y +e, 2g=-2,2f ==, e=-3,(x,5)=( )
= Jor16-2(3)-(4)-3=H12 |
1in length
b an tangents drawn to a circle from an external point are equa
J I i t
If y=mx+al+m® is any tangent to the circle x* +3* =a?, then the tangent line tha passe
through the point (x,,3,) is 3 =mx +avl+m’
¥ ~mx, = a1 +m? )

€ Taking squarc on both sides of equation () (3, ~mex,)' =a (1-+m?)

that gives the quadratic equation inm: m* (.'rf _G=]_2m,1y| "‘[.P.I _a:) =0 (ii) |
This quadratic equation (ii) gives two values of m that two values of m represent in¢
i on the given circle, 2
e reqt:rl:‘l:: IE:B:::?::Z real aild different, real and coincident or imaginary or aceord
discriminant of the quadratic equation (ii):
dise=4x1y] —4(x -a)(»] -a')>0,
disc = 4xty} =4(x —a*)(y} -a*) =0,
disc =4x]y; = 4(.\7: -'ﬂz)()-.t -a‘) <0,
2 or according as

real and different
real and coincident

imagfnm}-

slopes of

ns'sslu

UNIT-8
]
T 1 CONICS-1
XN +Y—at >, real angd different
& N
y+yi-at=0, real and coincigeny
eyi-at <o, imagingry

gciacearcing s e podnt P(x.3,) lies outside, on, or inside

the cirele Beptagl
In general, two tangent

can also be drawp from the . point P(x.») to the circle
Py +2ex4+2f y+e=0,

Iimmple"-.,,l 1] Find the equations of the tangents drawn from the point (6,4) to the circle B =l6.

I 11y = mxtc=mxtaiem is any tangent to the circle x4+ 3 =16, then the number of
tangents through result (i)

m)[.r,: —G:J—mel'pl +[J'|]‘ﬁ=:l=ﬂ
mt (36-16)~2m(6)(4)+(16-16) =0, (x,31)=(6,4), a*=16
20m° —48m =0

m(Zﬂm—43]=ﬂ =m =U.|5—2
can be found by putting m = 0 and mzisz in y=metalem

g - y=mxim."|+m3=(D}_t14|:-.,|"1+0J=:4=4_ a=d4, mu=g

5. y:[%].rid[ ﬂz+¥]
52

13Y_12. .53 w
:——5-;1:4[?}=—;xi%=?zxn?. choase negative sign

E\'!*3“*"5‘:11-1'!'!115 was a Greek mathematician. He was teacher of Alexander the Great and a
friend of Ploto. He was e first person who introduced the conic section and investigate
cllipse, parabols apd hyperbola, He also gave the solution to the problem of doubling the
t:"b" He introduced parabola as * = Lx where ‘L’ is a constant called the latus rectum
Linough he Wwas not acute of the fact that any equation in two unknowns determines a
“urve. He deliberately derived these properties of conic section and other propertics also,
= vsing.these inforcuation it has. not possble. o find  clutien o the peoblem o€ the
duplicatign of the cube by solving for the point at which two parabolas intersect,

Mmmh’m‘"s work an conic section is known as primary work: for conie section,
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UNIT-8
Exercise
: e uati-:ms' ' ‘
1. In each case, find the ';“l;'_:"'lznd “:;Ta:l; b. atapoint(-3-2)t0 the eircle x* + y? =13
a atnpoint(l‘zytm e girc b
c. atapoint (4,1) to the circle &4 yi-dx+2y-3

VR _

—_—

l

equations

2. Ineachcase, find the tangent and normal 0.36( 14y?)=13-

a. atapoint (cos60°sin 60°) to the circle 36 ¥ y‘

. 1 3 i

b. at apoint {2cos45°..'!sin45°] 1o the circle X :1-_1 4

c. atapoint (cnsm’,sinm“) 1o the circle x™+ ¥ =1.
3. For what value of n, : i s

a. thelineIx+ng.-+u=0muchnslhe clrclezx -t;; -ﬂa ?

b. theline x+y+f|=l.‘rlouch:sthecirc11: x +1J’ 5‘9- y

c. theline 2x+2y+n=0 touches the circle x* + v =81
4. For what value of ¢ ] L

a. the line y=mx+c10uchﬁthec1rcle o4y =a?

b. the line y=—x-+c touches the circle 24+yt=97

c. the line y=-.r—[—;:] touches the circle x* + 3* =817
& Find the condition at which the line Lx-+nry+ 1 =0 touches the circle  x* + y* +2gx+2fr+c=0.
6. For what value of n, :

a the line 3x+4y+n=0 touches the circle x4yt —dx—6y-12=017

b. the line x—2y+n=0 touches the clizi 4 yi+3x+6y-5=07

c. the line 2x+ y+n= 0 touches the circle ¥ 4y =2x-10y+21=07 5 hr
7. If the tangent length from the point P to the cirele ¥ +1? =g° is equal to the perpendic

distance from P to the line b+ my +n =0, then find out the locus of P,
8. Find the locus of the point P,

a.  If the length of the tangent line from the poiot P to the circle P4y =9 isf‘_:_!“al to the
perpendicular distance form P to the line 3x+4y+3=0. e
b. If the length of the tangent line from the point P to the circle F+y=2510s equal 10
perpendicular distance form P to the line 4x+3y+3=0.

UNIT-8
m Properties of circle CONICS-1
The

Te are some i i
Properiies of a circle thy are listed as under

Perpendicular from ¢h :

€ center o

Let the cirele be x4, Fa circle on a chord bisects the eporg
(i)

and PQ be any chord of a circle, whose end points are P(x,,); ) and
Q(%,, ) respectively. L

+28c+2fr+e=0

If PQ is a chord of the circle, then P and
lying on the circle: x4y’ +2gx 42 4029
o=

xzz+}'f+2g:r=+2jjr,+c=n

Q are the paints €

Olx,0 0,
The subtraction of these two circle : D
—_ 5 equatiol i
of the chiord PQ: quations gives the slope S
3= . Fi
(5 =)+ (5 ~51)+ 2 (%, ~5) 42/ (5, - ) =0 i

(% - x)+2g(x, =5)+ (¥ -2)+21 (r,-y)=0

(%2 =2 )%+, +28)+ (35— 3, ) (31 + 3, +21)=0
MmH_ xtxn+lg

Bom, BERIUF. T T W
If ircle
: the center of the circle is C(~ g,~ ) and the midpoint of the chord PQ is
‘D Y+ :
(:5__-5_2 '_LZ__LJ’ then the slope of the perpendicular line CD is:
m-f.f
", =—xi =£l+y2+2f iii
+x‘+g X+x+2g (i)
From the Figure

8.14 the chord PQ ine CD o
of their Bt ord PQ and the line CD are perpendicular if and only if the product

9. a The length of the tangent from (f,g) to the circle x*+y* =6 is twice the length ®
tangent o the circle * +y7 +3x+3y=0. Prove that f*+g*+4 f+dg+2=0- . ope
b. the length of the tangent from (f,g) to the circle x*+ y* =4 is 4 times the lenfl "

tangent to the circle x* + y* +2x+2y=0. Prove that 15f1+153’+32f+315+450"
10.  Find the equations of the tangents to the

a. circle X +y' =4 which arc parallel to the straight line x+2y+3=0. |

b. circle x* + y* =25which are parallel to the straight line 3x+4y+3=0.
1. Prove that the lines ght b |

a. x=8andy=7touchthe circle ' + 5"~ 6x~dy—12=0, Find also the-contact PO igs

b, x+y=l=0and x—y+1=0 touch the circle x* + 7 —Ar— =0. Find also the ‘
{2.  Find the equations of the tangents Hh=A-dp 0.

a. to the circle x* + ) =2, which maké'an angle of 45° with the x-axis.
b. to thecircle e +3;)" =1, which make an angle of 30° with the x-axis.
c. tothecircle x*+y' =4, which make an angle of 60° with the x-axis.

mmy =BG 428 p+y+2f
_Ntnt2f x+x+2g
Thus, €D is bisector of the chord PQ.

th : : &5
'{P'-:mendmular bisector of any chord PQ of a circle
i
P S our second property.
dig

dia,

passes through the center of the circle.

ine joining the two poi i
points of the circle that touches the
- , ol center of the ci i
eler of the circle. This diameter acts as the perpendicular bisec ek
Meter of a circle bisects the cho

tor to the chord PQ, if the
Property first, but the graphical vi

rd PQ. This is our third property. The

ew is showrrin the Figure 8,14, b w.
mmw
232
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UNIT-8
EETISGS] if A(-3.4) and B(LS) ¢ I8

Xy +x-3
(a). the line from the center 0
{B). the line from the center 0

{c). the perpendicu

- ircle with eeser C
m"ﬂw equation of the © P

b

(= .|

CONICs

o end points of the chord AB of the cirel,

» AB, also bisects the cherd AB.

y=2=0,then show that
fthe chord AB i perpendicular to the chor

f the circle is pcrpcndir.u%ar t
f the circle to the midpoint 0

tar bisector OD of the chord AB pasez though the center of the given circle.

[:l 3) s

AB.

')

Faytex-5y-2=0_
— : -1
If the center-7y the circle is C[—z-:i

=i 9
5] and the midpoint of the chord AB is D[-LE]’ then the
the perpendicular line CD are respective

ly:
¥ 3

slnpgs.*:ﬁfuc chord AB and
—~

sy 5-4 1 S i Sl el
slope of AB=m, =—=7 slope of CD=m, "“"lj

The chord AB and the line CD are perpendicular if and only if the product of their slopes equals =1
mym, = :—‘(—4] =-1
Therefore, CD is perpendicular bisector of the
parts b and c.
mngment chords of a circle are equidistant
If the perpendicular distances form the center of a

circle to its two chords are equal, then the chords are 3 B

congruent. * :
Let the circle equation with center C(— g, =) is:
E

oy +2gx+2fy+e=0 (i)
If AB and DE are the two chords of the circle(i), A
then the coordinates of the end points of the chord AB

chord AB. This result is automatically valid for

Trom its center and ifs converse

and DE are respectively:
A(x.3): D03 1 B3, 3 L E (x4 )- D Y
From the Figure 8.15, it is clear that the perpendicular |
distance d, =CP from the center C on the chord AB equals ' Figure 8.15 !

the perpendicular distance d, =CQ from C on the chord

DE, if and only if the chords AB and DE are with equal lengths: |m =iﬁﬁl @
Thus, the chords AB and DE are equidistant from C on the circle (i) if and only if d,=d: rﬂ‘"{

In similar manner, the chords AB (join A to D) and BE (join B to E) arc cong™ 3 ﬁcﬂc
the perpendicular distance d, =CR from C on the chord AD equals the perpendicular 4= i
[0} - B

on the chord BE: ﬂ, =d,,

233

UNIT-8

l_:“mp“]l_':"m Show that the chord
x*+y° =4. The coordinates of the

E(2,0).

s AB and DE ‘ars CONICS-1

end points of ghe I"‘!“Idislanl from the

WO chords are a center C(0.0) of the circle

(0.2), B(- 2,0), Do~ 2) and

(v)

A(0.2), B(-2,0), D(0,-2), E(;l;r;]c (3 whose coordinates are respectively:

From the Figure 8.16, it is clear that the chords AR

B 1002), [ ey a e
DE=(2-0,0+2), [BE|=y(2)+(2) =2y3

Thus, the two chords AB DE

equidistant, the procedure is astnrilcrl:}E hisccr L)
The equations of the chords AB and DE

point form of the line) are rcspacri::gr-nh e
YoX _¥—Hh ‘
G =%
0-2

— e

_2_,0‘

y
410,2)

IS
(2,0
-1

Alxn)=4(02), B(x,,31) =B(-2,0) B{Z0) N

D(0,-2)
Figure 8.16

b

The pe, ; ] ;
Pendicular distance d, from C(0,0) on the chord AB is: d = 0-0+2

2
R I e

Wi i R
n)e %
"endicular distance d, fom C(0,0) on the chord DE is: d, Jura-z

3
The pe H . = :
rpendicular distance o frol |
m C(0,0) on the I
; . chord AB is equal to the perpendicular

e d
+ form C(0,0) on the chord DE: &, =d, 5
Thus, the 4 ,
- chords AB. and DE are equidistant from the center C(0.0) of the circle (i
- €asure of the central angl
Im e of & minor arc is do
™ angle subtended by the corresponding major arc g o Ase ST
the circle be x"-i-y' =

The :
nd thy m'm:m BC is the minor arc of the circle

distape

r (i)
(ix whose coordinates are
r B(-x .-
arc BC sublended the angle from the center of the circle is (=%.=3)and C(x,-y),

IF 4 ;
whi (0, DJ 15a H .
g el i gy g PO ON the major are, then join AB and AC
that develops the i
angle of the minor
(ii)

WO times the angle subtended by the major are:

FoRsALE

M:ch
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CONICs

- ified as follows:
UNIT-8 BOC =29, {hen, result (if) can be ver llows:

. and £
FromlheFigure&l?,lfmC‘a ; h
C are
1f the slopes sz: and Al el -{_a:y.} S
s_———L N m = e———

n, i 1

X, i
the angle ZBAC= 8fromBA © AC is:

2a+ ) 3y
E ‘xni"‘-“"'yl}

a+y 27 ;J’
1
= a+y 5
X
—2yi -2ay,

2 (i)
X+ =a

Exl(ﬂ*‘l’.)
“H-ai -y 2
T2y(etn) N

Figure 8.17

=N m,= 2 then, the angle /BOC =20 from BO 1o OCis:
If the slopes of BO and CO are m, = oy =
R, .
2y =AN (iv)
=M, _ %% - S
& 1':""”:4._1_.&. A II(—“E -%) A-h
’ X % 2

2tanl 3

===
1-tan’ 8

tan 26

2% _ -fo.y.1 = :f‘y!’2

- —H-x) A°H
-5

h

is proving result (ivy with result {iii) - T‘husiﬂ-DC:‘L.’_BArC. =

Show that the angle subtended by the nua:ded

BC of the circle P yt=0is two times the_a.ng_le l-s'..lam i

in the major arc. The coordinates of the rn.mu.

s C{'El.'lcigirlle 2+ y'=9,whose center is 0(0,0). Thf: arc

BC is the minor arc of the given circle, whose cmrdma':ehsg
areB(2,4/5),C(2,—5) and the minor 3¢ BC subtended

angle from the center of the circle is 43012 g
IfA(30) isa point on the m.agor are, m?n j:?].ﬂ :

AC that develops the angle of the minof £/ which is two times

. . = WS
ended by the major arc: £BOC=2BAC <o as fOll0

e ?’l::u: 8 \s Y\ ZBAC=Dand ZBOC =28, then, result(v) can be verified

From the g .

The trigonometric identity tan20=

BA and AC 05 1 5-0_1
1f the slopes of BA snd AC &% M =275 =5, m=s =75
1 j'l- ___‘_1'2; J-g @
. s e :...‘-
s e i TR e -
then, S
235 ﬁ@ﬁ
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UNIT-8

If the slopes of BO and G¢ are

CONICS-1
no0tB_
e R L
2 s
the angle ZBOC = 5 45
then, =20from OC to BO j5 fan 20 = M =m, g

5
T+ mym, I—gjg—%z__q 45 (i)
ShEY
I—1an'® [ e 4‘5

o 5
The trigonometric identity tan 20 = 2lan® 2
1:2
is proving result (i)} with result (. Thus LBOC = ZABAI:,‘:‘

An angle in a semi-circle is a right angie >

Let the circle equation be ¥+ y? = 4

(i)
If P(x,, »,) is any point on the semicircle and BA is fixed of

as the diameter of the circlefij on the x-axis, whose caordinates are P
A(a, 0) and B (-a, 0), then the point P(x;, ) lies on the circle (i)
that changes the circle equation to:  x7 + )7 =4°
Join PA and PB that develops a right angle ZAPB. The 3 0 g
angle ZAPB is a right angle, if APand PB are perpendicular to
cach other, for which the slopes of AP and PB are respectively:
inlz‘v’_uz H 0 mz=y|'0= B

X,—a x-a X +a x+a

The product of the slopes of AP and BP is

ki | 2
Tty -"[ h J[ 2 Jz -;yl 3=—y-'-.;=-1. Xty =at
Amej\xnta) x-a -y
Thus, PA and PB are perpendicular and the angle ZAPB=90° is of course a right-angle.

If ZAPB=90°, then P is a point lies on the semicircle, for which the Pythagarean rule

[PAT +[PB[" = A5 (i ,
A sbsiioor Fm(e-5,0-5) >R[] =t
PB =(-a-x,-0-x) =IP_Br =[J|{f.-+x,"|= +y ]: =(a+x,)'+y;‘
E:(—-a-a, 0-0) ::hrxﬁll=[m]x=4a’

EWVes the logyg of P(x, »,)
[PA]"+[PBf =[AB/, B=(-=.0)~(a 0)
(a=x) +yi+(a+x) +3 =4
a” 4] =2ax + y +a 437 - 2ax =4’

Figure 8.19

Which jg g o2 20" +2x] +2)] =da’ = 2 + 2y =2a" = x4y =a’
a circle, p may lie on the upper or the lower semicircle.

mﬁ@m
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: !,y =a* isaright-angle,
: ici cle (x—h) +y = 15anE
[FETINTS) Show that the angle in the semicircle of the circle ( Faed
3 g o —h) +y =a i = . -
. 05 g Cih,0)1s: (x the tangent line is perpendicular to the radial if the radi i i
mm"“ﬂ“ cq“a"““w'lhf"tmr :rd s oot pbis aniihe v | segment, radial segment is the segment through the peint of
If P(x,, y,) is any point on the Seancice 8 $ f e ifaline '5 pu.'pmdicula: to the tangent of the circle at the point of contact, then it passes through the center of
fixed as the diameter of the given circle on the x-axis, . the circle:
then  (x—h) +y=d’ m Show that the perpendicular at the outer end point P(1,1) of the radial segment is tangent to
The coordinates of A and B are respectively: the circle 2 + %= 13x- 5y+16=0.
OA=0C-AC=h-a ::-ﬁ[ll—a.ﬂ';) @IIJEED The circle equation with center C(%,%)is: x*+y*-13x- Sy+16=0
TN _-= = 2 =h+a :;B(h-i-ﬂ‘D - = X
e e s a): 4 e 0 ¢  The equation of the tangent line on the given circle at a point P(1,1) is
Join PA and PB that develops 2 Z
angle ZAPB., This angle ZAPB is a right angle, if AP x5+ 0 +.§§x+-‘|l+;;(.\'+.l’|)+c 0
and BP are perpendicular. They are perpendicular, if | x(1)+y(1) = (x+1)+5(»+1)+16=0, P(x, %)=P(11)
i ls—1:
e grithuk oy Sper €x ; Figure 8.20 1Lx+3y-16=0 2
e W s W= : : — -2
mm, --‘l“'“'ﬂ x—h-a (:L-fHﬁ]{xL—h-ﬂ] whose slope is m, :TT” and the slope of the radial segment CP is m, =-—é=13—1
- = o 2 3 =
T B yi=a~(x-h) = (5 -4)'~’] 2
=hy - W : — . -11 3
(% -4) : L 3 »=0 I The product of the slopes of the tangent to the circle and the radial segment CP is mym, = S
BB = ) —, L = . . = . - s
WhR Iy i ~0) n-h+a s v a) el Thus, the perpendicular at the outer end P of the radial segment is tangent 1o the given circle at point P.
Thus, the angle #APB =90is right angle. ; , : @
- N ; -
The Perpendicular at the outer end of radial segment is tangent to the circle 1 : Sl e e Y
The circle equation with center C(—g,— f) is: x* + ) +2gx+2f+c=0 (i II 1 I:ﬂ(?i)and B(3,1) are the end points of the chord AB of the circle .° + )7 — dx — 2y + 4 = 0,
# ; then show that A §a
If P(x. %) is @ point on the circle and C(-g,~ f) is the y ; a.  the line from the center of the circle is perpendicular to AB, also bisects the chord AB.
center of the circle (i) then CP is the radial segment of the b. the line from the center of the circle to the midpoint of the chord AB is perpendicular to the
circle. ' chord AB.
The equation of the tangent line on the circle (j) at point P is 2, If A(0,0) and B(0,3) are the end points of the chord AB of the circle * + 3* + 4x — 5y = 0, then
xx o T g(x+x )+ [ (y+p)re=0 Cg, N \Pxu W SR ]

x(x +g)+y(n+ ) g+ o +e=0

whose slope s m.=-£'l§- and the slope of CP is

a. the line from the center of the circle is perpendicular to E, also bisects the chord AB.
b. the line from the center of the circle to the midpoint of the chord AB is perpendicular to the

W+ - A | chord AB.
x ¢ e = :
Y+ f () = ; 3 Show that the chords AB and DE are equidistant from the center C(0,0) of the circle :
my = % +E y Figure 821 | a. x* +)? = 4. The coordinates of the end points of the two chords AB and DE are A(-2,0) ,

The perpendicular at the outer end P of the radia] P
segment CP is tangent to the circle (i) if the product of the slopes of the radial segment CP and the lin®

the outer end of the radial segment CP is—1: mm, =518 ¥+S = ! 4,
ntf x+g
radial scgment is tangent to the circle (i}

[ . B(0,2), D(0,2) and E(2,0).

]

i b. x*+ )" = 16. The coordinates of the end points of the two chords AD DE

| B(0,4), D(0,4) and E(4,0). w Al
| Show that the angle subtended by the minor arc AB of the circle

{ a .i-i-yz:gistwnlimnsthennglesublcndcdinlhemajnrm.?hccoordinam
i arc AB are A (2, /5), B (2, -5).

: (10) ¢ SALE)
sir worFoReA® | e 23

T.'L'I'us. the perpahdicular at the outer end P of the of the minar
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b. 1_‘}_*’3’1 = 4 is two times the angle subtended in the major arc. The coordinates of the Minor

arc AB are A(1, +3), B (1, -V3).
5. Show that the angle in the semicircle of the circle

a8 (x-h)' +y* =g, h=1, a=2 isaright-angle.
b (x- F-']-:E +3' =a* h=3 a=4 isaright-angle.
Note that the diameter of the eircle (in each case) is considered to be AB.

6. Show that the perpendicular at the outer end point
a. P(1,5) of the radial segment is tangent to the circle

b. P(5,6) of the radial segment is tangent to the circle

B4yt x=5y=-2=0,
4y =22x—4y+25=0,

Review Exercise

1. Choose the correct option. .
i Ifradius of a circle is 2em then its equation will be:

(a) »4yi=2 (b) F+y=f2 (&) F+)'=8

In the general equation of circle the coordinates of centre are:

@) (xy) () (—x-») © (f.2)
ii.  For the general equation of the circle the radius can be calculated by r =

(a) .,‘x' +3* =t ) Ji=xF +(=p) -¢
{ ©) J-g)f +(=f)-c @) Ji—g) + (-1 +c

iv. A point of the circle at which a tangent meets the circle is called -
(a) point of contact (b) normal (c) center point (d) none of these

(d) *4y'=4q

d) (-1.-g)

T v.  Ifthe discriminant of the quadratic equations m*(x’ —a,)—2nwe y, +(3f —a,) =0 is greater than
zero than tangent are -
(a) real and different (b) imaginary
ar (c) real an coincident (d) equal
vi.  The length of the tangent drawn from the point p(3,4) on the circle ¥+ 2 -9 =01s
(a) 1 (b) 2 (c) 3 (d) 4
fi vii. The angle subtended can be calculated by using the trigonometric identity.
(a) tan20="2"" () tan2p=2100
14+ mym, 1—-tan*@
2 e
© 2= 220 (@ tan2pm 00

viii. What is the contact paint for the lines x=7 touches the ¥* + y*—dx—6p-12=0
(a) (2,8) (b) (8.2) (c) (3,7 (d) (113)

ix. For the condition of tangent the line y = mx + ¢ should touch the circle x2+y?=r" if

(@) e=rdl+m’ BT g g

(e) bothoptina &b (d) not option (b) nor option (c)

A line perpendicular to the contact point to a circle is called

" (b) Normal () Chord

3 (a) Tangent

¢ NoT FORSALE

(d) Diameter

—

CONICS-1

« Standard Form of a Circle: The standard
(x—BY + (y=k) =2

& General F:inn of a Circle: The general form of a circle with radius r=J(-g)+ (/Y - c and
center Cl-g, o) is: x4+ y" 4204254020
The coefficient of x*is equal to the coefficient ofy

square of the radius is r* = 0.
s Nature of the circle:

Ifg’+ f*~c >0, then the circle is real and different from zero.
Ifgli—f'rc-ﬂ.thmthech'chslninkswapnim(—g.-ﬂ.Itisnllednpoinl circle.
Ifg:-tf’—cﬁ:D,lllen_!hccin:leisﬁmgharynrml.

< Condition of Tangency:
The condition at which the line y = mx + ¢ should touch the circle ¥+ 3° = gis: c=+avfl+m°
The equation of any tangent to the circle x*+ y* = g%in the slope-form is: y=m=mfﬁ?
The condition at which the line £ + my + n = 0 should touch the circle *+ y* = 5%is;
n=tal’+m*
The condition at which the line &k + my + # = 0 should touch the circle
24y +2gx+ 2 fp+e=0is: (e )P +2felm+(c—g Ym’—2n(gl + fm)+ n° =0

% The tangent equation to the circle '+ y*+2gx+2 f+c = Dat a point A(x,, ,)is:
x4y, Hglx+x)+ [+ y)+e=0
The tangent equation to the circle x*+ )" = 2" atapoint A(x, ) is: x+ 33, =a’

% The normal equation to the circle x*+ y*+2gx+2 fir+c = Dat a point A(x,, ¥, ) is:
X0+ )=y +8)+ (g0, — fe) =0 :
The normal equation to the circle x*+ 3 = o* ata point A(x, y) is x,—)x,=0

% The length of the tangent drawn from the point P(x,, ) to the circle ¢+ 3*+2gx+2fr#c=0
is: |PT|= iy 2gx, + 2 i e
The length of the tangent drawn from the point P(x,, ) to the circle x*+ »* = g’is:
IPTi= x4 )7-a?

The lengths of the two tangents drawn from the point F(x,,»,) on the given circle are equal.

o e

form of a circle with radius r and center C(4, &) is:

,and there is no term containing xy and the

iTh



CONICS-II

Define a parabola and its elements (i.e. focus, directrix, eccentricity, vertex, axis, focal chord and latus rectum),
General form of an equation of a parabola.

Standard equations of parabola, sketch their graphs and find their elements.

Find the equation of a parabola with the following given elements:

= focus and vertex, » focus and directrix, « vertex and directrix.

Recognize tangent and normal to a parabola.

Find the condition when a line is tangent to a parabola at a point and hence write the equation of a tangent

Find the equation of a tangent and a normal to a parabola at a point.
Solve suspension and reflection problems related to parabola,

Define ¢llips and its elements (i.e. centre, foci, vertices, covertices, directories, major and minor axes,
eccentricity, focal chord and latus rectum).

Explain that circle is a special case of an ellipse.

Derive the standard form of equation of an ellipse and identify its elements.

Find the equation of an ellipse with the following given elements.

= major and minor axes, = two points, = foci, vertices or lengths of a latus rectum,

= foci, minor axes or length of a latus rectum.

Convert a given equation 1o the standard form of equation of an ellipse, find its elements and draw the graph.
Recognize tangent and normal to an ellipse.

Find points of intersection of an ellipse with a line including the condition of tangency.

Find the equation of a tangent in slope form.

Fine the equation of a tangent and a normal, to an ¢llipse at a point.

Define hyperbola and its clements (i.c. centre, foci, vertices, dircctrices, transverse and conjugate axes,
eccentricity, focal chord and latus rectum).

Derive the siandard form of equation of 2 hyperbola and identify its elements.

Find the equation of a hyperbola with the following given elements:

= transverse and conjugate axes with eentre at origin, = two points,

= gccentricity, Latera recta and transverse axes, = focus, eccentricity and centre, :
= focus, centre and directrix,

Convert a given equation to the standard form of equation of a hyperbola, find its elements and sketch the graplt
Recognize tangent and normal to a hyperbola.

»  points of intersection of a hyperbola with a line including the condition of tangency,

+  the equation of tangent in slope form.

Find the equation of a tangent and a normal to a hyperbola at a point.

Translation and rotation ol axes

Define translation and rotation of axes and demonstrate through examples.

Find the equations of transformation for .

«  translation of axes, = rolation of axes,

Find the transformed equation by using u-anslat.',lm or rotation of axes,

Find new origin and new axes referred to old origin and old axes. _

Find the angle through which the axes be rotated about the erigin so that the ot et 1.5 oved

’ﬂredugg:?&wﬂl@%:ﬂ ......... A T e Rl

form the transformed equation. M

o TR i
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2.1 Parabola
i.
1
[t
v
V.
Vi
line in slope form.
vil.
viii,
9.2 Ellipse
i
i
fii.
iv.
v,
vi.
i,
" Vil
.
0.3 Hyperbola
i
il
il
iv.
V.
vi. Find,
wil.
9.4
i
ii.
.
.
.
241

UNIT-9

7 , ; CONICS-11
{ Introduction ]

In our previous unit of this book

we have 'ﬂalﬂl that 5 conic section {ors miply a -I:nn'l.c) 15 a curve
Oblai“ i ti i L ) i : rek
ed as the ntersection of the surface ol a cone with a plane, In this unit we will study i i

faco e with Yy n details

about the three types of conic sections that a
L : re parabola, hype ; B
ellipse and same time considered to be the fc:rth type OF::.;,:?;I::CT the ellipse. The circle is a type of

details about tangent and normal in S s on. We have already discussed in

n’ Parabola ®

When you kick a soccer ball (or shoot an arrow, fire a missile or throw
a stone) it arcs up into the air and comes down again ... :
A parabola is a curve where any point is at an equal distance from: /
« a fixed point (the focus ), and 5
» afixed straight line (the directrix)
et a piece of paper, draw a straight line on it, then make a big dot for
the focus (not on the line!).
Now play around with some measurements until you have another
dot that is exactly the same distance from the focus and the straight
line, E
Keep going until you have lots of little dots, then join the little dots
and you will have a parabola!

In our study of quadratic functions, the graph of the general g
form of the quadratic equation y= ax®+ bx+¢ (1) distances!

E‘“":ﬂgld # () is a parabola that opens upward if a > 0 and downward if Figure 9.1(b)

The graph of a quadratic equation is always parabola. But all parabolas can not be represented by quadratic
Cquation, because all parabolas are not graphs of the functions.

() Parabola and its elements (Le focus, directrix, eccentricity, vertex, axis, focal

chord and latus rectum

The parabola is the set of all points P in the plane
such that the distance from a fixed point F (focus) and the
distance from a fixed straight line (directrix) to a point are
equidistant.

1 The line through the focus perpendicular to the directrix
's called the principal axis of the parabola, and the point where
the axis intersects the parabola is called the vertex. The line
Segment AB that passes through the focus perpendicular to the
axis and with endpoints on the parabola is called the focal

chord or its Intus rectum. These tenminologies are shown in the ;
Figure 9.2, ks

(d— =) xupang
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() General form of an equation of a parabola ' i
To abtain the general form of the parabola, let us assume a focus w:lh'coordmal'cs F(2.0) ang g
directrix x =—p, (p is any positive number) parallel to the y-axis. If P(x, ¥) is any point on the cyrye
and p,(~p, y) is a point on the directrix x = - p, then by the definition of parabola Figure 9.3.

¥

w=g=[_ forparabola e=1 |
distance fromPro P, Yi=d
distance from P(x, ) fo P, = distance from P(x, ) (o F wop |Paafs T
d(P,P,)=d(P,F) REr)a(r,R) NP, F)
Joo+ pY 0= Jix= py+ (-0, @) o

(x+p)'=(x=p)'+)’,  bysquaring

i+ 2px+ pi= yi=2px+ piayt =dpx=y" (3)
The result (3) is the standard form obtained from the
general form of the equation of a parabola with vertex at
V(0,0), focus F(p,0) and directrix x = —p. The parabola is
symmetric with respect to the positive x—axis if p > 0 and
symmetric with respect to the negative x—axis if p < 0. The vertex V(0,0) of the parabola is on the principal
axis of symmetry midway between the focus and the directrix. 3

(iiiy Standard equations of parabola, sketch their graphs and find their element
a Standard equations of parabola
“The standard form of the equation of a parabola that is symmetric with respect to the x—axis, with
vertex W0,0), focus Fip, 0) and directrix the line x = —p is:
N y'=4px @
“The standard form of an equation of a parabola that is symmetric with respect to the y—axis, with
vertex M(0,0), focus (0, p) and direcirix the line y = —p is:
X =4py (3)
The parabolas that have their vertex at the origin and open upward, downward, to the left and t0 the

8, Jx=p) +(y-0y

Directrix

Figure 9.3

right are summarized in the following table:

Parabola Curve Focus Dircelrix Vertex
B up,if  p>0 F0,p) y=—p V(0,0)
x* =4py down, if p<0 F0,p) y=-p V(0,0)

right, if p>0 Fp,0) = V(0,00
y=4px le, if p<0 Ap, 0) F:"? V(0,0

b. Graphing standard form of a parabola :

Here, we will find and 1::10t the parabola by inspection and count out units from the vertex m o
appropriate direction as determined by the form of the equation. Finally, it is shown in the probl™ "¢
that the length of the focal chord (latus rectum) is [4p|. This number could be used in determin2tio®
the width of the parabola. This approach is employed in the following examples,

Lo FoRSAtE
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Graph the parabola ¥ =8x=0and indicate the |
vertex, focus, directrix and the focal chord, I

m Rewrite the given parabola in the standard form

¥ =8x (6)
and is compared with the standard form of the :
o the parabola (3) to
B=dp = p=2

Since p > 0, the parabola opens to the right. The vertex i
¢ ex is
V(0,0), the focus is F(2,0), the directrix is the line x = -2 and the
length of the focal chord is 4p = 4(2) = 8. The line of symmetry is
the positive x-axis. This is shown in the Figure 9.4.

I_l.:|r|1||l{:':ﬁ Graph the parahu]af+y=ﬂ'and indicate the

vertex, focus, directrix and the focal chord.

m Rewrite the given parabola in the standard form
x'==y N

and is compared with the standard form of the

parabola (5) to obtain : .

i H 1

-1=4 =

s pm—
Since p < 0, the parabola opens downward, The vertex
is V(0,0), the focus is F(U.-;—I}, the directrix is the

- 1
line v =:‘- and the length of the focal chord is

o : i
4P="(-IJ=-—I. The line of symmetry is the
negative y—axis. This is shown in the Figure 9.5.

(iv) The equation of a parabola with the given elements

© focus and vertex o focus and directrix
o fertex and directrix

QT 3] Find an equation of parabola with

{a). Focus F(0, —2) and directrix y =2, {b). Focus [g.ﬂ) and vertex (0,0).

(e). Vestex V(0,0) and directrix x = %

 Solution ]

a By inspection, the value of p is p = -2 that satisfies the directrix y = 2. This gives the equation of
pﬂmholax2=4lpy=4(—2}_j_i:—8y, that opens downward {p < 0) and the line Qfsmu-y is the
negative y—axis. This is shown in the Figure 9.6,

_________
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Figure 9.7
5

< parabola y:=4p.r=4(-:—)x=%x, that opens right (p > 0)

and the line of symmetry is the positive x—axis. This is shown
in the Figure 9.7,

c By inspection, the value of p is p = .—% that satisfies the
dircctrix x = % This gives the equation of parabola

o 4px=4(—%).r=—2x. that opens left (p < 0) and the

line of symmetry is the negative x-axis. This is shown in the
Figure 9.8,

Figure 9.8
(v) Recognition of tangent and normal to a parabola :

A line which is parallel to the axis of a parabola intersects the parabola in only one (finite) point; all
other lines will cut the parabola in two real and distinct points, real and coincident points, of complex
conjugate points. “A line which meets a parabola in two coincident points is called a tangent.” A tangent
o any curve at a point P is the limiting position of a secant line, cutting the curve in two points P and Q
as @ — P.The normal can easily be shown in the subsection of this section.

(vi) The condition at which a line is tangent to parabola at a point
The line is tangent to parabola, when the line intersects the parabola in two real and coincident

points. The given parabola and line y' =4px ®)
FTk 9
i fieted Yi=4px
develops a system of nonlinear equations: b M“} (10)

The solution set {x,} of nonlinear system of equations (10) exists only, if the curves of the ¥
i ting. That set of points of inte 3 d 1 wsw
D e e {5} (a solution set) can be found by 50
nonlinear system (10) simultancously. -

1245 mw
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e line i
15 used in parabola (8) to obtain (he quadratic equation in x:
(me+e) =apx
m'x" + 2mex + = 4 px
m‘x’+2x{mc—2p]+¢==0 (1

The equation (11) being a quadratic equation in x, gives a set of two values x, and x, of x, which will
be used ift a line (9) to obtain a set of two y values y, andy,.

Thus, a solution set {(x;, 3),(x,, »,)} of the system (10) is of course a set of points of intersection of
the system (10). :

The points of intersection of the system (10) are real, coincident or imaginary, according as the rools
of the quadratic equation (11) are real, coincident or imaginary or according as the discriminant of the
quadratic equation (11):

Disc=4(mc—2p) —4m*c® >0, real and different

Disc=4(me—~2p)’ ~dm’c* =0, real and coincident

Disc= tf(mc— 2_9}2 —dmic? <0, imaginary
For what condition the tangent line 4x — y— 4 = 0 intersects the parabola x* = y?
mﬂm equations of the line and parabola are:

4I—y—4=ﬂ “2]
y=4x—4
I =y (13)

The line (12) is used in parabola (13) to obtain the y~coordinates of the points of intersection: -
2=y

¥'=4x—4  Put the value of y from equation (12) ~
¥=4x+4=0= (x-2)' =0=>x=2,2
The x—coordinates are used in the line (12) to obtain the y—coordinates y = 4, 4
Thus, the set of two points of intersection (2,4) and (2,4) are real and coincident and the tangent line
4x - y—4 =0 is of course intersecting the parabola (13) at two coincident points (2,4) and (2,4).
o The Equation of a tangent line in slope-form
If m is the slope of the tangent to parabola ~ y* =4px (14)
then the equation of that tangent line is of the form  y=mx+¢c  (13)
Here ¢ is to be calculated from the fact that the line (15) is tangent to parabola (14). The line (15) is
used in parabola (14) to obtain the quadratic equation in x:
yi=dpx
(mx+e) =4px
mix’+ ¢+ 2mex = 4px
mx+ 2Ame - 2p)x-+ ¢t =0 (16)
If the line (15) touches the parabola (14), then the quadratic equation (16) has coincident roots for
which the discriminant of the quadratic equation (16) cquals zero:
d(me-2p) - 4(m ) =0
dmc* +16p* = 16mep—dnie’ =0
16p° =16mep=0
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lopip=mc)=0= p—mc=ﬂ=b¢=£ it .
The equation (17) represeats the condition of tangency: Tie value oL & TUIERIANON (1) B nigy
equation : ;
in the line (15) to obtain the required equation of tangent: i
P (
y= mx+ -

bola y* = 4pxinthe slope-form is: = o

——

the equation of any tangent to pard

»
pems[{]

. o the line y=mx+c should touch the parabola y°= 4px under condition:

= =
y=mr+c=mx+[£] (19 C—m,.}' 4px
m .
« the condition of tangency in case of parabola x* =4 py and line = mx +cis:
y=mx+c=m.'¢—,;=nlz.c-—'-pm:. L =4py (20)

For what value of ¢, the line x-y +c=0 will touch the parabola x* =8y? Use that value of ¢

1o find the tangent line that should touch the given parabola. \
@I The value of ¢ at which the line x — y + ¢ = 0 will touch the given parabola through result Q0)
e=—pm’ ==21)=-2
F=dpy=42)y
P= I.m =] -
Here m i the slope of the line x—  + ¢ =0, which is m = 1. The required tangent line that should
touch the parabola through (20) st y=mx+c '
=x-2= x=y=-2=0
(vii) The equation of a tangent and a normal to a parabola at a point
a. Equation of tangent to a parabola at a point
Let the equation of the tangent line at a point p(x,,y,)to parabola y” = 4px be:
y=3=mx-x) (2n ' oud B
Here m, is the slope of the tangent line to parabola y°= 4px at a point plx,,y,) that can be f
differentiating ' = 4px with respect to x:

dy dy 2p [dy] 2
Qy—=d4p = —=—=| = =-£=m,sa
i v Bl 1y (22)

o
The substitution of (22) in (21) is giving the equation of the tangent line at @ POint pla !

parabola y* =4px: '
y=y=mix-x)

2
J’_H:T'?‘(X-x,]
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MW=n tzm'-szl I‘

W =4px, =2px—-2px, 3l =dpx, i’

W =2px+2px, = = 2p(x+x,) @3) |

. /R

e - the equation of the tangent line at a point P(x, 1) 1o parabola x* = 4 py is:
_ xx,=2p(y+y) (24)
o if the tangent line y= rw—[ﬁ
m

} to parabola y* =4px is identical to yy,=2p(x+x,),then the

5 o T

coefficients of like terms of y= m.x-l-[f]and ¥, = 2p(x+x,)are compared to obtain the contact
point:
2B s 2P
]
2_p¥_|'=£ _—_-;.23‘1;&-_—92\1-]=_p=x=1
¥ mn

Thus, the contact point is p(x,, ¥,)= [;:1 ,I_P)in case of parabola y* = dpr. (25)
m
s if the tangent line y=mx— pm’ to parabolax® =4py is identical to xx, =2p(y+ ), then the
coefficients of like terms of y= mx — pr” and xx, =2p(y+y,) are compared to obtain the point of
contact:

=5 =
mx = =y =1
2p | pm

—pm’ =y, = y,=pm’
Thus, the contact point is plx.3,)= (2pm, pm®) in case of parabola x* =4py.  (26)

BEITE 67 Find the equation of tangent line at a point p(2—4) to parabola y* =8x. Show that p(2,4) is
the point of contact in between the required tangent line and the given parabola.
m Result {(23) is used to obtain the tangent line to the given parabola:
w =2p(x+x)
¥ =22)x+2) Lplx,n)=(2-4),4p=8
A4y=4x+8 = dx+4y+8=0=x+y+2=0
The point of contact through result (25) is:

plx, )= [f,—sz:p)'{l—“}- p=2, m==1listhe slope of the tangent line x +y +2=0

b.  The Equation of a normal line to parabola at a point
The equation of the normal line at a point p(x,, ¥, to parabola y* = 4 pris:
Y=»= m:':"-xl} A ':2?]



C‘DN]C&“

st :
s 1o i = APX atapoﬂﬂP(XnJ’J thmca.nbeﬁ;.umhy

Here m, is the slope of the normal line to parab =5
differentiating * =4px withrespecttox:

y= =4 px
dy
. 2y=—=4
i P

; -1_% cay (28)
{man)

my
dx | ‘ |
o o £ (28) i: (27 is giving the normal equation at a point p(x,,y)to parsboly
The substitution of 2

y'=4px:
y=y, =m(x-x)
e =H
-y ==t (x=x)
e (x-x, .
m Find thé normal equation at 8 point p(2-4) o parabola y~ =38x.
@I Result (29)is used to obtain the normal line to the given parabola:

- ,=._:Ji X=X
y=h 2,&'( )

(29) =t

4 =(2, -4, 4p=8
()= ——(x=2), P(x.0)=(2—%)4P
y=(-4) 2[2]( i
ph=x-2= x=2-y-4=0=> x-y=6=0

(viii) Suspension and reflection problems related to parabola

The parabola is more then just a geometric cancept. It has many uses in the physical world thil 2
listed under: . -

1. Projectiles in the air, such a a ball, or a missile, or water sprayed from
a hose, describe a parabolic path when acted on only by gravity. .

2. Many arches of bridges or buildings are parabolic in shape. With this
shape, the arch can support the structure above it.

3. Rotating a parabola about its line of symmetry, creates a bowl 1ype
surface called a paraboloid of revolution. A paraboloid has an
important reflection property. Any ray or wave that originates at the
focus and strikes the surface of the paraboloid is reflected parallel to
the line of symmetry. See Figure 9.9, 4
This forms the basic design of the reflectors for automobile headlights,

flashlights, searchlights, telescopes, ete. This is also an excellent collecting
device and is the basic design of TV, radar, and radio antennas.

b

¥ 24 m"‘l
AP A 8 | The cables of a bridge form a parabolic arc. The low point of the cable s ]?ﬁa;uc ed®
roadway midway between two towers. The distance between the towers is 400 ft. The el path of ¢

the towers 50ft above the roadway. Determine the equation of the parabola that describes the
cable. This is shown in the Figure 9.10:

1249 , WWW

P B

i

CONICS-TI
¥
(-200,50)
(200,50)
(0, 10)
X
Figure 9.10

_ The parabola is formed by the cable between the two towers, The low point on the cable is
midway between the towers, and 10ft above the roadway. In order to write an equation, locate the x-axis
and the y—axis in the :q»—p!an& Select the roadway as the x-axis and the line perpendicular to the roadway
through the lowest point of the tower as the y-axis. The parabola opens up with the vertex at the point
(0,10). Two other points on the parabola are (200,50) and (-200,50). The standard form for this equation is:

(x—h) =4p(y-H) . G0

The vertex V(0,10) and a point on the curve (x, ¥) = (200,50) are used in (30) to obtain p:

(x- Iz}t =d4p(y—k), translate h units onthe x— axis, k units onthe y —axis
(200-0) = 4p(50-10)), V(hk)=V(0,10),(x,») =(200,50)
40000 =160p = p=250
The substitution of V{#, &)= (0,10) and p = 250 in equation (30) is giving the parabolic equation
(.w:—lflj2 = 4(250)( »—10)
2 =1000(y—10) = x°-1000y+10000=0

that describes the path of the cable.
ATTITHMS 9 | A radar antenna is conistructed so that a cross section along its axis is a parabola with the
receiver at the focus. Find the focus if the antenna is 12 m across and its depth is 4 m. Find the equation of
parabola that described the radar antenna. This is shown in the Figure 9.11.

@I The parabola is formed by the radar antenna. In order to write an

equation, Jocate the x—axis and the y-axis in the xy—plane. The axis of
symmetry is the positive x-axis. The parabola opens to the right with the 6 m
vertex at the origin F(0,0). The other point on the parabola is (4, 6). The
standard form for this equation is: L Axis
y'=dpx . Focus
36=4p(4), (x,5)=(4,6) (31)
E EE N E. 6m
16 4
Thus, the parabolic equation that describes the radar antenna is 2.
obtained by putting p = .i.in 31y |._4 m-..l
Fi o.11
: ?z=4Px=4[g]x=9.r e
4
The focus is F G.o] which is % m from the vertex 1{0,0).
OT FORSALE 2501
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UNIT-9

Exercise

' Ineach case, sketch the parabola represented by the equation, indicate the vertex, the focus, the ey
points of the focal chord (latus rectum) and the axis of symmetry:

a.

x*=2y

by} =-3(x+1) v y-3)i=x

71

In each case, determine the equation of graphed parabola:

b.
y
{L
WD by
21 |7 _Lran
-2l)e 4 ° !
- 1 —t [6” x A=<
-4 . 6 10
27 \V(Z,—ij

In each case, write the equation of parabola through the given information:
a.  Focus at F0,3), directrix y = -3, b. Focus at F(4,0), directrix x = —4.

c. Vertex at F{0,0), x—axis is the line of symmetry, passes through (3,6).

. 4. Vertex at M(0,0), y-axis is the line of symmeiry, passes through (-12,-3).

c. Line of symmetry is vertical, passes through (-3 4), vertex at H(5,1).
f. Line of symmetry is horizontal, passes through (7,9), vertex at H(3,-7).
Find the equation of the set of all points with distances from (4,3) that equal their distances 07
2. '
Find an equation for a parabola whose focal chord has length 6, if it is known that the parabols .
focus (4,-2) and its directrix is parallel to the y-axis,
In each case, find the points of intersection in between the line and the parabola:
a y+3Ix=-8, x—y+2=0
For what value of ¢,
a. theline x-y+c=0will touch the parabola * = 9.0

by =2y, x—y-2=0

b. theline x—y+c=0 *ﬂ“ﬂwhﬂwpmhx'&yq

37
In each case, find the tangent equation and normal equatjon
a. atapoint (3,6) to parabola y* = 12x,

10.

Find the tangent equation

3 .
4. to parabola y =%, which makes an angle of 135¢

b. to parabola y? =

Find the equation of the parabolic portion of the
shown in the figure below:

Y which makes an angle of 60*

y

with the x-gxis.
with the x—ays,

CONICS-II

archway, if parabolic archway has the dimensions

Focus (a, 0) (-a,0) (0. a) (0, —a)
- Directrix x=-q x=a y=-a y=a
Vertex (0,0) (0, 0) (0. 0 {0, 0)
Axig r=0 »=0 x=0 x=0
Latus xmg xX=—a r=a ¥=—a
rectum
¥y ., ‘[
G Ft+ o]
o 3 F (o]
F 0 : -

.
]
.

:




bl § TN

UNIT-9 CONIcs )

‘E Ellipse o
i shape and in format,the ellipse is difirent fom the parabols. Albough he parabola s ey
one end, the ellipse is entirely closed. The pa bola has one focus and one vertex, while the ellipse has twg

foci (plural of focus) and two vertices.

(i) _Elipse and its clements

>
*

Co-vertex

i i Minor axi
The second type of conic is called an ellipse, o i ; &
and is defined as follows. i — e il E’i:le_i :

An ellipse is the set of all points in a plane,
{he sum of whose distances from two distinct
fixed points (foci) is constant.
« Center— It is the point where major
and minor axis intersects cach other.
The midpoint of the connecting two
foci line segment is the center. .
. Focus — There are two focal points on the major axis which defines the ellipse. These are at the
same distance to the both sides from the center.
«  Major Axis — It is the lengthiest diameter of the ellipse. Tt has the end points on the widest part
of the ellipse and passes through the center.
+ Minor Axis — It is the shortest diameter of the ellipse. It is the perpendicular bisector of the
major axis. It has the end points on the narrow part of the ellipse and passes through the center.
. Vertices — The four points where the major and minor axis touches the ellipse are the vertices
The end points of major axis are generally called Vertex and the end points of minor axis 2%
generally called Co-vertex.
. Chord — It is a line segment that has both the end points on the ellipse. Major a
chord which is the longest one in an ellipse. .

i Co-v
i ertex

Figure 9.12

xis is also the

Eccentricity of an Ellipse :
Eccentricity is the factor related to conic sections which shows how circular the conic sect
eccentricity means less spherical and less eccentricity means more sﬁfmical. It is denoted by e i
The eccentricity of an ellipse is showed by the ratio of the distance between the two foci, to ! 0
the major axis,

jon s MeF

- s " ﬂ-
where e= Eccentricity, ¢= The distance from the center to any one of the foci and 4= P

major axis.
The eccentricity of an ellipse is between 0 and 1 (0 <e <1 s he fosi
y ) : ). If the eceentricity is zero "
with the center point and become a circle. If the eccentricity moves tow:rd 1 3;Iu:, ellipseé gets? %
siretched shape. .

253 : | Wﬁﬁw L

UNIT-®
Directrix of an cllipse e
Directrix is the line which ; S
ellpse. + et o the minor axsofthe lipse and retatd 1 bot

to the foci of the

Latus rectum of an Ellipse

If Pyx, y) is any point on the ellipse, then Idiﬂm from the

two ﬁ'nn-iﬁ(-c.ﬂlm'ld Efe.0)to the point P(x, 5) are the (
lloving: B{0.5)|  Pxy)
A P)=(x+c,y-0)
[E P = Jix+e)+(p) find and l
d(F,P)= (x~c,y-0) =h
M Pf= e+ (7 Pl 11

By definition of an ellipse , the general form of an eflipse is:
B, P o}, P2 o
Vet + (v + -y + 7 =24
. x4+ yP=20— iz
Squaring both sides to obtain i i
[x+c}’+y’:#,’-—h"[x-c)’-ly’ +{x—cy'+ )
da\flr=) 4y = 4a~dcx,
a F&—C}I'I' T .
Again squaring to obtain P o
alx—ef+ )= a'=2a°cx + %
g’(f- 2o+ g’+y=)=a"zn'rﬂ'+c=xz
ar -2+ o' o'y = a' - 2+
a’xt - +a‘)’: =g'-a'd
@ =W +a’y = a'la®-0)

NerFepsaes

e +a’y =a'b, a=c=b. a>0,b>0
L34 ;
a,,"*F =L divideout by o°p*  (34)

e ——

B
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(i) f:;de is 2 special case of an ellipse 3 CONICS1I
The relative shape of an ellipse can be determined by #s Foel. | Ven ; !
eccentricity e. The distance from the center of the ellipse to a foci s ¢, <), o) std X Faxis | Semiminor axis |
ﬂ-lEld the distance from the center to a vertex is a. The eccentricityris 00,009 {-0,0), (a.) {0,5), (0,-b) 4
given by the equation: Fegt = ] 0,~a),(0,q) B.0), (b))
o distance from center to focus _ ¢ (145 =a -k axh>0
distance from center to vertex  a Dﬂmﬁ‘m“‘dwﬁiﬂﬁrmukw coordinates
2 the i ellipse
The eccentricity of all ellipses are in a range between 0 and 1 9x*+4y" =36, Sketch the ellipse, el of the
(0 <e<1). This is shown in the Figure 9.14. Rewrite the ellipse equation in the standard form; A
An ellipse with an eccentricity close to 1 is long and thin, and =092 9544y’ =36 95 +4y° =36
the foci are relatively far apart. 1f the eccentricity is small, close to 0, 9,2 fi F(0,45) f‘h(ﬂ. 3)
then the ellipse resembles a circle. It can be shown that the circle is a Figure 9.14 36 % l.' divide aut by 36
special case of the ellipse whene=0. & ,!‘_:
; i T (38-a)
(iii) Standard form of equation of an ellipse . i 4 {3?? s
s b % ’ 13 . equation (38-a) 8 |
PR oy e by e syt oo e foom elips (37, T sz o sh el s e rgn, b |
: axis a, length o =mnmnora::ts . 1jo g ’ s the vestices of the major axis are on the j-axis, since the larger !
"_z...%:l (36) numerical value 45 under 3 Thus, 5*=9 ora =3, and 3 =4 y
q £as : . orb=2and F=g'~p'=9-4=5 or c= 5 i
i is, center at the and pick int P(x, y) on the plane, then 4 i ke
i LD eI s e, Tty . “The coondinates of the center, vertices/end pots of fe £,40,/%) '
we can develop the equation of the vertical ellipse given Wig major axis, end puints of the minor axis and the foci are the i ‘
“The standard form of the equation of an ellipse with center at the origin, length of the semimajor axis a, fllowing: pomis s are Figire 9,17 g
( length of the semiminc r axis b and major m:i.r:rfang the y-axis is shown in the Figure 9.16. C10,0) / osvter [;
E ol N _ Vi0.3),V0,-3)  end points of the major axis ¥
¥ a 4 BA2.0),B(-2.0) end points of the sainor axis &
X s £ {0.55).£,(0,/5) oei
£~7e1mmauwat/ms< l:’t'l :; i For some points on the ellipse, i
@'\ . Semiminor axis = 2 1 o2 {
50 5 | » 5.0 B "tﬁ}’ 1, then Td-g =] = x=sdd== 5
\0&155) ; “M}"i.ﬁw%?*-gi’i =x=t2% , !
3 The elipse is symmetrical with respect to the maj inior 2Kk ; ; . f
major axis, minor 2xis. The center, vertices, foci, and the points
¥(0, -a) : {ﬂ__!} -H‘EJ}[-M: 24 [g_{g 2[5 ,) (=28 2
Figure 9.15 Figure 9.16 \ 3 ] Tl T O e i T
Graphing Ellipse; In order to sketch an ellipse, it is required to plot the center, the intercepts£a 00 the e labeled to obtain the graph of the given sllipse inFigure 9,17,
major axis and b on the minor axis. : Determing the vetices, ead poiats of the misor axis and the cooedinates of fosi of the sllpse
First, rewrite the equation of the ellipse in the standard form, so that there is a “1" on the "3:‘:'1 227 +5y" =10, Sketch the ellipse. e
the numerator coefficients of the square terms are also 1. The center is at (0,0) and plot the intercepts mﬁmhﬂlﬂu ; i ghe: : 1
x—axis and p-axis. For the x-intercepts, plotxthe square root of the number o%; for {he y-in W,,is e PO lllipse eguation standard forra: |
B - f
Jot  the square root of the number b, finally, and draw the ellipse using these intercepts. The 1on8< 27 5y : 1
B called the major axis. If this larger axis is horizontal, then the ellipse is called horizontal and if 0% ek Bkeiytl E
major axis is vertical, the ellipsc is then called vertical i B 2 ‘
The orientation of the ellipse equation with center (10,0), vertices/end points of the major w3 ":"E?*.Uz%r' £ k)
the end points of the semiminor axis arc summarized in the box: War '
. 255 mmw FoRsaLs 256 |
... v — i
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The cllipse (5-b) is related to the horizontal standaru )
form ellipse (36). The center of the ellipse is at the origin, but 3
the vertices of the major axis are on the x-axis, since the large: 2

B=2orb=+2 and ¢* =al=b* =5-2=3 or e=+,3.

The coordinates of the center, vertices’end points of the 3
major axis, end points of the minor axis and the foci are the
following:

C(0,0) center
V,(—/5,0),V{/5,0) end points of the major axis
B,(0,42),B {0,—/2) end points of the minor axis
F(—/3,0),F{3,0) foci

(iv) Equation of an ellipse through its elements

numerical value is under ), Thus, g°=5 or a=+3 and L
2 . H50 b,

BN 12] Find an equation for the ellipse with foci F(-1,0) wd Fy(1,0)and vertices V,(-2,0) and
V,(2,0).
m By inspection, the center of the ellipse is at C(0,0) and the distance from the center to the vertex
is a=2; and the distance to a focus is c=1. The value of b is obtained by inserting a and ¢ in the equation:

P=ai-ct=d-1=3=>b=23 :

The values of a and & are used in the horizontal standard form ellipse (36) to obtain

e A 39)

4 3

(v) Standard form of equation of an ellipse

The standard form of the equation of an The standard form of the equation of an
ellipse with center at C(h, k), length of the | ellipse with cemter at C(h, k), length of the
seminip.  ~xis @ and semiminor axis b, and major | semimajor axis a and semiminor axis b, and major
axis parallel w the x—axis is: axis parallel to the p-axis is:

—_(x_:l)z*'—_(y_f)::‘-“b Gl b Ok g5y 1)

a [ [x] a
¥
3 Fih k +a) *
(h.k + b) . Flink+¢)

i Dia dh b+ bk

h+a (= b,k h+

V(. k) P h=b, 1) o Lebips

(h, k= b) g \‘\ Fik, k=€)
1 % | Mihk-a) I
Figure 9.19
Figure 9.20
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UNIT-2
CONICS-Tl

[-I'\.-.|||1|1|'|';"}B Graph the alj; 2
ellipse whose equation js 4" +25)" 82 +100y-+4=0. Tndicate the censer

vertices, foci and the end Points of the minor axis
maﬂ'ﬂ'lc the given ellj ;
Ipse equation to the standard
4;‘—8.t+25y’+|00,|-=_4 oy
A" -2 41) 42507 +4y) =0
Add and subtract 100 to obtain
4{_‘!1—2J+|)+25(y=+4y+4]=|m
x=1)"+25(y+2)*=100
4(x-1)* 25(y+2)° -1 (p+2)?
—— T 2)
T R Tibade: St e JOR
ThﬂgmnC"ipsﬂ{dz]Wﬁhmbﬂhtmx=x_&-x_lmy.y_kwy_'_l&-l i-—zgim

by completing square:

a3 :
the translated ellipse in the XY-plane: %(_1_1" =] 143)

The center of the ellipse is at the origin. The major axis is horizontal and the vertices are on the
x-avis. Thus,a =5, b=2and ¢ =+2] = 44,58,

The coordinates of the center, verticeslend poi j i i i i
; 3 points of the major axis, end points of the
the foci of the translated ellipse (43) are the following: K e
C{0,0y center

Vi(=5,0),V(5,0) end points of the major axis
B,(0,2), B {0,-2) end points of the minor axis
F,(~4.58,0), F,(4.58,0), +/21 = +458 foci

Thc_ coordinates of the center, ¥
vertices/end points of the major axis, 4x7= 2317 B+ 100y +4 =0

the end points of the minor axis and foci (1.0)
of the given ellipse (42) are the {’7
* The coordinates of the center i Alia P;(ipz}

following:
C(0,0) of the translaled cllipse [a 4\{;]\’\ (1,-2)
areX=0,Y=0 PutX=0and -

Y = 0 in (43) to obtain the ' (.-
coordinates of the center of the

. Fi 92
Biven ellipse (42): skt

X=x-] = 0=x-1 = x=1 andY=y+2 = 0=y+2 = yp=-2
The center of the given ellipse(42) is C(1,-2).

*  The coordinates of the vertices Vi(=5,0), V,(5,0) of the translated ellipse are X = -5, ¥ = 0 (in
lmseuf Vi) and X = -5, Y = 0 (in case of V) Put X = -5 and Y = 0 in (43) to obtain the
coordinates of the vertex V, of the given ellipse (42 -

X=x-] = Sax—] = yx=—9 andY=y+2 = J=p+2 = y==2
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UNIT.9 : CONICs.y

The vertex V, of the given ellipse (42) is V,(—4,~2)and the vertex V; of the given ellipse (42) jg o
course V;(6,-2), :

The coordinates of the foci F, (~4,58,0),F(4.58,0) of the ranslated ellipse are X = -4.58, Y = g g
case of F)) and X = 4.58, Y = 0 (in case of F,). Put X = -4.58 and Y = 0 in (43) io obtajy the
cootdines of the focus F, of the given ellipse (42):

Kexol =5 4S8=x-1 o xw-358andY=y+2 = 0=y+2 = y=_2

The focus ¥ of the given cllipse (42) is F(~3.58,~2)and the focus F, of the given ellipse (42) g of
course F, (5.58,-2),

The graph of the ellipse is shown in the Figure 9.21,
The erientation of the cllipse equation with center C(h, &) are summarized in the boxes;

Vertlees/End Points of
Orlentation : Foel Major Axis End Polints of Minor Axis
Horlzontal | F(h=c,k), F{h+c,k) Vith=a,k), Vi{h+a,k) | B(hk+b),B (k=)
Vertleal | F(ik+e),Fihk-c) Vithik+a), Vihk=a) | By(h+b,k),B(h=bk) |

Notethat b = -’ ore = =5 witha>b >0, 4

EEEEIIRI4] Find the cquation of the elfipse with

vertices at (-1, 2) and (7, 2) and with 2 as the length of the
semiminor oxis,

he .z}<
@I With the verices of the ellipse are at _ G2
Vi(=1,2)end V;(7,2),the center is at the midpoint of the
linc segment V, V; Joinlng these vertlces, The midpoint Figure 9.22
(3,2) of the line segment V, V, Is the center C(h, &) = €13, 2). This Is shown in the Figure 9,22,

The distance from the center C(3, 2) 1o either vertex is a = 4 units, The semiminor axis has a length
of b= 2. From the Figure 9.22, we sce that the major axis is parallel to the x-axis. The horizontal standard
form of the ellipse (40) is used to obtain the required eflipse equation:

g.t-h!’_'_ig-kl’_l
F] b?

K(7.2)4

| 1
[théﬁ.ﬂ%lln. Clhvk)=(3,2),a=4,b=2 (44)

(vl) Recognition of tangent and normal to an ellipse
A.  Tangent to an elllpse
“A line that interacts the ellipse at a point is kiown as tangent at
the ellipse™ fn the Figure 9.23, the line LM Is tangent to the ellipse which
Is Intersecting the ellipse at point *P* as shown in Figure 9,23,
B,  Normal toan ellipse -
Normal 1o an cllipse Is a line perpendicular to the tangent 1o clrve
through the polnt of contact. Line QR is normal to the ellipse which (s

perpendicular to the tangent LM at polnt 'P', x shown n Figure 9,23,
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UNIT-9

(vil) Point of Interseetip,
The given line and ellipse
N=my 4
F
e (45)
Stae=l
A

develops a system of nonlinear equations:

ol an ellipse ang allne

nonlinear system (47) simultancously. o e s
The line (45) is used incllipseﬂﬁhunmulcqm:h:icathn inx;
X, (o ic)’

ﬂ'! bl
x’(n’n:‘+b’l+2a’ma+a‘(e?—y =0 (48

:Thc ?quatm (43}bcbgaqumﬁalicu;tmbn inx, gives a set of two values x, and x, of x, which will be used

in a line (45) to abtain a set of two values y, and y, of .

Thus, a solution ser {5, ) (x, 0,

)} of the em (47) i o 2 -
s Syst Juofmmasuofpmsornssmmof

Dﬂr=4.:‘m’c’—4(a’m’+b‘)(a’)(c’-b‘]> 0, real and different
Dm‘sc=4a‘m=e*—4(.fm*+a*)(.:‘}(:’-a*]ﬂ real and eoincident i
Dirc=4.;'”’&—4(u*m=+a’p[a‘)(c‘—a*)<o. imaginary
Find the points of intersection ofthe line 2x — y— 2 = 0 and the ellipsedx® +9)7 = 36,
The equations of the line and ellipse are:

2x—y-2=0 (49)
y=2x=2
42 +9y* =36

4+ 904 +4-8x)-36=0
40%° - T2x=0

= x=0, :=2
5

HOT FoRsALE |




i

oA

UNIT.0 e
- FONI Sy
Th::hmﬂhuumumdinunlm {49) to obtain the y-coordinates: x=0. % gim_rn-l%
Thu.m:aoﬂwupuimsnfintmjnn{u-z 2k 1 and distant and the line 2v - . _ 5
,~2) and ;'E are rea =V =r=-2=g
intersects the ellipse (50) at points (0,-2) and (%%]

(vill) The equation of a tangent line in slope-form
2 2
1fm is the slope of the tangent line to ellipse '{5+i3=' (51)
: : a
then the equation of that tangent linc is of the form  y = mx -+ ¢ (52)
Here c is to be caleulated from the fact that the line (52) is tangent to ellipse (51).
The line (52) is used in an ellipse (51) to obtain the quadratic equation in x:
1
£;+M =]
a b
.t’(n'm’+ﬁ‘]+2a‘m+a‘(c’-b*:|= 0 (53)

1f the line (52) touches the ellipse (51), then the quadratic equation (33) has coincident roots for
which the discriminant of the quadratic equation (53) equals zero:

da'm’c? —4{a“m’ +b ][_a‘:l{c’ =b*)=0
a'm'c® -(a’n’* +5°)(c* ~b*)=0, divide out by4a’
almlcl _nlmlcl +ﬂ'=m=b1 _blcl "'b. -0
am'b b+ b =0
-b'e*=—(a’m’p’ +b*)
' =a'm'+b
c=tJam +b (54)
The equation (54) is the condition of tangency. The value of ¢ from equation (54) is used in the line (<2)t0
obtain the required equation of the tangent line: y=mx+c=metJgm+5 (55

[ Note /.

H 2
o the equation nl‘mymmmm:llips:*—,v:?:i in the slope-form is:
a
y=mxtJaim+b (56)

s
« Condition of Tangency: The line y = mx + ¢ should touch the cllipse -"_l+%=l under
a

condition:  e=xJaim’+b i57)

e a et

281 ' B me
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grciufmdtlmlangmlinmlwslnuidmhlheg:m:l!m

The values of ¢ at which e 1 : b
m = o cﬂwhl:h!hl: line 21‘-_}'+¢'!'0wi|| mhhﬁmﬂr 1l 7
are:  cmtyfaln B =30 1414 i i
Hmm-?2|'.~;thc=1'npeuf|heline2:—y+c-0_
mmumﬂngwlincsﬂuﬂnuhwuchhelﬁpmﬂmughmhﬁmis:

VYemxte=detd m=2

(ix) The equation of a tangent line to ellipse at a point

The equation of a tangent line at a point P[J,,yl}mdiipscf

3
¥ &
Ledclin yopmmie-x) . (59

2

Herem, is the i ipse L. i
erem, slope of the tangent line 1o clllpse?+bz 1 at a point Pix,y) that can be found by

z .3 2
diffrentiting 22+ %5 <1 withrespectto.. 2,07,
a a
}—T‘FE%EP—:IJ
@ b dr
ﬂ'—ﬂ———-blx
dr gy
fg] _=Fn_
. 59
["ﬁ' ha)y @Y, ™ Lk

The substitution of (59) in (58) is giving the equation of the tangent line at a point P(x,, y,

) to ellipse:
Y=p=mix-x)
y-y=-EX gy
ay

rd El ¥
TN o a2
oslo T M Ih RGN
B ad " ﬂ'=+b=
x5 0 S
=St Bia (60) ..%43,--19:(.\-,,_1;,}

G 7) ﬁ"dth““"““‘"“’f""mﬂamhr[l%]weﬂiﬁ 2.0
%5

9
mkmﬂmrismwnbtﬂmhewIineioﬂngimellwsc:
ﬂq.—'}?_'.l
2 H
[
¥ 12
x(3) 5 : 125 L
'?s—--l- 5 =] -~(-l'|p.1'1:'=[3-?].a‘=35,b:=9
2£+E£_|=,27Hm =225=0=9x+2|
T Rie o ; Iy =0=9x+20y-75=0

’h




UNIT.

(X) The equation of a normal line to ellipse at a pni:lt 2

X . I_+l’:=]i5:
The equation of a normal at a point P(xu}'t)t“wa’ b @
)

y=y =my(x=x)
i I_=+£=1a1 a point P(x;,y,)that can be foung by
Hﬂ'l:m,isﬂacshpeofihemnmlmeﬂq:seaz e :
: f standard Ellipses
i iating . i ] Summary o s
t‘ll.ﬂ'u'cnlﬂlms—2+i—:=lﬂhwwr T T
a —4z=la>b -7+F_1,a<b
= 5 Equation | & b @
—!+32-=] c’:ﬂz—bt C"=ﬂ!—-ﬁ:
a . T
+¢,0 (0,£C)
2=, vy o : Focus (xe 2 )
e Directrices x=t—= y=1?.
dy__bx 4 —
de iy Major axis y=
—:’1 Vertices (£a,0) (0,+a)
W e == (0,5) (#5,0)
‘ Co
dx iy @ l)'l : o o o
ah 52 P W
%=_;=?§:’ e Eccentricity e=;€l e—ae:]
The substitution of (62) in (61) is giving :
the normal equation at a point P(x;, »,) to ellipse: A\
-
-y =mx-x)
e “:y' —a L B\ B
y—y.=b,:‘ (x—x), my= 5, :
2= T8 (63)
K il
bl a:

T
12 |
: i i = 4=l
thdmmmleqwnumapuniP[ls]wdhpsc v
@SIIEI Result (63) is used to obtain the normal line to the given ellipse:

=% _Y-N (xl.y1]=[3,l—:v),az =25,b*=9
12
x—3_y-.§_
o B
= (s)
9)
25{1_3]=3[5_y__—12)
o '

100(x—3)=9(5y~12) = 100x~300-45y+108= 0 = 100x— 45y—192= 0

CONICS-IT

e

i. lnmﬁmse,ﬂmchm; n 5 4 < B
ﬂumjwubmmwmm& “quation. Indicate the center, foci, endpoints of

2
4 §+IT=] B §+§=l < (_l:+1z+£___y_2)’=[
. = 16 9
2. 1nﬁchmgdemmmﬂmmmofmweum
: ¥ B
y (2.5)

cily 62
/— \ i ‘f : =)
\Wﬁ-ﬂi { 6-2) N0
\ | Jeo

(ﬁr'ﬁ) { 1 3,—2}

2
3 In each case, write the emwinnofellr'pselfn‘uugh the given information:
a. Cemeri:at{—],?),a=2,b=].nnjura:isisbmimmL
b. Vertices are at (4, 2) and (12,2), 5= 2.
- Aﬁcwism(—!.S},amism(ﬁJ),kngthofmm' axis is 6,
d. Vertices are at (0,8) and (02), ¢ = 5.
4. TheslupeofmelﬁpsedMomhemrécityoﬁbu]ﬂpne--E.Dunmin:
2
A the eccentricity of the ellipse -z'f—s+li-;=l.
b. !i:-::qusrhnofﬂleeﬂipuwﬂhmicﬁmm(—j.ﬂ}.and[iﬂ):nﬂl!:mmic&yiuﬂ%.
<. thewcmtﬁcityof'theeﬂipse.ifthclmghof!h:scmi;mjorax:‘:sisn=¢andlhelenglhofth=
semiminor axis is b =2, i
5. For what value of c,
2
a. melineH+c=ommmmh=euipu§+”T=1?

(2,-5)

2
b.  the line 1’-)’+c=ﬂwil]tuuchthegﬂjp@3?’_:+_}4'_=]?
2 3

. the line -"f';l""l‘-“'ﬁw.illlounhﬂ:guipse %+%=l?

6 Incachcase, find the tangent equation and narmal equation
1 = 3
a. ata point (1,2) to tlﬁpsc%:+%=l? b. atapoint (3.'5)!0&"1';}5: £7-_+%=I?
1

© atapoint (1,1) to ellipse -"‘Tq-r’T’f:n

I Find the tangent equation :
2 2
i “’"“’"“P“%*‘;,'—=1whi=hispapendiculmomuim9;+sy_35q.:._

3 2
b to the ellipse "?-I-':—=]which is paralle] to the line 6x + 21y — 14 = g,

NP roRsALE 264
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UNIT.® CONICs.g

‘-’hs-ﬁ-nujdmhcmmumdm the conjugate axis or the length 27 Ti: significance of b is determiney
by solving the standard form of hyperbola for 3
2

X ¥
P _
2 2
¥ X .
_E—_-—.-ﬂ_;q.l
r
£oa’\_ B 2 ==——"1‘2(1-a,]
yzEb:[ P R
Br Iy - 68
=t— ll=— (
¥ ia 2
¢ 1 i values for x, then
rlﬁusmnﬁncdnhwioniji—{ssmm).ﬁwcmbdmhrsﬂandw the

2 . close to zero. Thus, for
= . In fact, the fraction eventually gets very
fraction % becomes smaller and smaller.
% of x. the y values approaches the
1-4 aches 1. Therefore, for large values
large values of x, the term I_W"

vatue 22 x. and the value of the byperbola gets closer and closer to the lines:
= 4D
e that are grester
These lines are called the asymptotes of the byperbola As x takes on values i =
distances ﬁmﬂnmof&:w&mofy(ofmm)mm Mw
uwmwmwmﬂ;mmmmdmw
these lines are casy to graph, the asympioies are valisble aids in sketching the hyperbola.

2 -
e For horizontal standard form hyperbola 5—%4 the asympiotes are the lines:

pails (69)
g
copt 3 ;
- For vetical standand form hyperbols 25— =1, the asympotes ave the fines
y-——i%-t {?0)

R e Y
"‘”"‘"";:“,_,-d,mm.whmmmﬂmmmﬂwmmﬂ

: from the origin is then called the asymptotes. - od g ghe BOE
X Thr oricatation of the hyperbola with center C(0,0), vertines and foci are summarized 4

- Fod Verfices
=] E(<.0.F£c0) V2,00, V{2 0)
== E(0.0).F(0.—) V{0,2), VAO.—)

UNIT-9

The foci are thm!hre!",(—s.o)a:ﬂlgis,ﬂl. The asymptotes
are the lines

a 3 . a 3
For sketching the hyperbola, the end points of the
conjugate axis (0,~4) and (0,4) are located, then draw the
lines through the points (0,-4) and (0,4) paralle] to the
x-axis. Similarly, draw the lines through the end points of
the transverse axis WVi(=3,0) and VL (3,0 parallel to p-
axis to complete the rectangle, The resultant rectangle and
the extended diagonals of the rectangle are the asymplotes
of the hyperbola. The sketch of the hyperbola is shown in
the Figure 9.28,
Sketch the hyperbola 16y* — 9,7 = 144, with
uenltratlbeoriginmdlhglﬂnsvmaﬂsisatﬂ:y-uh.
Determine the vertices and foci of the hyperbola,
Rewrite the given hyperbola in the standard

frm of the hyperbola (67):
16y 93 =144
16y* 95 T 5
————=]=L _E
44 144 9 16 an

!fﬁnhamwuisisahngihey—m‘m,lhmseba
a’=9,a=43 ang b'=16,b=44. The vertices of the
hyperbola are V. (0,3) and V,(0,-3). The end points of the
conjugate axis are (~4, 0) and (4, 0). The vakue of ¢ for foci
fanbefaundbyusinglh: formula:

=g +5'=04+16=25c=45

CONICS-11

equation of a hyperbola with

4 *
o EG0)

5"

Figure 929

The foci are therefore F(0,5) and F, (0,~5). The asymptotes are the lines

palpady o a3
B A oy

Sketch the rectangle formed by the points (0,43)and

(£4,0)and then sketch the asymptoirs using

the diagonals of the rectangle. With the asymptotes, vertices and foci, it is casy to sketch the hyperbola, as

in the Figure 9.29,
boT FeRsaE 268
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UNIT-9 CONICS.1p
(¥) Equation of hyperbola through its elements
Find the vertices, foci, eccentricity and the asymptotes of the hyperbola 16x* -9y = 144,
@&IITD Rewrite the given hyperbola in the standard form:
16x*-9y" =144 2
Eﬁ_g.]'_: o ¥ 1

W T

If the transverse axis is the x-axis, then select a®=9, a=3 and b® =16, b=4.The value of ¢ js

obtained by formula c=+/a* +5 =0+16 =45, ‘ )
The vertices, foci, cceentricity and asymptotes of the given hyperbola - =~ e following:
Vi, 0) = V,(3,0), V;(—a,0) = V.(-3,0) vertices
F(c,0) =E(5,0), F.(~¢,0) =F,(-5,0) foci
: - )F

e
e=—==2>]

y=i£x=t-§; Ssymplaiey
a

[EXIN 22 ] Find the equation of hyperbola, when one focus is at (0,6), center is at C(0,0) and the
eccentricity is 3. ;
WFM(0,6}givcsc=6,11|isindicatﬁ:hﬂﬂlcm:xisisthey—axi&m=unﬁriﬂy3
is giving the value of a:

c 6
e=—=33=—qg=2
a

[/}
These values of a and ¢ is used in the formula to obtain the value of b:
c=a*+bh ’
b =c—a"=36-4=32
The required hyperbola equation is:
1
roas
a ¥
-’i-ﬁ=1, a'=4,b"=32
4 32

(v)  Standard form of equation of Hyperbola

If any point (h, k}unﬂnphneisse!mndasﬂlemdmehypubahaﬂ a major axis par o

the x-axis or y-axis is selected, then with the geometrical definition,  new set of equations for hyper®
can be derived through transkation of axes.

Translation of hyperbola horizontally: and
The standard form of the equation of a hyperbola with center at C(h, &), vetices at V, (h-+ %)
Vy(h—a,K). foci atF,(h—c,k)and Fyh +c, ) is:

” -k
(xarf__%);l (72)

2 CONICS-IT
(x=h)?  (p)2
e b

ANV (hra k)

r

Figure 9.30
Translation of hyperbola vertically:

The standard form of the equation of a
- Valhk~a), foci at F(hk-+c)and Fy (h, k - )

-k -h)’_|

hyperbola with center at Cih, &),

b vertices at V(i k +a) and
LN

& . » [73)
» :
I (o R )
a? 3 T
)
4 :

V,(hmh »-4,@
¥, (hk—a)
i BN

F(hk-c)

{ Figure 9.31
The orientation of the hyperbola equation with center
Orientation
Horizonta)
Vertica)

C(#, k) are summarized in the box:

Foci
E(h=c,k), Fylh+c,k)
Eihk+c), Fyihk—e)

Vertices
Vilh—a. b, Vih+a,k)
Vithk +a), Vilhk—a)

Note that .2 =

= az_'_&z: c=0,
Sketch the hyperbola
(=1 (p+2) <
Nl 144 g
erat Cih, k) and the transverse axis is th
. The given hyperbola is:

NP RorenE

g

e x-axis. Determine the vertices and foci of the hyperbala,




o

RLE-1 - =, '-'bh"ii.:_. 1
LNIT-0
174)

 C) L6 )
144 25
RIS I, | e by Y
2 Y]

144 25 : : : : = 2
The hyperbola 75) has a transverse axis on the x-axis that give a =184, 5=128 I 5°= 25, bad,

(75)

The value of ¢ is obtained by formula:

2 J;Emr\::a;:if—[tf vertices and foci of the new hyperbola in the XY-system are the following:
V,(=a,0) = V,(=12,0), V,(a,0) = V,(12,0) vertices
F(—c,0) = F,(=13,0), F.(c,0) = F,(13,0) foci
The asymptotes in the XY-system are the lines: 1
5

b 5 = Alisr s
Y=sX=5X, Ym- Xe-2X

The coordinates of the vertices and foci of the given hyperbola 74y in the x)-system are the

following: ’
V(i +a,k) = V,(13,-2), Vy(h-a,k) = V,(=11,-2) vertices

F(h—c,k)=F(-12,-2),FK(h+eck)=V,(14,-2) foct
The asymptotes in the XY-system can be converted in the xy=-system to obtain:

v=2x A
a

-l a=12b=5
12

(y—k)=%'l-1"hl» X=x—-hY=y—k h=1k=-2

5
=—(x—1 §
y+2 n(x )]
12y +24=5x=5=12y-5x429=0

~.-=_Ex
a

5
=25
12

5
—ky=——(x—h
(—k) Iz(J|: )
y+2= -15—2{::-[] = 12y+24==5x4+5= 12y+5x+19=0
Having sketched the asymptotes and the vertices, we can sketch the hyperbola as shown in theigure 932

CONICS.11

F(-122)a q
F-11,-2" /i

Figure 9.32

For translating the hyperbo G-h' -k :
b e la LI = lhorizontally, the asymptotes are the lines:

Lab
fy—k)-iavfx—a) (76)

2
For translati =&y x—hy’ ;
. nslating the hyperbola < —-—?—- = lvertically, the asymptotes are the lines:

a

=425 _
U’—-E’)—-i'b(x i) a7

(vi) Recognition o!"langent and normal to h
. itior 0 yperbola
s A line which mterseqs_a hyperbola in two coincident Points is a tangent. For the hyperbola, there
“{’"" tangents [real and distanct, coincident (with an asymptote), or complex] with a given slo : The
formulation for tangents to hyperbola will be discussed in the succeeding sections, v

(vii) Point of intersection of hyperbola with a line including the condition of

tangency
The given line and hyperbola

VY=mx+c (78)

=
B e (79)

2

a 4 (80}

Y=mr+c

T_hc soluh:;on set {x, ¥} of nonlinear system of equations (yoexists only, if the curves of the system
n[.;.s,?ﬂm Intersecting, That set of points of intersection {x, '} (a solution set) can be found by solving the

near system (soysimultancously, 3
The line (78yis used in hyperbola (9 to obtain the quadratic equation in x:
2 (mv+e) =
: al b
e (bz“aam::}—zn?m-ﬂ'a:l:c!"'bzl: 0 s

NBTRERQ;




UN11g CONIEs.
The equation

being a quadratic equation in x, gives a set of two values x, and x, of x, whjcy, will
be used in a line

10 obtain a set of two values y, and y, of y. i
: i intersecti
The solution set HERHNEN| jofthe system s of course a set of points o System

The points of intersection of the system  are real, coincident or imaginary, according as the rogys

of the quadratic equation are real, coincident or imaginary, or according as the discriminant of g,
quadratic equation

Dise = 4a‘m:c + 4(51 -n=m1:}(qz)(cz +b=:| =0, real SI'I_d different
Dise =4q" 7 +4I:.‘.:2—a’m’)(a"‘)(c’+b°:l =0, real and coincident

Disc=4a"nc +4(b"~ a’m’)(a”)(c*+57) <0, imaginary

. 2 o =
E";‘““‘f"‘?m Find the points of intersection of the line x —y~1=0and the hyperbola 4y* - 3" =4,
@IITII® The equations of the line and hyperbola are -

x=y=1=0 o
( y=x-1
‘ i 'HI-. i ints of intersection:
: The line . isused in hyperbola  ° loobtmnﬂmxﬁurdmtesoﬂ_heppmo inte H
[4
4y’ =(x-1)'=4
5
( 4:’—{xz+l-2x)-4=0==-3;r’+lr-5=l]$x=l,.-3
The x—coordinates are used in the line to obtain the y—coordinates:
: 8 ¥
T x= I.—% givey=0,-3
i i i 28 nd distinct and the lint
a Thus, the set of two points of intersection (1,0) and (-3—5] are real and di ;
. . 5 8
x=y =1 =0 intersects the hyperbola  ** at points (1,0) and ~3 3
C

(viii) Equation of a tangent line in slope-form
1fm is the slope of the tangent line to hyperbola
£
2 b!. i
&
then the equation of that tangent line is of the form
= px + o
Here c is to be calculated from the fact that the Jine -

* 1 is tangent to hyperbola (- 1.
Theline s used in hyperbola —"loublahlhequadmiccqmtioninx:
£ _tmief

a LS
x:(bt_lmzj._.zaanﬁ:x-l- g‘ {C’ +b=:|= 0

;
273 mmﬁw

Ifthe line - touches ghe i . CONICS1
- fa - then the quadrati . fe
i iserimi i €quation . has coincid
which the ‘::!s::n?lnanlzor:heqmm €QUation . i5 goine 1 be Soar comcident roots for
da'nie +4(p ‘-asz;?;lfg’}[g’q.g];o
ﬂ"m:.c-zi-(bz - zmzl{"_zq.b:): |:|' djw..k ot bth
—@m b e syt
._ﬂ.?m!bl+&z‘_:+ba= 0

2 2 2 2
a m I:'J"a .IJJ'JL"

~a'm+eepi=g
&= (a*m*-p?)
c?=a!mz—b=

The equation  ~, s the condition of tangency. The value of -
line: > to obtain the required equation of the tangent line:

yEmxte=med fo7t - p?
L
: F
the equation of any tangent to hyperbola -"—f-i’; =lin the slope—form is:
b i

Y=t ot g

the line y = px + ¢ should touch the hyperbo

from equation , -, is used in the

Remember ')

&

2 2
. la %~ 2 = ) under condition:
a b
c= dl,"?_bl

225] For what valye of ¢, the line y=Es-,\'+c will touch the hyperbola —’:—-J" =

?-l. Use those
values of ¢ 1o fing the tangent lines that should touch the given hyperbola,
ERTTB The values of c o which the lne = 3

=37 ~+c will touch the given hyperbola through result. . -,
arg:
e=talpiopi =t ’4[%)—-9:14 a’=4.b’=9.mé§
Here m=2 i the slope of the line y=32 x4 ¢, The required rangent lines that should touch the
hyperbola through result . . js:
J’Eﬂ’lx+¢=-2$—,l'i‘4 .‘,m:-zé
(ix)

Equation of tangent line to hyperbola a 5 point

The equation of the tangent at a point P(x,, 1) to hyperbola 3-_;—-51, =1.is:
a
F=r=m(x-x)

-Worrareang

pms s s m——

i § bon b L SR

" s

|
"
[
i

=iaep L1} ""v_"l?p'c' x4
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UNIT.9
2V i
Herem, is the slope of the tangent line to hyperbola el =1 ata point Px, y,) that can be

2 2
found by differentiating L —L o1 with respect to x:
a b

‘—"3_!3 =1 differentiate w.r.t. x
a b
2x 2ydy
a b dx
& _bx
dx gy
2
de fio oy @W . :
The substitution of(92) in(91) is giving the equation of the tangent line at a point P(x;, y,)to

hyperbola:
Y=y =mix-x)

—

2
2 ¥
NN B N N

3 T 0 F F) F] 2 b:
[ a a ¥ a

2 v

My 93) Stetetar(x,y)
== : ¥

a-n a b

16 y
BTNl 26| Find the equation of the tangent at a point P(S ;-] to hyperbola = _-E 1.
EEED Result(93) is used 1o obtain the tangent line to the given hyperbola:

-i;-l. a'=9,p'=16 ‘
a b

y[lﬁ]
9 16
%ﬁ'l_:ﬂ (x.-y.)=( 9)

5x 16y _

9 144

80x=16y =144 = 80x—16y~144=0 = Sx—y-9=¢

(x) Equation of a normal line to hyperbola at a point

2
Tlleﬁquatmnuﬁhemmlatapmml’{x‘ Y1) 10 hyperbola f---i'—:l is:

y=y=mix-x) (4

: foud

Here m, is the Slﬂpﬂ of the normal to hyperbols g—b—=1 at a point P(x,, _l’.}'m“‘:’mIIjIe

— 2= =Twith respect 1
bydlffemﬂl'“mg'_ b 1 2

e

e CONICS.)

= e 5
® » Sy 195}

The subs!mumn of (95 i’ in (94 j 15 Ellfm.g the normal equation a apoi.rll Pfl', V) to h}'pﬂbﬂh'
L | 2
J Hy=m ':[ ‘IJ

Ha-x)
£

y-y.=;_

Y= _=x-x)
% 2
5 a’

m Find the normal equation at a point P[S %—J to hyperbola i) =1.
9 16
EEIID Resule (96) is used to obtain the normal line to the given hyperbola:

6
—{x-5) Y& 16
= | _‘_(M,,( 9)

-9(.r—5)= (9y-16)
5 1
= ~9(x~5)(1)=5(9y-16)
~9x+45=45y-80
Dx+45y =125

NoT rorsaLE
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UNIT.9

1. In‘each case, sketch the hyperbola represented by the equation. Indicate the center, vertices, foc and

the equations of the asymptotes:
2
u £z-—z—=l I £—£=
4 9 25 4
S N ) PO ¢ ) S
#2 TR e = e 25
'z In each case, deiermine the equation of graphed ellipse:

s
@| #
y - e
KES3) o) T
K(505)

-
l“: ("'51-7}

3. In each case, write the equation of hyperbola through the given information:
Foci are at (0,3) and (0,-3), one vertex is at (0,-2).
Vertices are at (5,0) and (-5.0), one focus is at (—7,0).
~. Transverse axis is the x-axis, asymptotes are the lines y = 3x and y = —3.1‘
.. Foci are at (5,0) and (~5,0), eccentricity is 5/3.
Vertices are at (3,~1) and (~1,-1), asymptotes are the lines y = (9/4) x ~{(13/4) and
y=(-9/4)x +(5/4).
4 Determine the path of a point that moves so that the difference ufnsdmam from
. the points (~5,0) and (5,0) is 8.
1, the points (0,~13) and (0,13} is 10,
5, Write the equation of the hyperbola
a. with vertices at (2,-2), (-4,-2) and that passes through the point with coordinates (5,1)-
- ; with vertices at (=3,1), (=3.3) and that passes through the point with coordinates (0,4).
6 [In each case, sketch the rectangular hwtrbolamdulcmfy the vertices, the foci and the

asymptotes: @=3 gyt

0 eD'=(y-2Y'=1 h, 2
N EoREALE

...r+clw||lo1.|chlhch)-p¢raoh _z__,._,
9. Ineach case, find the tangent !

¢quation and mmal equation
a. Mamﬂ(Lrgjm!apuboh L

]

6
b ﬂﬂPﬂml(—-,SJru i R -
3 h.vpe:bola T 17

Summary of standarq Hyperbalas

Dfrr.ctrices

Vertices
Covertices

| Conre

Eccentricity

Graph
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UNIT-9

obtained with reference to another system

o Ty

CONICs gy

E!' ~
Translation and Rotation of AX€S
If the coordinates of a point or the equation of a curve be g
rectangular or oblique, then the coordinates of the same point or L=

oblique. The process of so ch‘"\ging i

of axes, rectangular of :
J the transformation of coordinates,

iven with reference 10 a system of
the equation of the same curve eay p,

coordinates of a point or the equation of a curve is calle

i)  Translation and rotation of axes

In general, we come across 10 define three Lypes of e
a. Translation of Aves: This will be used in changing the origin

the old ones.
b, Rutation of Axes: This will be u

origin of the system.

change of axes that are the following:
only and the new axes are paralle] 1

sed in changing the directions of the axes without changing 1,

I be used, when the change of the direction and the origin of the

¢, General Transformalion: This wi
axes both come together.

The relationship between the two seis of coordinate axes

The rotational relationship between the two sets of coord

is called the translation of axes,
wate axes is called the rotation of axes.

(i) Equations of transformation for translation of axes

in of the set of old rectangular

ir 0(0,0) is the old origl .
coordinate axes ox and oy, then the coordinates of a point P with

respect to the old axes are Plx, y).
If O(h, £) is the new origin of the set of new reclangular

coordinate axes OX and OY parallel to the old rectangular
coordinate axes, then the coordinates of a point P with respect to the

new axes are P(X, Y). s
1f PM and ON are perpendicular to old coordinate axis ox,

where PM inlersects the new coordinate axis OX at M,, then, the

following assumptions
oN=h NO=k oM=x, MP = y also OM, =X, MP=Y

through old rectangular coordinate axes
x=oM=oN+NM=oN+OM,= X
y=MP=MM,+ MP=NO+MP= k¥
develops a set of rectangular coordinate axes in terms of new coordinates X, ¥ by means 0
x=X+h y=Y+k 97)
The set of equations {97) are the equations of transformation for translation of ax¢s-
{his substitution in a given equation, a new equation of the same graph is ob&mgd, referred now 10

translated axes.
(iii) Equations of transformation for rotation of axes

Ifox and oy is the set of old rectangular coordinate axes, then the set of new rectangular ’-'-’-"“"imf
axes OX and OY is obtained by rotating the old rectangular coordinates through an angle0,0< £50'
anti-clockwise direction. &

£ the relation:

By makité
{he e

o FoRse

. [EE28] Translate to parallel axes through the point (1, -2) the
»= conic 4y

%

I the coording
: les i
P with respect to the new :::smm
If PM and PN are -

Pwi
With res CONICS-T1

Pect to .
Ol axes are P{_‘t y}. then oo
Lo the Il i the rdinates of a point

following assumptions
OM=x =
‘MP—-J{ON=X_NF= 4

Y
e Y\ g %
~ 0l

RS
Figure 9.34

through old rectangul
o X
x=O0M EHiar coordinate axes

=0N, -MN, =0N, ~-MN
y=MP

=UNmH~NPanﬂ=X:osB-'|'sin9

= MM =
dcvclurn; ::::l;r NN +M,P =ONsind+ NPcosg =XsinD+Y
rectangular i 7 rcrrn- e et
x=Xcosl-Ysind m'dmf_emlﬂ ek cuor|
Ly . ¥=Xsin+Yeosh ma;e: XY by means of the relation:
equivalent form of the relations (98) js- L '

X= i ==y
xcos@ )'SIIIB, Y x5in0 J'cosa 99
X + + 1

(iv) Transfor
med equations through translation and rotation of a
xes
F£25y —Bx+ 100y +4=0,

m&lbstitule = =
x X+.‘:—X+I(&=I}andy=-‘f+k'=‘f-2(k— 2) inthe
==2) inthe given equation

4x" 425y ~Bx+100p +4 =0

4{:’:"'1;'2 +25(Y—-2}:—8{x+]]+100|:y_2]+4=0

which yields the standard ipse i
o form of ellipse in XY-plane by completing the Square;

Yl
CUHE i e s (100)
The standard form of i
CE the : d
substitution of X=x+ 1 and Y=y - f.wen conic (ellipse) equation in x-plane is
(x-1)°, (»+2)°

—i

%5 "; =], X=x=1,=y+32, XY —sysiem

129] Transform to axes incli
£+ 3 -8+ dxy—1=0, xes inclined at an angle 45° 10

The substitution of equation (9%)
x=Xcos0-Ysinf, 6=45

obtained by backward
the original axes of the conic

=x¢°545-"1’s[n45=£x_£ _\5
T e ks

b~

y=Xsin0+Ycosh -'-51n45=c¢,45=T-

e W2 W2

=Xcos45+ YsindS=—X+
i : = —Y=—(X+Y
in the given eonic equation 2 2 3 { )

2 i .
;(x-v) +43{x+'f) -3§(x-v)+4[§]{x—v][xw)_l_0

NOT EeRSALE)

5
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¥
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UNIT-9

1o obtain the transformed equation of hyperbola
X =Y 42 (- Y)-1=0
that yields the given conic by substituting:
X+Y= % I :
X=—m(x+)), ¥ =—=(x=2)
X-Ym2E i :fl'( ¥ 2
J2 :
¥ i old origin and old axes
vy o + ¢ 1 and new axes with respect to ; ! ' ‘
This is actually the general transformation (third type) which requires both translation and rotation
of axes. The procedure developed is as under: +y
1f O(0,0) is the old origin of the set of old mclangulal; =
coordinate axes ox and oy, then the origin of the set clid B 2
rectangular coordinate axes OX and OY parallel to the o - L
rectangular coordinate axes is OCh, k). Further,-me scl_ufnew " 2 ’
rectangular coordinate axes OX'and oY’ is oblamlfri by \.\
rotating the rectangular coordinates axes TJX :m:l OY through % .
an angle 8,0 < 0 < 90" in anti-clockwise direction. ‘ ol 7 l”t
If the rectangular coordinates of @ point P with mspe:te fe—h— ..J o
i then
to old rectangular coordinate axes are Plxy) -
r:ﬂ.nngu!.ar coordinates of a point P with respect 1o mctarfgullu' Figure 9.35
coordinates axes OX, OY and new mctangul;:r coordinates
axes OX',0Y" are respectively P(X.Y) and P(X,Y).
The following assumptions y o
oM=x, MP = 3 OM, =X, MP=Y, ON, =X, N,P=Y

through old rectangular coordinate axes

¥

o
=
=

x=0oM

=oN-MN

=oL+LN-MN

=oL+0ON,-M,N,

=oL+ON,cos@-N, Psin®=h+X'cos@-Y'sin®
y=MP

= MM, + MM, +M,;F

=OL+N,N, +M,P=k+0N, sin@+MN,PcosB

=k +X'sin0+ Y cos -
develops a set of rectangular coordinate axes in terms of new coordinates

mmm::—.‘w)('cosﬂ—‘r"sinﬂ, y=k+X'sin0+Y cos® (i ¢ the
= s 0

ST 30] Transform to new axes inclined at an angle 45° to the original axes

LR

mi’cx1+y=_gx+4y—l=0 through (2, 3).

X'and Y'b}' means of b

(SR The sibstitution of equaion 11, ki
x=h+X'cosh- Y'sing, 0=4q5
=h+X'c0s 45~ Y's5in 45

V2., 2
=24+ — X' X e -JE 7
+ 2 X ) Y =2+_2_,(x ‘-Y':l

~EindS=cosd5=

&

y=k+X'sin0+Y'cosp
=k+X'cosd45+ Y'sin 45
V2., B N
_3+—2—x -|-—2_"[ll =3+T[x‘+‘ﬂ)
in the given conic equation

Rzl R
[2+E(x =¥ }] *[“:,'5(7{ Y }] -8 2+%(x‘-\"]}+4[2+§{x'-'r*]}[a*-%(xuY'}}hn
to obtain the transformed equation of hyperbola

X =Y 42 (XY 4TV (X4 ¥") 420 =0
that yields the given conic by substituting:

A <
e T b =>X'="r"7'-9+%'-9 v:%‘f—] (x-2
s TE R R
2

(vi) Angle tlfmugh' which the axes be rotated about the origin so that the product
term xy is removed from the transformed equation

The substitution of the equations of ransformation v~ .
x=XcosB=Ysinb, p=Xsin0+Ycosd

inthe conic of the form ax® + 2y + by is
ax’ +2hxy + by’ = a(Xme;I’.i—“:"sinﬂ]a +2h(X cosB- Y sin B){Xsin 0+ ¥ cos0) + b (X sin8+ Y cosB)’
=(acos? 0+ 2hsinBcos0-+ bsin’ ) X* + (~2(a~b)sinBc0s+ 2h(cos’ 0-sin’ 8)| XY + fasin’ - 2hsinBeos + beos? 0] ¥*
" The expression ax® +2hxy+by? will be of the formaX® +5Y?, if the coefficient of XY term on
the right side of the above equation equals zero:
{~2(a-b)sinBcos6+2h(cos’ B—sin’ )} =0
—(a—b)sin 20+ 2hcos20=0
—(a—b)sin 20 =-2hcos28

sin20 _ 2h
cos28 a-b
2h
tan20= —
= a-b
Baimn";—z-_j'—b T

LRI 31 ] At what angle the axes are rotated about the origin so that the transformed equation of the
conic 9y +4y° +12xy— x— y = O does not contain the term involving XY?

ROF RoREALE 282
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UNIT-9
the angle® ca
If the f the given conic 3¢ rotated through an angle 8, then ngled can be foyyy
axes of the gi T
through result {02y 3

. 2h

a=%b=4 h=6
=/ :

8=—tan

]

b= t3|—

L}

1 0
2 = a2 =567 =34

=

1
7

\

lﬂ.ll_1

| |
b=}
E

Exercise

the
y+2= 0.

Translate to paralle! uﬁlllm;gh
; int (0,2), the equation 2¥=
AP cum'cx’+y‘+2x-4y+l=ﬂ.

int (3,-4) ﬁmmnicx’+2y’-6x+|5y+39=a.
e (-;2) 1hemnic.r’+y’-—3.ty+1l'lx—=ll]y+1[=l].
: n angle

. 1 2
nic x'=y =a.

b, point (-1.2), the

point
& sformto axes inclined ata
45”10 the original axes of the 0
. 90" 1o the original axes of the conic yl =4px.

ic 4y +ay-1=0.
{o the original axes of the conic x™+¥
s ¥ —2JZx =102y +2=0.

/ - ;
t d 45710 the original axes of the comic =y
Transform to new axes inclined at an angle
B g gl f the conic
o » tan~'(1/2) to the original axes O
' |4x"+'|ly'-361+43y-4.1.3'+dl=0 through (1,-2)-

- p,, tan™ (—4/3)to the original axes of the conic
llx=+4y=-20:r—40y+24.ty—5=ﬂ through (2,-1)
% tan~'(3/4) to the original axes of the conic :
2l 32 410)° — 24xy =Othrough (3,1). _ _
: At i;a::::h:::a::::m rotfad about the origin so ﬂm.t the transformed equation of the con¥
115 +4y" —20x—40y +2dxy =5 =0 does not contain
h— 547"+ 243xy~16=0.does not contain the term involving XY?

the term involving XY?

CONICS-IT

Parshola: %m

o The eccentricity of the conie - 3
ellipse , uﬁf:qlm"mﬁc'da-nemick
parabola,  ife=|
hyperbola,  ife> |

i parabola that i s .
with vertex V(0,0), focus F(0,p) and directrix the Bk im _:I:!':'Hl:;r;; with respect to the y-axis,

4. The stand; P
. :“d it mﬁmﬂ&i:ﬁnn;f;‘dmh that is symmetric with respect to the line y = k
L k), P directrix line x = h - p is: (v —k)* = dp(x—
h'nd Th;mndnrd form of the equation of a parabola that is symmetric with r]upecf(ln Ihc]Iine x=h
and with vertex V(. k), focus F(h, k + p) and directrix line y = k-pis: (x=hy =dp(y-k)
s Theequation of the tangent line at a point Pl 3, Jto parabolais: yy, =2p(x+x))

« The equation of any tangent to parabola y* = 4 pr in the slope-form is: y=mv+ £
n

. ‘1111:Iiney-m+cshouldnowhtlnpmbolayl.4pxmldtrmnd'nian; y=mxs £, g
m

o  The normal equation to parabola ¥ =dpr ata point P(x,, y )is: y— ,=§£‘-[I-x.]
Eltipse: 5
e a, The standard form of the equation of an ellipse with center at the origin, length of the semimajor
axis a, length of the semiminor axis b and major axis along the x-axis is: 'L ‘L =1
a b
b. The standard form of the equation of an ellipse with center at the origin, length of the
semimajor axis a, length of the semiminor axis b and major axis along the y-axis is: -"':;+l"'—==l
¥ &
s 5 The standard form of the equation of an ellipse with center at C(h, k), length of the semimajor
axis @ arid semiminor axis b, and major axis parallel to the x-axis is: =10, 0'=kY’ _,
a” b
B Thc standm-d fonn_ of the equation of an ellipse with center at C(h, §), length of the
semimajor axis a and semiminor axis b, and major axis parallel to the y-axis is:
-h)  -k)’
ST
3 A i
+  The equation of the tangent line to ellipse i’#}; =lata point Plx, y)is:
2

XX 3
2 Wh .-!_l+$=|m,;m.y|}

RR
a b &

g
‘e The equation of any tangent line to ellipse # +;— =1in the slope-formis: y=nxz\air +5°

o Theline y =+ ¢ should touch the ellipse "—;+-;—:=1 under condition: &= %ygn + b
ol
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UNIT-9
: i }IS _:—llis-———xrx.z
. T‘hv.-;m:l'rruﬂ.ut:p.lal."l.cwlwcll'rps'tr1"'7.*”%'_:l“l"I:"°m”0('r"'v1 it sla
a :

pter at the origin and the x=axis as the

Hperbola: .
v . The standard form of the equation of a hyperbola with €€
a g
ioog ML o
transverse axis is: 5= 3 1 it he gt s e

a - at the origin
b The standard form of the equation of a hyperbola with c=1tct

transverse axis is-.%—-;:l b
3 3
L he lines: y=%—x
X _ Y _1, the asymptotes are L =
e 4 For horizontal standard form hyperbola T .
B ines: y=%—x
¥ _ X _|,the asymptotes are the lines: ¥ =
For vertical standard form hyperbola BT

1 .
" P t C(hk), vertices -
. The standard form of the equation of a ey c.eme(r_r:ll}l( {.P'kf—l
), and foci at (= e, k) and Fa(h +6, RIS T3
(hk), vertices at
(p=k) _G=h) _,

3 3

a b

aty,(h+a,k)and Valli—a,
f the equation of a hyperbola with center at C

b, The standard form o o
dfociat Fi(h,k+c)and Filhk—c)is:

il ko a)and ol k —a),an

(x=h)’_ =k’ _ porizortall, the asymptotes are the lns:.
b

2
bl a

.. For translating the hyperbola
b
(-Ky=E=(x=1) = |
(=8 _ &= _; Lenically, the asymptotes are the lines:
1 b?-
a

b, For translating the hnyperbala

a
= (y-K)y = (x=h) . o,
; iose asymptotes are at right angles to each other is called a rcclangu{:la ype
& h!filtf_hoh wl‘: form v = C/ x isan inverse function called the rectangular hyperbola.
- ﬁfuﬂﬂmofl e .5:2 -LT ) P( :Iis_ EI___J_'T_I_I;l
- = X g =
f: « The equation of the tangent line to hyperbola ?— 5 1 ata point P(x,, ¥, 5T
3 =3 ”
i L Lo form is:
o« The equation of any tangent line to hyperbola ¥t vie 1 in the slope—

J -
i ¥y _—-un’t\'azml-bz - b Vrs—i—;:
X _ Y _{ under condition: c=Eya'nr ~

t « The line y=mx-+c should touch the hyperbola ?-3—: ( ) y
& 2 2 : 2y X=X __:,-_v_-_..-'-
3 « The normal equation to hyperbola i;—i;:l ata point P(x,, y)is: P T

18

( By the end of this unit, the students will be able to: — ........

Y  DIFFERENTIAL EQUATIONS

----- Ve n s rarEen s
1l Tntraduetion

Define ordinary differential cquati
i ion (DE), order g 3
solution and particular soluti (DE), of a DE, degree of a DE. solution of a DE - general

10.2 Formation of dilferential equstions
i Demonstrate the concept of tion of a differential equation.
103 Selution of differential cquation
3 Solve differential equations of first order and first degree of the form:
= separable variables, «  homogeneous equations,
= equations reducible to homogeneous form.
ii.  Solvereal life problems related to differential equations,

Ii'l.-.l Orthogonal Trajectories
i Find orthogonal trajectories (rectangular coordinates) of the given family of curves.
ii.  Use MAPLE graphic commands to view the graphs of given family of curves and its onhogonal trajectories,

The laws of the universe are written in the language of mathematics. Algebra is sufficient to
solve many static problems, but the most interesting natural phenomena involve change and are deseribe

only by equations that relates rates at which quantities change.
Suppose the solution of problems concerning the motion of objects, the flow of charged particles,
heat transpon, etc often involves discussion of relations of the form

dr _ dg
de —f(.z,f} or }? "8(?.‘] /
In the first equation, x might represent distance. For this case, ?: is the rate of change of

distance with respeet to time t that is speed. In the second equation, ¢ might be a charge and dTT is the

rate of flow of charge that is current. These are examples of different equations, so called because these
are equations, involving the derivatives of various quantities. Such equations arise out of situations in
which change is occurring.

In engineering, differential equations are most commonly used to model dynamic systems. These
are the systems which change with time. Examples include an electronic circuit with time-dependent
currents and voltages, a chemical production line in which pressure, tank levels, flow rates, etc, vary
with time.

There is a wide variety of differential equations which occur in engineering applications, and
consequently there is a wide variety of solution techniques available.

ETW Ordinary Differential Equations

A differential equation is an equation that involves the derivatives of an unknown function
(dependent variable) of one or more variables (independent variables).

“If the wnknown fimction dbpends o only one wiable, then the dervative & an ordinary
derivative, and the cywation is then called an ordinary differential equarion, ™

ITthe unknown function depends on more than one variable, then the derivative is partial derivative,
and the equation is then called partial differential equation.
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i ifferential equations with their
The following differential équations are the examples of ordinary diff

corresponding unknown functions:

1—?, =xy, ylx)=? @
B oxry w0=? (i)
fx
ﬂ..' = w. Jv(f’:? (iii)
dx x—y
_‘L—:‘+2_\-’_{K+_.-=3_ wx)=? (iv)
dx* dx
PyY _dy, by y0=? )
dx’ dx*® dx

Order differential equation ! - o
" The or‘::-rauf a differential equation is the order of the highest-order derivative occumng in the

equation e.g.

L xy is first order differential equation.
dx

L

- dy +(x+2x)y="7 issecond order differential equation.
™ dx’*
(b) Degreeofa differential equation

- 0] b = . " ll‘le
The degree of a differential cquation is the power of the highest-order derivative occurmng in

equation. 3 - - .
i E2+ fiv- —Bﬂ+21-=8 is an cqualmnhwmgdcgmelsl.
L ‘#1 d_t‘: d:t' g . | -
k .1 | Determine the order and degree of the following ordinary differential equations:
A AT g7 . 3
ik 'Y 42D dy) &y, 0By
dy__x+}' g_’:.}.:rﬂq— =3 (g [__1_] —— X \
" dx x—y ®. 2t d 7 dx dx dx

i 3 1, since
Differential equation {a) is an ordinary differential r:quamn_uf l:-rdc:d Il and gzir::l ke
the highest ordinary derivative is of order 1 and the cxpuncnft o;;lmzhuﬁrc; gowe naw] Y O Differenthl
erent i i i i i r2a %
i ial equation (b) is an ordinary dnffz:-r_enmi equation of 0
qugalinn ;}‘:I“ ordi(nn}ry differential eguation of order 3 and degree 2,

; J i i i similar
= A sulutiu‘:;?aﬂ equation in a single variable is a number which satisfies the equation. In

i i i than numbers, which satisty
; ions of the differential equations are !'un-l:!inns, rather ’ e Lo
E?f?::oe;;?ﬂt::iun. The variables which appear in equations are cn'l.lbd““l.ll‘lkranI'IS. * Exactly
dependent variable in differential equations is referred to as “unl:'mwn. s
i i ion L =i sssion of the U
For illustration, a solution of the differential equation —-= lis an expression 0
dependent variable y in terms of the independent variable x.

5 !;;_si'a'.rm‘-f‘?'dI
“4 solution of an ordinary differential is any function y = f{x) or fix. y) which when st

" : . S 1isfies e
in the differential equation . reduces the differential equation to an identity; that is, it 5 isfi :
m
equation. "

WWW
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W Show that y=x+ A isa solution of the first order differential equation

A 2 = =], 1 :
ﬂmlﬁﬂ The given function y = x + 4 and s derivative i-l =1is used in the differential equation e
W
' _ 110 obtain: L. &
dx dal- i

L, identity lgft side = right side
This shows that y=x+4 is a solution of the ordinary differential equation &

(d) General and particular solution

The sofution of a differential equation when depends on a
single arbitrary constant quantity, is called the general solution of " loa i
the first arder differential equation. If we give particular steps for knmnw:m::u?;ﬁ?ﬁzu"::{ ml,:m a‘!:(

value to a single arbitrary constant quantity, then the solution to |exact solution or actual solution.
obtain is cafled the particular solution.

Graphically,

B

& the general solution of a first order deferential equation represents a family of curves for any e
choice of arbitrary constant quantity. i

The particular solution of a first order differential equation is a particular curve chosen from a §

family of curves (general solution) for a particular value of a constant quantity.

B3 |  Graphically, show that y=x+A is a

general solution of the first order differential equation

%= 1. Find a particular solution, when x=0 and y =1.

mﬂm general solution y = x + A of a first order, Spe-
differential equation "di‘ =1, represents a family of

parallel straight lines for different values of arbitrary
constant quantities A =0, 1,2,...

The particular value for the particular line that 3 Figl.-ln:J;ﬂ.l v !
passes through a point P(0, 1) can be found from the i
general solution y =x + A by puttingx = 0, y=1: i'
y=x+A=l=0+A=A=]
Use this particular value of A = 1 in general solution y = .x + A 1o obtain a particular solution
(line) y= x+1, .

Ifwe are to determine the solutions of a differential equation subject to conditions on the unknown function and
s derivatives specified for one value of the independent variable, the conditions are then called
conditions and the related differential equation is called an initial value problem l\-'?‘

Thus, the problem of example 3 is the initial value problem that leads the notation:

d
—=], 0)=1 e
il )
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e : . alg
gt order differential equation — ==32i /gec
T df

B d 4 | Determine o particular solution for the fir
that satisfies the initial conditon s = 0, when 7= 0.

I This information develops the initial value proble

for which the solution is the unknown function s(f) that can

order differentisl equation with respect 1o U

=-32 =:-[de=]—32#{+¢ = s(1)=-32+c
it

ds

a5 32, 5(0)=0

= s(0)

be found by integrating directly the firs

ds
dr .
The general solution ali)==32i+c ala point P(0, 0) is giving ¢=0. Use this ¢=0 in genera|
X 0
solution to obtain the particular solutions (1) =-32r.

Formation of Differential Equation
In most of the physical situations, we can observe the pracess but can not worked out directly to
the differential equation. As. 2 result, we have a general solution at our dtqusni before we know the
equation of which it is the solution. Let’s begin with the step for forming with differential equation.
tion that describes a specified physical situation.

Discover the differential equa 1 ‘
approximately, the appropriate solution of that equation.

that is found. ) :
es for the concept of formation of a'differential equation.

s 30 mph. Find the total distance travels by

I
ii. Find cither exactly o1
jii. Interpret the solution
Look at the following exampl

The rate at which

Ali at a time t hours. :
distance travel by you w.rl ¢ number of hours, then, the rate at

m If S(1) is the unknown
-
which the distance travels is the first derivative of S(f) with respect to £: %‘g— =30, the per hour speed

the distance travels by Ali 1

(N I%f——_-!'mdu-c:b 5(n=30t+¢,

{o f to obtain 3
s pumber of hours and the constant guantity
¥

Integrating with respect
the distance travels by Ali with respect 10
fixed distance in this situation.

The rate at which the animal poj

support no more than 10,000 animals. There are
the animal population y w.r.t. x number of years.

If P(x) is the unknown animal population w.r.L. x nu mber of years, then,
animal population grows is the first derivative of Px) wrt.x: ™ =
d.F =K -
g k(N -P)
=0,04(10,000-F)

¢ is the

& 4%. The habitat will

sulation is growing at a constant rat :
an equation that gives

3000 animals present now. Find

the rate at which the

= —i— = 0.04dx

(10,000~ F)
Here k = 0.04 is the constant growth, N = 10,000, is the total size of animal po|
habitat. Integrating with respect to x to obtain Pix),

=j0.ﬂ4di'+c -

the fixed population that depends on F = 3000 when
1 condition P(0) = 3000.

pulation in the!

I daP
{10,000~ F)

the total population and ¢,
the TVP problem with the initia

i
« = 0. This prob¥"

sorroRs”
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Exercise

1. Find the order and de ] ;
Eree of each the following ordinary differential equations;

= %qz”' 'y _dy
:- - b. F”iﬂl}':l‘
C. g_l.fz[‘f-f j_ re- 3
de ) =l i }.%*5‘\,9‘__1: =
2. In cach case, show that the indi g dv
» indicated function i : .
a. p=e'+e ﬂ-3i+2 = vt Seiotion of et Epent il il fore
P dr __l"—l,'.l b. y=x-=xlnx, “g*-"—yﬂl
. Ay '..!"'
e p=(r+c)e™, =4yp=e” d'y :
dx d y=c'ser, LY 3
dx” dr+2" 0

3 . In cach case, use the initi it nd
ach y nitial condition ai i i
i i kit the general solution of the differential equmien to

a =g y(2)=1 b y=x-xinx+e, y(1)=2
c. sin(xv)+y=c, _v[-:‘-‘—]=l d. £z£+c r(1)=1
4 Sol ing initi pk _
: v::‘thc following initial value problems:
8 —-=cosx, y(0)=1 b. 5‘2‘—413. y(0)=1
{2 d_}'_=l (ZJED d;
= (@)= 4 220 y(5)=-1

= Suppose a student carryi i
PP ! rrying Corona Virus returns to an isolated coll s of udent
!:.IIDI: E:o;mdemd that the rate at which the virus spreads is precp:r‘t:f::llaglu&nuli Lﬂnc:uh:lnumhﬂs.
i_nfemu;n ected students but also to the number of students not infected. Find th be
students after & days. If it is further observed after 4 days = 50, i s i)

%.clbmz was the German Mathematician and philesopher. He
introduced and published the concept of differential equation in
(1684). In most of the documents indicated that he knew how to
solve the differential equations in 1666.

‘ Sir Isaac Newton was an English Mathematician, Physicist and
ool 1. A.Sl‘l-fll‘l_m_. He never published h':s"Mﬂhudnflhmim':

|1us.ﬂ|:;dhh but it is claimed that he discovered it in 1665 to 1667. Which is
known as exact by the modem classification.

(16431727}
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0 T =Y
Solution of differential equations - o sl by it grto, e, e
If the solution of a first order differential m:g;hm“ O differential equation indicates the
i i ifficulties) for abtaining
integral process (in mcul‘cfnfﬁcu ;
actual concept of 2 differential equation.

ations
o of first order and first degree differential equ

: : tions. For this “"ii. the
i order differential equa i i ‘
: iques for solving first ! aration of variables, reducible
mmw:d:dmm:]nn?q::cshg? solving the differential equations are gt:;f:ui; <ok
tec! ; ;
:zc:epﬂmlinn form, homogensous and equations reducible to homo
i - - - ; [h lm o
. Separable variables ] g by d].r‘cct uue_gmmn then o
i 1f :lle solution of 2 differential equll";'; d for solving the differential equation. Separation of
P ion of variables will be usc v ; e Lt e
11whm:ll“-“: 'Mu:::;:?;:: tcl::n:wu\y used to solve first o:lu‘ ::::;cﬁna:malllﬂ: e
variables is 3 ooty wed 10 o mush & : T imalin e e
we try lo rearmange m:mwnurf.:‘:;e':.nm equation, and all tcnlrls ﬁl;:‘::dffdiﬁ‘mm% et m‘rﬁi
variable Ufsﬁ);mpmcr side. It is mot possible to m;rurr:;llsri ?1 B oy ol o o itk
e i i t always appropriate. s
so this technique is no
?:::g:aliun even if the variables are separable.

L R "
i & I e(y)
In general, a differential equation of the form 500 >
i | elx, SDE 1
Jvat by shifting x on oné side and y on the other side  gOdy=S(x)
ihat by 5

HE o leablﬂ dlﬁ‘mlﬂlﬂl equation hl} can be
15 SIVINE a iﬂ'llarﬂble d.iﬁ'trerl'l‘ial Equaﬁﬂﬂ. T?'ﬁ solution : t o %
fi ﬂ:i b mlcgmﬁﬂg left hand gide w.r.t. ¥ and ﬂsh'l hand side w.r.l X.

ou ¥

w Find the general solution of the linear differential

; d;
cq_uﬂt"l.&h?‘: =Y.

The solution of the given differential equmim.! is not
ible by direct integration. The separable form of the ﬁw: f::;
::::r differential equation is obtained by shifting y on.the left a
B
the right: ?dy =dx
Integrating both sides
lldy=jd\' = 1|'Ij!=.'l‘.‘+|:
y .
= y:g"‘ -E'B‘=|:,e’, c1=|f
ivi i first order differential equation.
i the general solution of the 1 : :
!Iih?sng:EwmI solution represents a family of exponential functions as
shown in the Figure 10.2-

- cPoETy - e

i differential equation is not possible by separable form, then the 21
Il't‘n;: ':Ieu:::l:.:;dnif;h;pﬂ‘mhlc form by substitution. This substitution changes the dependent
c:\:; variable, say, u and keeps x as the independent variable.

UNIT-10

. b L
DIFFERENTIAL EQUATIONS |
FRTIUG 8 | Find the general solution of the non-lincar differential equation

- ; Q = [: * y]l .
GEDIIID The given non-linear différential equation is not

dx
. separable differential cquation, but
reduced into separable form by substitution: x+y=u(x) cqu 'Io""- can be
that on differentiation w.r.t. x is giving:

4 il dy v dy du
dx( y) fl‘-:::’“-dx dxadx e 1
Use x + y = n and "2= [‘i'f
dx

n‘.:]_l in the given differential equation to obtain scparable differemial

. : " T
equation in variable i and its derivative —:

—=l=u? :}—d—u=|+i|’ = —-——du -

dx dx T o
Integrating equation (i) to obtain the general solution of ordinary differential equation (i).

dnt d
lI|+li‘t -Inf: =tan u=x4+¢ =u=tm[x+¢}
that by back substitution of 1=x+ y is giving

x4+ y=tan(x+c) = y=-x+tan(x+c) !
the general solution of the given ordinary differential equation that depends on a single arbitrary i
constant ¢,

i
.
il Homogeneous equations

The homogencous differential equations are related to homogeneous functions. i
“A fimetion [ (x, ¥) is homogeneous function of degree n in variables x and v if and only if for ail values
of the variables x, and y and for every positive value of A, the identity is tre. ™

(i
S dp)=0"f(x,3), n=123,. m

For illustration, the function f{x,¥)=x"+»is homogeneous function of degree 2, since the
identity (1) is true: -

FOxM)= () + () =23 (6 47 =23 f (3 x=hey=hy 1
The identity (i) is not true for a function Sz y)=x"+y +1, since the function is not -
homogencous.

) o ody Sy iz
" 1 — ma=— (i)
The differential equation prodgeT
is called a homogenous differential equation, if it defines a homogenous funcaion of degree zero.”
The homogeneous differential equation (ii) cag.be reduced to separable form by introducing a
new variable:
dv _ d i
u(x):% or y=uc and - Zo=-plu)=usxm (i)

The substitution of (i) in equation (i) automatically converts the homogeneous differential
equation in separable differential equation.
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UNIT-10 Rt
ererential equation: = -L.
] Find the genmisommufzhehomesﬂwdlff“ & s

function of degree zero, when the
EEITEED The given differential equation defines @ hem e et
funetion on the right of the given differential equation de
dy _y—x _Ay—h
g —x|_ia[2=x || 222\, BDE
_1(y_x}=&[ydx]=li-l[;+x s ytx y+x
T Mysx) AlLytx /% Do
The given 'mn:oygcnmus differential equation i used for the

- oy - du :‘ ifferent ial l:qu.alun of the form:
=n+ ] ain & s,ep&rahl dil
y=nx. n+r——1o abtain

du _wx=x _u=l
it y—m=r=
de wx+x U

ey =+l i
du ll“_,,:f‘_'ll_-u=_'_':~._- o
= A P u+l . (i
ii

_(u+)) o % sDE

u+1 x : SDE (i)
Integrating SDE (i) to obtain the general solution of the

(n#1)dn _pdx jzllﬂ"l]“"":!'fﬂ‘.' Multiply and divide out by 2
_l-___——-=!-;- = = x

7 2’ +1)

=0y
I 2.-&-_5_1{_:1”“_ = -%h-.[,;n]-tan w=Inx+lne
:_Ej:fﬂ w'+l

=1
— —Inyu’ +1-tan"lu=lnex
= -m"u=lnq|u=+l+hcr=h1a\l'u_21_l

i
tan™ ||=-1nchrt=+1 (iii) i e
jon (iii i | solution
ituti X sa:lhequalmhu}wommthegcntra
== iU
The back substitution =" «
homogeneous differential equation:

yl

mn" ?—tr=—l|1ﬂx F+l

' L = —Ineyy +5° = {stm[-lnc\llyz-l-x’]
x

i Lo lucible to homogenous form
jii.  Equations rec R Rk dy _ ax+by+ec e f_#f_ can be reduced 10
A given differential equation of the form e =

here 14
the homogenecous form by taking new variable x and y such that x=X+ h and pE¥HE N
& are constants o be choosen as o make the given equation homogeneous.

: T N 4
12, ysing the above substitutions, we get dx=dX and dy=dY implies that ===

; T d'_r= a(X+h)+b(Y +k)+e
Fherefore. the given equation "X a(X+R)+h(Y +K)+q

oy FORSAE

DIFFERENTIAL EQUATIONS
= SN +BY + (ak+ bk + €)

aX+bY +(ah+hk +6)
Now, by chioosing & and & such that ah+bk+e=0
So, the differential equation becomes.
dY _ aX+by I
ax " ____“;x"' Wy » which is a homogeneous equation,

and ahsbk+c =0

[FERTaEI0] Find the gencral solution of the differential equation x%. x4y
m The given differential equation is not in the standard form of homogeneous differential

equation, but it can be reduced in the standard form

following procedure: of homogenous differential equation by the

Divide out by x to obtain the standard form of homogeneous differential equation:
- 3

X+ )y
2.2 wpe
A H 0]
Hamogeneous differential equation (i) is used for the assumptions
dy . 0
y=ux, -:i": =u IHE to obiain a separable differential equation of the form:
rr-t—xﬂ o Eha =]+n
dx x
x%=l =du=% SDE (i) e Sliansial, epiion o
x

not homogeneous differential
equation. then it might be a

Integrating the SDE (i) to obtain the general solution of the SDE (ii):
Idlr =Id—: Su=hx+ine=lnce
that by back substitution & =% is giving %: Inex = yp=xlnex

the general solution of the given homo,
constant e.

geneous differential equation that depends on a single arbitrary

m&:}w real life problems related to differential equation ™

SETIRNIL] A certain bacteria’ grows at a rate that is proportional to the number present at a particular
time, If the nismber of bacterial at a time ¢ = 0 isN, and at time ¢ = | hour, the number of bacteria is

SNE . -
=5 Determine the time necessary for the number of bacteria to be quadruple.
W IfN(f) is the unknown number of bacteria w.r.t time ¢ hours, then, the

. rate at which bacterial
grows, is represented by: .

e
Reduce the differential equation to separable form % = kdt (i
hat on integration is giving the general solution of (i):
N
IT = Il: dt
InN=kt+c (i)

NOT FoRSALE
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' 5 The initial condition N(0) =N, is used in equation (i} 10 obtain &
N, =0+c=c=hN, ()
Use ¢ in equation (ii) to obtain a particular solution:
(iv)

lnN:kt-i-InNg:trn-I:I—=kr=aNi=c"=‘N=N.‘"

The condition N(1)= E% is used in equation (iv) to obtain the value of ko
—;-Nb =N =¢ =—;.-=a k= In[%] =0.9163
particular solution {specific number of bacteria):
(vi)
s used (vi) to obtain the time

(v)

] Use the value of & in equation (iv) to obtain a
M= N
The condition N =4MN_ {when the bacterial have quadrupled) i

4N, =N """

In(4)
= el - = =].51 hr
4= = 09163 =Ind =1 59163 "

at which the bacteria is four times of the original number of bacterial.

Orthogonal Trajectories
Our experience with first order differential equations has taught us that such equations often have
general solutions containing a single arbitrary constant. Each such solution defines a corresponding set
of integral curves. A nonempty set of plane curves defined by a differential equation involving just one
parameter (single arbitrary constant) is commenly called a one-parameter family of curves. Of special
importance in certain applications are those one-parameter families of curves which are orthogonal
trajectories of one another. :
“The curves of a family F(x,y,6) are said
Gix.y.c;). if and anly if each curve of either Sfamily is
family and at cvery point of intersection of a curve of
T perpendicular.”
Orthogonal trajectories of the given family of curves
The two families of curves F(x,y,¢)and Glx, ;) are perpendicular at a peint of intersection, if
and only if their tangents are perpendicular at the point of intersection. If their tangent lines,
say, L,andL,, are perpendicular, then the product of thieir slopes equals =1: 3
mynt, ==1, i, and m; are the slopes of the two tangent lines L, and L,

(o be arthogonal frajectories of curves of a family
imtersected by at least one Clrve of the other
F with a curve of G, the two curves._are

T

—

£

S—
_——

; ! dy 1
- B—-—— = -
t = m, ["#]c dy 0
] dx F .
51_9 This is called the differential equation of orthogonal trajectories. If one family of curve® Fﬁ
: given, then the other family of curves G can be found by solving the differential equation of orthoge™
trajectories (i).

o7 FORSALE
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el 12 | Determine the .
Wm A h:nhnml trajectorics of the family of curves (circles) x* + y*
e . orthogonal trajectorics of the ci TP
(derivative) of the family of circles of the circles, we
£+ y*=c with respeet to x
2x+2 dy -
Yar™?

dy
(&), w

The differential equation
T of the
(i) with the §Iupc of the given onhﬂg:nzl Tralsctirics i+
used to obtain the other family of curves GJ o oﬁa(“} |:
trajectories: [QJ __ -l S
(]

e ]

dp =1 o dy _dx dy
=—m Z=Z5pE = (L&
dx _% x y o x j}. I;

need to determine the slope

hogonal trajectories

Figure 10.3
Iny=nx+InC = y=Cx (i)
Thus, i
us, the family of curves G represents a family of homogeneous straight lines that pass through
1

the origin. This is the result, w
il . » we would expect, since the radii i geneous
»=Cx, Cis any real number) perpendicular to the lines tmgm":ooar :i:lr:lc ket e o

m MAPLE graphic command
s to B
and its orthogonal trajectories view the graphs of given family of curves ™

The 1 i -
general solution y{x)—sqr.'{-x'+c,] of the above problem in example 12 is the first

family of curves, This can also i gonal ories
¢ : be written as x* + y? = jector
curves is the second family of curves represented IJJ: ;-Ig: e Gilihs L

This equati :
5 equation can be viewed through command on line by typing MAPLE commands as,

[> Peonturplot
L> with{ plots):
> F = contourplotlx® + %, x=-5 .5,y =-5 .5
E F:=PLOT|..)
L> G = plot{ {seqlc-x, e==5.5) }, x== 24 a
D Bir e e yan Sl
'd <
v # ,, ) :I
144 /) Y :
/ %
g ,}u‘
N 11/
A /
| S
| £ -
>
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Exercise

Find general solution of the following differential equations:

e, l-xidy=yf1=ydx d. :oscc’xﬂy+secyd!=ﬂ
nd then solve:

Reduce the following differential equations in separable form 2
a. Jr'z{y-i-x)l b. y’:l'm.n(;(-l-y]-!.

By T M Anreo
“ ﬁp;*-x’ . dx x+}'z
Solve the following homogeneous differential equalions:
a5 AT oA
T ode x-¥ de ECT
o B B o Dot
T o de x Aty

Wmmmmmlnghmhﬂnmdhm ofmmuﬁm'numm solves

a. x%=y+,lf+y’.y(4]=3 b (xt+y'dx=2x"ydy, y(1)=0

The slope of 2 family of curves at a point P(x, ¥ is
that passes through the point P(4,-3)-

Find the solution curve of the differential equation
point P(=1, 2}

Find the real portion from the solution curves of the differential
which passes through the point P(1, 0)- e : 4 )
A particle moves along the x-axis 50 that its velocity at any point I8 equal to half its abscissa MILS
{hree times the time- At atime ! =2,x=—4, determing memtionufapamcls along the x-axis.
hy-"‘isl.ze“" , Where t=0

#1"'—_—1-. Determine the equation of the curve
-X

oy =3y 4x* which passes through the

E
equation e d + yelx = xédy

The rate of consumption of oil (billions of barrels) is given

correspond to 1990. Find the total amount of oil used from 1990 to year 1995. At this rate, how

much oil will be used in (1 =8) years?
The rate of infection of a disease (in people per month) is given by: _d'? = ':iﬂ'?i

Where ¢ is the time in months since the disease broke out. Find the total number of infected
people aver the first four months of the disease.

Determine the equations of the orthogonal trajectories of the following families of curves:
a y=ad b, myc ¢ y=ax 4.y =2+C

1.  Choose the correct option

#v.  The soluti D
iv. ution of lix.-a:ml:,w.') atp{0) = 1is:

vi.

Vi,

R

UNIT-10

Review Exercise

i, Theorderof 2 dy
i of equation 3:{;"'2’:5 i:

(e 1 ®). 2
i, The degree of the equation g‘_y’ dy (s, 3
di® _E"‘."=ﬂis:
(). 1 (b). 2

(e). 3

i The solution that depends o g
(a). exact solution on an arbitrary constant quantity is called:
(b). particular

(c). general solution
(d). mone of these

(d). 4

(a). y=sin(x)+2

(d). yzzz_-r:_k

i i o5
‘ (d). y=-cos(x)+2 i
v.  The solut 2 = : |
solution of " = cos(x) at y(0) =1 i
(a). ¥=—y2sin(x)+1 J g
E:l::;dy=_‘lll2m{x)+l ::::: in o {
s ; ; . ¥=+2cosx+]
: :f),»mmml equation for the orthogonal trajectory of the family of curve x° + ¥* ‘
—— e
a). = ox (b). y=ex (c) dy 4o Xy :y's {l ]
o 5 j i b Kz | I.
:'MOt'thog;ornaI 1:aj=clunn=s for the family of ¥ =dax: = £ i
a), Y =k-2x b). xt=k-2y* {e). ¥=k+dy® ‘E |
. P =k+2yt |
¢




-.)IFFERﬁNn AL EQUATIONS
UNIT-10

OEEEP

o

: derivative

: 2 R i o fhat involves the d¢

o A differential equation 15 a0 equation ! indepe variables): . 2 :

: tive which appears m

(dm‘:l\l v'?n??fl;::; l:lﬁs:?:lfbmfger of the 'l‘lish"'“'t"d‘,'T s

& Theorderoi I
the equation. : e

& The degree of Jifferential equation 1= the
in the equation.

< of an anknown function

f the pighest-order derivative which 2ppears
power o

Jent variable ¥ @3 an interval 1 182 s
T :

¢
soatives ¥ ¥ s reduces
Lable v and 15 derivatives
i ne dependent wari . S
hich, when substituted for the ¢ . e x over inter - ,
y(x:‘.'; ptial cquation 1© an identity 1 the sndependent ;;ir:: dependent yariables if and only if
the _I [414 sal Lon s linear in @ sct O e it any ofﬂ.\'ﬂi‘ derivatives is of the
g d‘ﬁmm“:‘ ‘:-:LZM yation which contains & yariable of the 5€ 3
the ¢4 I i Y '
each term @ in those variables and their Jerivatives. - ariables ¥ and y if a0 A only if for al
i ,:‘(x ) is homogencous nction of degree “l::'c e the iy i rve:
:am:‘;?:m \l:;'r‘iablcs ¥, and ¥ and for every positive V@ r

Fox =" Gyl W=hBA
dy _ flen
dx glxy)

o The differential equation

defines 2 homogenous function of degree ZE10.

is called 2 homogenous differential cquation, ifit

Jacob pemoulhi ami Joh
They WEE firsy IMETPT
equ;liuns. Both brothers prgue
< ained that the Mewlon s {heory

Johand ermoulil
u&h’lHlT“'

Jneots Bermoulld
(1654)-41705)

Gabriele Manfred
d.ii‘[enential equations

e

- Umt ' PARTIAL DIFFERENTIATION

By the end of this unit, the students will be able fo:

il Dilferentiation of Tusiction of fwo variables

i Definca function of two variables.

4 Definc partial derivative.

i Find partial derivatives of a function of bwo variables. 1
1z Euler's Theorem

i Define a hamogeneots function of degree .

i State and prove Euler’s theorem on homogencous functions.

iy Verify Euler's thearem for homogeneous functions of different degrees (si
e MAPLE command diff o find parial dervatives. Pt

The goal of this unit is to extend the methods of single variable differential calculus 10 functions
of two variables. In many practical situations, the value of one quantity may depend on the values of two

or mare others. For example, the amount of water in 8 reservoir may depend on the amount of rainfall
and on the amount of water consumed by local resi

! dents. The current in an electrical circuit may vary
with the clectromotive force, the capacitance, the resistance, and the impedance in the circuit. The flow

of blood from an artery into a small capillary may depend on the diameter of the capillary and the
pressure N both the artery and the capillary. The output of a factory may depend on the amount of
capital invested in the plant and on the size of the labar force. We will analyze such situations using
functions of several variables.

In many problems involving functions of several variables, the goal is 1o find the derivative of
{he function with respect to one of its variables when all the athers are hield constant. In this unit, we

peed 1o develop the concept and shall see how it can be used to find slopes and rates of change in case of
two variables function.

Differentiation of the Tunction of two variables
In the real world, physical quantities often depend on two or more variables. For cxample, We
might be concerned with the temperature on a metal plate at various points at time I, The locations of
temperature on the plate are given as ordered pairs (x, ¥). 50 that the temperature T can be considered as
a function of two location variables x and y, as well as 2 time variable t. The notation of function of
single variable, we might extend this as T(x, 3.0} We begin our study of function of two variables by
examining this notation and a few other basic concepts.

For illustration, if a company produces X items at a cost of 10 rupees per itemn. then the total cost
C(x) of producing x items is given by: Clx)=10x

The cost is a function of one independent variable, the number of iems produced. 1 the
company. wants to produce two products, with x of one product at 3 cost of rupees 10 cach, and y of

another product at a cost of rupees 15 each, then the total cost to the firm is 2 function of two
independent variables x and y:

Cfx, y) = 10x + 15y ' :
When x = 5 and y =12, the total cost is written with C(5.12) = 10(9) #1311 = 230 rupees.

Function of two variables

de “A function == f(x, ¥} isa Junerion of twa variahles < and y. if for cach given pair (5, ¥). we
etermine a single value of =" Where. % ¥ aned = are real variables.
NOT FORGALE 300

i
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e dependent variable. The set of all

The real numbers : i -z
x and d ables; z i¢
y are indepen ent var he domain of [ and the set of

o : i
a;_:kf'id pairs of real numbers (x, ) such that £ (x. ) is a real number, is 1
values of f(x, y) is the range. :
How to show that z = f(x,¥)= \ﬁ-——‘f_*—y is a function of two independout variables x-and
v Find also the domain and range of a given function.
. For this function, we need to show the (ransformation of two irtdcpcm.icm valles (patey
and y is just a single dependent variable =. In respect of any two real values of independent variables x
and y, say, x =2 and y = 1, the fanction == f(2.1)= Ji-2+1=0gives response of just one real value of
zwhichisz=0.
The function z= f(x. ¥ =,J'I—~ is th ¢ declared a function of
: f?“r-’) x-+yis therefor 5 Functions of more than aone
two independent v:uraahlcsxand ¥ . |independent variable are called
The domain of f (x, ») is the set of all ordered (v, ) for which |multivariate functions.
Ji—x+y isdefined. We must have 1—x+y200r y2x= 1, in order for the square root to be defined,
In a function == f(x,¥) =J1-x+y, wesee that = = f (x, ¥) must be nonnegative and the range

of f(x, y) isall z=0

Partial derivative

To give clear concept 10 partial derivative,
considered as:

Suppose, a small firm makes only two products, radios and audiocasselle recorders. The profit of
the firm from these two products is givenby: P())= 40+ —10xy +5y =80, (M
Where x is the number of units of radios sold and y is the number of units of recorders sold. How
changes inx will (radios) or ¥ (recorders) affects P (profit)? .

Suppose that sales of radios have been steady at 10 units; only the sales of recorders vary. The
management would like to find the ratc (marginal profit/ derivative of the profit function) at which the y

number of recorders sold. :
If ¥ is fixed at 10 units, then this information reduces the profit two variables function 1o @ new

single variable function that can be found from equation (iyby putting x = 10:

P(10, ) =40(10)° ~10(10)y + 5y _80=13920-100y+5"
The function P(10, ) shows the profit from the sales of y recorders, assuming that ¥ is fived at
10 units. The rate, at which the ¥ number of recorders sold, is the ordinary derivative of P(10, y) with

(ii)

the problem related 1o our real-life situations is

respect to 3. g— P(10, ) =-100+10y
y
This represents the per unit profit from ¥ number of audiocassetie recorders.

The notation of gv?(!u, y) is usually stands for ordinary derivative, when the function 12

}l .
its rate witl

single variable function. In our case, the profit function Hi) is a function of two variables; mary
respect 1o ¥ should be a partial derivative. For partia derivative with respett to ¥ ordin
derivative in equation (ii) is replaced by % P(10,y) to obtain

ap_ @ : : ! ;

&P _ 2 p(10,y)= P, =-100+10y, prime notation /" is not allowed.

y o
Informally. 3 oin

the partial derivative Z=

as a variable and y as @ constant quantity.

o7 FoRSAEE
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« the partial derivative 2

Jx, ) wi
3y /1Y) With respect 10 is the derivative

PARTIAL DIFFE| ATION
yasa
variable and x asa constant quantity

off (x) ebtained by keep -

gl

“if 2 =f(x1.,::f :, :f;:“‘"‘ of a function of twe variabics
to.x andy e the fmctions Ef::; Enm;?‘:;vﬁ: Jirst partial derivatives of 2= [ (x, y) wi

%=th.y)=f,=m.&_+my';;;jm St
gj=£(x,y)=f,=m.ﬁ2ﬂ;:;;ﬁw o

Provided that limits exist. Ay (if)

Example’y ion i

pleel Ifﬁ'"‘fm“ is f(x,)=xy+x7 Find partial derivatives f and

m The partial derivatives of f{x, ) wrt. x and y are the ﬁ;uo:'. e
mg:

a 8
&r:";na{fyi-xy:]:l\}y_byzl Pkmm
i:f =E{.t’ 2

& v ¥ y+9°)=x+2x, xisconstant

Ergeiy iy
The fanction is z=.x*sin (3x +)). Find z, and z,ata point [
= . 3 " 3
m 1;: partial derivative of z (x, ¥) w.rt. x is: i [ 'u}
z,= a[x’ sin(3x+y’):|. y is constant

= 2xsin(3x+ ")+ 5 cos(3x+)*) 4 3x+y”
et +) ) =2xs50 3
=2xm3x+f)+3x=m+,!?{ ) =2xsin(3x+ )+ = cos(3x+ Y }3+0)

{z! r = Z.E i E T‘:
The parti ksm_] . 3'sm 3 1»3?@(3;):2_“5;“:,_3"_’“, .
partial dt!';watm: of z(x, ¥) wrt. yis:
5 =5[¥’ sin(3x+y%) ], xis constant

‘Xzi[ﬁnﬂx-l- 3 2 3
. i ﬂ=rm(3x+y’)f 3 =i
=35y cos(3x+) 7] s PO

=)z - 3[—“;—]@' oos_[l;)so

S
e u::::z thatthﬁ@eraﬂmoﬁhewattrmﬂtpoin:nna:ivtrwhcresn.wleupowet
dmharge: ";:v::cwamuawmimtﬁdw T(xy)=2x+5y+xy—40 (i)
i pwlammam;fgm the temperature uf_t.be river water in degree Celsius before it reaches the
R ilnm.u:nl:ter of megawaitts (in hundreds) of electricity being produced by the plant.
: erpret T,(9,5). (b). Find and interpretT,(9,5).

a. The 7 s
partial derivative of (j) w.r.t. x is the rate of change in T with respect fo 2 T,=2+y, yisconstant




UNIT-11 PARTIAL DIFFERENTIATION
This rate withx =9 andy =5 is [T.],0=2*>" 545=T7 the approximate change in temperature
Lol Jt electricity  remains constant at 500

resulting from a one degrec increase in input watet, if the inp

megawatts.
b. The partial derivative of (j wir.y i the rate of hange 2 T withres
This rate withx =9 and y = 5 is [T, ], =3+*= 549=14 theapproximate change in temperature
production of clectricity if the input waler temperature x

pect to ) T, =53+%, X is conslant

resulting from a one megawalt increase in
remains constant at 9°C.

~ Exercise

. then find out the following:

L. If f{xy)= y+x” and tisany real numbe
a f(0,0) b. fi(-1.0) ¢ f0,-1)
d. fiLY e [t £ f-410
1. The function is f(x,),2)= et Hlx+ y=z)’. Find the fin ction value at the following points:
e fi=1,1,-1)

a. f(0,0.0) b f(1,-L1)

. @
d. %f(.r.x.x) e -flftl.y.l] . g..f(‘-,l.zll

o)

3 Find the partial derivatives f,and f, ofcach of the following functions:

a flony)= sin()eosy b flxy)= Gy
e feep=nwly &S (e y)=r + 2y Y
= flx.y):sin".ty T f.:_r*},]?t:cu, S
4. The production function z for the United States was onee estimated as:

g 1 2= flx ) =23

; \Where x stands for the amount of labor and y stands f0
productivity of labor [%} and of capital [% .

5, A similar production function for Canada is:

Fr fl‘.y} = xbdy‘”l
Where . <tands for the amount of labor and y stands for the

productivity of labor [%] and of capital [%]
If fixy)=x"y +xy*, then find f, and f, by using definition of partial derivatives.

¢ the amount of capital. Find the marginal

amount of capital. Find the marginal

Leonhard Euler a Swiss Mathematician, Physicist, Astronomer and Engineer. He
made the important and influential contributions in many branches of Mathematics,
such as calculus, graph theory, topology and analylic number theory. He also made
significant contribution in mechanics, fluid dynamics, optics and music theory, He was
the first person who introduced f (x) to denoted the function f applied to the argument
sx". In 1735 he introduced a theorem known by his name Euler theorem.

pomogeneous function is a function 5 f;: 10 verify the 4
function z = f (x,

2= f(x, ¥) are slrﬂchedﬂsqwezcdbyaﬂymlscah:qum'
Homogeneous function of degree 5 &

A fimetion f (%, ) is said to be a homogeneous fi
tinction of degree n

constant values of 1, we have it f
. . Jor all values of A
: and some

SAx, Ay =47 *
For example, SRR (i) 1
a.  f(xy)=3x+4y isa homogeneous function of d 2
AL egree 1.
! ) =3Ax)+4(Ay) = A3+ 4@ = A0x,4)) = i
b f(xy)=3x" +4y"is a homogeneous function of degree . AR ;
; a
Since, f(Ax,Ay)=3(ix)’ +4(2y)*
=27(3,4)")
= fAx,Ay) =2 f(x,¥)
In general, A function [
X5 Xy 3 Xy geann X, i i
h:lr:ngcncuus of degree n if, for all values’uf,l :ml:o::dm:u:
es of m, wehave  f(Ax, Ax, Axy,, A%) = 27 (5, %, %, 8,)

Exampl *I"-.. Show that the i =
‘ t the function f(x, ¥) = 2xy J-'! is a homogeneous functio f degree
; u . + 0o 2
- function f(x, )= Xy + ) isahnmogmusﬁm:tiouofd:gmi,iﬁh:iﬂmky
m The A 2 (i)is

Ax =
) m,:-: : WAY)=2(Ax)A)+ (A3) =220+ 2% = 12+ P =4 (x¥
» the given function is a homogeneous function of degree 2. vy

JEEEY Verificat
iy on of Euler's theorem for homogeneous functions of different™

tatement: If
z=f(x, y) is continuously di :
’ y differentiable and defines a ho
mogensous function of

dzg!un.then ' ' x'a_zd’y;&;_ ;
& Ty 0

oz
En
o s (Zer (Y F (B o(E) o
&
oy

(3)-r(3) i

]
al
e

—

R
|

g
g
:



e !
el R i B

UNIT-11

J . i P
i PARTIAL DIFFERENTIATION _ it
UNIT-11 iy MAPLE command “diff ™ to fina RTIAL DIFFERENTIATION
in the Euler's method of order n: k at the following example ‘he partial derivatives

. 7 v hla use of MAPLE e Ty e
The addition of the products of i) by x and y if) By Y 10@ EETINE) Usc MAPLE conumand i g gt 8 et

Xl 2 T i to find the partial deri
{2 =n.!'f[—] » f‘[ ] y vation of
IE+)'E-$[MHI[£)'JB"4.F(£)]+-"[‘{_‘r[r}] x x x @ [xy)=x+y 4398 44yt Wit vasiables x andy,
& Ty y x A (bh f(x,y)=psinx+xcosy+x wry, variables x and
= nx” [—]=it: L z
; s i the function z=f(x.y}=ﬂf -l-ﬂi-l.}""“lii"z isa & Command:
Example YLl mlEﬂh;s thnof;m to verify that > AP +3r 5 rhry g
homogeneous ion of degrec 2. ;
mmhumngmusmh“"dmm 2okl ; xR+ 3x w4y g = Ve ]
g B st il 82 _ 3y 4 2cy are used in Euler's result (iv) to »nyx @ |
z=f(x))=a’ +20y+a’s 5= "oy . b. 37 4+ 6xp 442 L3
mnﬁmthmufmmmmmm 3 2tax 2oy oy Y= 28, w2 > d!f{}'sin(x)-q—x-ctm(yl]i*x’.x);' m '
2 Z 4y & x(2ax+2by)+ y(2bx+ 209) = 2a* + 2y + 2oy +207°= ) yeos{x) +eos{y) +2x
\ 0 afirmed the second degree of homogencous function. PN RO e e ST g (2) i
The Euler’s procedure co the e sinkz) —xsialy)
ng Pale :U“Wb"“ﬂ“‘”“hﬂmmﬁhniﬂwﬁckmwg‘mg ted. In this o &
m If o= tan™ ‘_;;.;:. then, show that ] expression is partial derivative palette, Click-partial derivative palette, insert the gi mm e
i pms: "ENTER" key to obtain the partial derivatives of a given function: ]
v ﬁl - } \.
o+ yoo=sindu =+ +3xp? +4y)
& it can be reduced to ax
function, however, 1t can

' D e foton s = s ) ot o bomogeneons ;
mwm.wmﬂﬂ:‘- > 'a;'[.:’ +)?+3-x-}2+4:7‘-y} i

3
1 A ]_',[l] i 35 + 6xy + 42 )

e e |

: :=mu-‘_‘,_i£x * =x=f(‘y;] S
2 x-y x[l_[:ll]] ; Exercise @
5 - E al 3 is: 3 % P — %
The given function is a bomgeneous of degres 2. The Euler's theoremn in this situation * Arethe following functions homogeneous?
&, % _3: a=2 ' : & u=f(x,y)=gin 22 9 b z= -
'f ’E*’ay 2z, n @ . | Y)=sin 7;# z=f{x,y) ];:ﬁ;?
: e - and : £
‘l'h:pmﬂldmm:: Mﬂﬂ:"*; 4 % 5 B 2= f(xy)=2e -3y [+ d. z-.."lt.r..v}m[.t’+3y‘]i !
E=“€ua' E=m¢‘ua V"ﬂfYEulﬂ‘stbeomlehemlhwinghomogenauusﬁmm' H i
i . I B ’=f(x-y]'a.t"+2hy+£y: b Z:’f{x =(y! ")“ o
s i result: : H) ="+ y ;|
| are substituting in i) o obtain the required ‘ : B o AP e
& & o~ S| =, then show that x =+ y == g,
LS x;+ya=1' % ax dy
2u  du o If z= -‘Jf['x-] then show that xg-l-yg-zz.
; m‘"[‘s”a]‘*‘"““““ s : i
e = i i i .J].\’:"' ? du du 5
3 S E-z:ms:l=2—mwm’u=25inumsw-ﬁnh " Wi T-I-_y_' MMM xE-I-y—- sinfa).cons)
19 Ty u : y o
= L
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UNIT-11
B m B _p
b 1f=!=sin"T—§;x+ i.thwmﬂ“‘ X0y
6.  Use MAPLE command “diff" to find the partial deri :mnf
sin” x -ret'y'
i flx= x)+y’,w-r'f'.¥' L

24y . X

';wcx)—xw’mw-r-f‘r'

1. Choose the correet uptiun.m
i the function == f (x,¥), x and y are: :
K 1£:L alphanumeric variables (b). dependent variables
i¢ independent variables (d). dependent constants
ii. If_,l‘(.:,y)=-.,‘x’+y’—l then f(1,5) is: "
(a). 25 k). 5§ (c). 125 id). 3
o i
i, 16 (xp) =2 £ thenfror —= st
" S o ) (@). x+y
nalt gl v S0 G c) 2w+ :
1 i
i i —— |5 18
iv. d!ﬂ-[r-‘—y'y)l ]
1 1 {c) ___'.'—— d).
N M s (x+7)
v. The Euler's Theorem stated that: o
i : & B -
ta). 'é-v-é’;an: . (b x—-+iz~=nz (€). x;-&ya—rxz{d). oy
vi. - The functions of mose than ofi¢ independent variables are called:

« (a) monomial functions
T ). rmltimial@lﬁm;tiqn s
Vi, If flxp,2) =2 +¥ —z then (1,0, Dis:
a1 T
Vil IF f(x,y)mposyle el W N 2L g
. (a). 3cosy-g*-siny i o) Jeosye™ T -

: I ey,

(b). polynomial functions
(d). none of these

(e 0 ;—y (27

iy =5

(). 3ecosy : (. lSms_;:-gi"
i If f(xy)=3x +2)" thenf is: 0 L g
; (@l :*.,ms*"q-z::’},-1 (. 3x"e+2y3x"

{c). 3.:}"-4':';-‘;-- -'-:d-."afy:...gg- i

i s (TR W
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PARTIAL DIFFERENTIATION

A function z = f'(x, 3) is a function o

each ordered pair of real numbers (x, ique of 2 is obtained fro

; 2 ¥). The real numbe m
is the dti)endlent variable. The set of all ordered this or’:;r;:i r: '::':g :;dmmufl:m nrlahlse?: z
real numbel:, is the domain of f and the set of ay) values of f (x, y) is the + ¥) such that f(x,y) is a
A polynomial function in x and y is the sum of functions "f1hc';m range.
Slxy)=Cx"y"

If z= f(x,y) is a function of two variables, then

f two variables x and y, if a un

the first partial derivatives of = = f(x, ith
respect to x and y are the functions J, and S, respectively, defined by, i

i LAY~ f(x,y) A x
- e T

e

A ﬁmc!iml Jx, ¥) is a homogeneous function of degree n in variables x and y, if for all values of
the variables and for every positive value of 4, for which the identity is true:

SR Ap) =A"f(x3)

The specialty of Euler's theorem is to verify the degree of a homogencous function. The
horno_genmus function is a function z = f (x, ») not altered if the real numbers x and y of &
function z = f(x, y) are stretched or squeezed by any real scalar quantity .

Carl Neurmann was German mathematician. He studied physics from his father and
later became a mathematician. His father was profissor at Kenigsberg university, In
1875 be introduce the new standard notation (d-hat) during a lecture on the
mhlnn'uc:a] theory of heat. The symbol was popularized by his name as Neumann
notation or & (Greek dela). He worked on the drichlet principle and can be

Wlfsidmod one of the initiators of the theory of integral equations. The Neumann
series. That is analogous to the ECOmEtric seties

1
el +rext+x’+
i named affer him,

Carl Nemmaan

ray [{LinSiLE]
Nmmwammmmwmmmmm

E:ﬁum for different types of ordinary differential equations and partial differential cquation is also named after him/
40 developod an interest in thermodynamics via the overlap of heat and electriciy. .l




s
By the end of this unit, the stndents will be able to:

bR soumerical solatusn of non-iingar cepuations i
]

g

] Deseribe importance of numerical methods. o ¢
»  Explain the basic principles of solving a non-linear equation in one variable. !
i cahnhumlmuuram-linmammiminmnﬁshlcw e el i

= Biscction method. . Rt.’g.lh-!’alsimﬂhod-« . Mewton-Raphsan met H
. Use MAPLE command fselve to find numerical solution of an wlmnmmfﬁ‘-ﬂ!wﬂwghmwlu i
| e ) e rical quadrature :
[ Define numerical quadrature. Use i
«  Trapezoidal rule, . Simpson'srule, i
tomupneu-cnppmximle.wmofdefuﬁle integrals wilhout error terms. s b
Use MAPLE command trapezoid for trapezoidal ule and simpson for Simpson's rule and demonstrate i
through examples. i
Ngwi T -«-‘.— “-‘h:—'-—v- iy L i
Introduchons

Scientists, economists, engineers, and other researchers study rela'tia_nships between quanllitigs,

For example, an engincer may need to know how the illumination from a light source on an object is

related to the distance between the object and the source; 2 biologist may wish to investigate hn?.- the

population of a bacterial colony varies with time in the presence of a toxin; an economist may wish to

determine the relat ;

e o e T e s e L

jonship between demand for a ceriain commodity and its market price. The
mathematical study of such relationships involves the concept of non-linear equations. For a;xample, the
value of the assets of a certain company at lime [ years is modeled by a mon-linear equation
f{:)=1w.ono-15.uu0z-‘“ where ¢ is measured in years. The standing rule for solving non-linear
equations algebraic is quadratic formula. In this case, it is not valid to obtain the actual number of 1 ()‘rea:s]
at which the asset function £(f) is going to be zer0. MNow we are in position 1o obtain the approximate
number of year's ¢ that can be found by using some numerical In this unit, we will learn the
numerical procedurcs recommended are the bracketing methods and iterative methods,

rical Solution of Nun-llnear_Equq_ﬁons .

Nurperical analysis is the theory of constructive methods in mathematical analysis. Constructive
methods in their turn mean a procedure thal permits us Lo obtain the solution of a mathematical problera
with an arbitrary precision in a finite number of steps that can be prepared rationally.

Tmportance of numerical methods
Numerical analysis is both a Science and an Art. As a Science, it is concerned with the process
by which a mathematical problem can be solved arithmetically. As an Art, mumerical apalvsis 15
concemed with choosing that procedure which is best suited to the solution of a particular problem.
Students learning numerical solution of non-linear cquations should have the following
objectives in view, First, he should obtain an intuitive and working understanding of some numeric
methods for the basic problems of numerical analysis. Second, he should gain some appreciation
cancept of error and of the need to analyze and predict it. Third, he should develop some gxperiense 1
the implementation of numerical methad by using computer software.

Basic principles of solving non-linear equations in one variable

. ' i i ; o
“If f (x) s any continuous function of a single varialle x. then any aumber rfor which /7

is called a root of f(x} = . Alser we say that v is a zero of the junction f (x)."
300 HET FOREAL
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If i i actua
J(x) is any algebraic function (non-linear equation), the the
ion), then 1}

found by direct rules, such as 2
? quadratic fo
F rmula,
or ::xamplc, the quadratic cquation ;: f;"ﬂmn factors procedure and
. r, =—3obtained by common factors :"?‘:0 s two actual (or
F(5)=7 455460 Pty it

=x'+2x+3x+6=0

Toots of f{x)can be
synthetic division,
exact) roots r=-2 and

z{1+2}|:1+3 =0==x+2=
} x 2—-0.1+3=0=&1=—2=r‘_

On the other hand, the act
i . ual roots of non- ; i
gmf:ﬁ:rim:r? s )y {;""r;;::{cﬁrw R
cedures. The numerical reakmste roots
procedures are the bracket
eting

-7 =
Real roots of non-linear equation in one variable

For approximate roots of a non-li
e :
and regula-falsi method are the mm&’ mmw'f pumeTical procedures Bisection method

must be in the shape of a closed interval [a, b].

Jt=-3=r=

='°mrl)tpnssi‘bk
ﬂntmberumﬂbymz
methods and fterative methods.

depend on two initial approximations that
The non-linear i
must be opposite in signcusr:'rc fsht:.]mm-hu-the function values f(a) and () in the interva that
Jarge, the iteration will s 15 GOEIINY: Onoe the. tokerval bus beses “'m'd» lm[m .
s w beprecedoduutilauappmxirmemutisuwm bow
| principle in

computer science is the iteration. As
1 - . As the pgests, it means rocess
falsi method is repeated until an answer is:E:t;‘eud. i ot il

(a) Bisection Method

If y = f(x)is continuous function i
, m

interval [a, b], then, it will eross the x-axis :”
point (r,0) whose x-coordinate x = r will keep .
;ﬂuallro_ut that lies somewhere in the interval .
]. This T.;:hown in the Figure 12.1 %

bisection  method ; emati

mlves the endpoints of the intm:ly?:: ] cﬁs’g
closer together till it reaches an mlm" 1 of i

Yo fy)

small width that brackets the }
sepgebip he root r. The'decision  a, (i N %
P for this process of interval halving is to a.rr(nﬂ :
)

choose the midpoi (a+b
¢ midpoint fn-—z-l and then analyze

e i e e

P m:;;mtﬁl [a.}ﬂﬂdmﬁ];‘ x=aand x = ¢ have opposite signs, then the approximate
3, ?@ﬁi{;ter:arﬁ‘ﬁ?n:?ﬂ:x- ¢ and x = b have opposite signs, then the approximate
contai IF either of C:::ulc::-;:o:;u{.@ ‘h':: tien 2 ot Apprexisnats reet b sctual rest r.
P the root, and we are -qming“:uwvzﬁlw}grfﬁ l‘“.‘i_: armuﬁumﬁwrl& :::: |

MW smaller interval
; and t i i
procedy s repe:r the sequence of nested intervals and their midpoints.

NOP ForcaLE
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+ erval at which the function ' (x) must be opposite in

The given interval[a,,b,] is the initial (a,+by)
ol

actual root T whose midpoint is 6=
ol root r in the interval [ag,by)-
brackets the actual oot rand ¢ is its

signs. At this stage, the initial interval brackets the
Tt develops the first iterate ¢, (through properties I o 2) lﬂfﬂ“
The next interval[a,,b)is the first interval which
midpoint ¢, uii'%l, It develops the second iterale ci[mugh

interval[a,. b].
Similarly, the interval [a,.b.)is

properties | or 2) to actual root 1 in the

he nth interval which brackels the actual root rand ¢, is its

1o actual root r in the n-th interval [a..8,]-

o {a,+b,) lops the (n=1)-th iterate €
midpointc, === It develops the midpoint ¢, , is taken as the

This completes the n times jteration of the bisection method and
desired approximation to the actual root r=¢,,0fy = f(x).
PPITI. 1) Perform two iterations of the bisection meth_ud to ¥ ‘

ppmxi the actual root r of the non-linear equation F)=sinx=€" | ;1 cquation f(x)=0inthe
a]
(x is in radians) in the interval [0.5, 0.7)-

Reset the given interva
interval [y, b;]=[0.5.0.7] and compute the
atx=a,=05and x=b,= 0.7 to oblain:

f(a)=r(03) =sin0.5-¢** ==0.127 d}} T
£(8,)=(07)=sin07=¢" 1014850
The function values f(a,) and f(b,) are opposite in sngrlcs,su- the a

interval [0.5, 0.7):

To find approximate raot of

1 1o obtain the initial

function f(x)=sinx—e¢ ™" values | continuous and Jf(a) and
5 f(b) bave opposite in

signs. :

ctual root of f(x) lics in the

7 . _G,+b, _05+0.7 g6 and the funclion
i The midpoint of the initial interval [anbolis 6.==7 ~ 2

values atx =g, =0.5, x= b,=0.7, ¢;= 0.6are the following:

“fla)=s(03) =sin0.5-¢* =-0.127<0

£(b,)=r(0.7)=5in07 - =40.148>0

fle,)=1(06) =5in0.6—¢* =+0.016>0
The function values f(a,)and f(c,)are opposite in signs, so the approximation to t‘r.re- ac
f(x) lies in the interval (0.5, 0.6] and discard b, =0.7. The initialinterval is reset to oblain the

[0, 55]=105,06)

i The midpoint of the first interval is ¢
atx=a,=05x=b= 0.6, and x = ¢ =0.55are the following:

tual root r of
first interval

‘ﬂgﬁ‘gs_;%=o.ss,m the function “¢allc?

o
.

naTEoReAS
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r‘r['“:] qf[°-5]= sin0.5-e® = 0127 ¢ 0

S(a)=£(0.55)=5in0.55 ¢ =-0.054 <0

S(8)=7(06)=sin0.6-¢? 001650

The tion ValIlBSf(h) and f("[) are ite in sj

func opposite in signs, so the approximation 1o actual

) H I

lies in the interval [0.55,0.6] and discard @ =0.5. The first interval is reset to obtain the mzmh::n{(X)
[a:, &]=[055, 06].

After second iteration of the bisection method, the midpoint ¢ =0.55 is declared approximat
(<

root to actual root r = c,. The approximation value of a function Slx)=sinx—¢"

r=0.5515 (0.055)=-0.054, al approximate root

"(b) Regula-Falsi method

The next bracketing method is the method of regula-falsi
bisection method converges at a fairly slow speed. M@Mﬁrfelflw mli T;?Embﬁl?l;hv:
opposite si_gns. The biscction method always used the midpoint of the interval as the next iterate, but in
Fggula-fa_lsl method, the next iterate is anywhere in the interval [a, b] represented by the pomt of
intersection (¢, 0) of the straight line formed by the points (a, f(a)), and (b, f(5)) 2nd the x-axis

y=1(a)_f(b)-7(a)
x—a b-a

0-f(a)_s(t)-7(a)

c=a b-a

» at (x, y)=(e, 0) )

and then analyze the three
possibilities that might arise :

L If the function wvalues
Sfla) and fc) atx=a
and x = ¢ have opposite
signs, then the root lies in
the interval [a, ¢] and
discard b.

W If the function values f (¢)
and f(b)atx=candx=b
have opposite signs, then
the root lies in the interval

e bland discard a. Figure 122
A ":'-he function value at x = ¢ is f(c)= 0, then ¢ is our approximate root. This is shown in the
Figure 12,2,

T
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- 'Iﬁlﬂd 1o
'I'.\.-.L:nph:"g Perform two iterations of the mwh;i?:;r aqua'i"“

f the no%
[0_5,0-71-
plain  the

approximate  the actual root T ©
flx)=sinx—¢" (x is in radians) in the interva!
Reset the given
irtml[a,,.bn].—-[ﬂ.s,ﬂ.?] and compute
values atx = g, =0.5 and x=b, =07 oblain:
1(a,)= £(05)=sin05 ¢ }
£(b.)=1(07)=s5in07 e =40.148>0
The function values f(a,) and S() o
interval [0.5,0.7). Equation (i) is used to Emm
C (a-b)f(@) os-
S OO
That provides the function value 8t &
=05, x=0by

-0.127 —0.148
=0.592364

i, The function values alx=4a,
fla,)= sin0.5— =-0.127<0
f(b,)=sin0.7-¢"" = +0.148>0
f(c,}:sinﬂ.i'}ﬁﬁd--ew =+0.081> 0!
The function values f(a,)and (e, ) are opposite in signs,
f(x) lies in the interval [0.5, 0.552364] and discard B, =0
the first interval [a,5] =[0.5,0.592364].
Equation (i) is used to obtain

03 - 0.127<0) pgsite insighs

opwsﬂt in slgl'ls,

|
i T el & A
CT'DH TO NUMERYC AL L]m[uns

s

only if J(x) is contimious ang
fla)and (b have opposie iy
Signs.

so the actual root rof /(x) lies in the

0.5-07)(-0.127) _ g 592364

f(c_}=sin(ﬂ,592364 _e‘“m =+0.081
~07.6= 0.592364 are the following:

so the appmximationm actual oot rof
7. The initial interval is reset to obtain

(a,-0)f(a) _ &5_{0.5—0.5923&4]{-0.121] _0.755

G =6 'm —0.127+0.081

that provides the function value at ¢, =0.755: £(0.755) =sin(0.755) -
e,= 0.755are the following:

i The function values atx=4a, =0.5, x=h=0.592364,
f(a)=sin0.5-¢™ =-0.127 <0
7(b)=5in0.592364—¢ *7 =+0.081>0
,r(c,)=siun.1ss-e*“” =40215>0

2190215

r
imation 10 sl

The function values f(q}aud,f[c.)amopposiichs‘ngus.'saﬂ\cappmx . s
of f(x) lics in the interva (05, 0.755) and discard b, =0.592364. The frst interval =

obtain the second interval [a,, b,]=[0.5, 0.755].
After second iteration of the regula-falsi, the point ¢, =0.7

; ximation
55 is declared as appro ;.I).TSSB

toot r=¢,. The approximate value of a function f(x)=sinx—e™ at approximate root =

J(0.755)=0215.

s
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(c)  Newton-Raphson-methoq VETIONTONUMERICAL MeTHODS

Another numerical proged I the

methods. The Newton-Rap Newton-

jterative method which n method is mmmﬂaphmn method under the umprel |

approximation in contrast :}q“"“ one  previous ¥ umbrella of terative 1/ o
g

which require two in - mg methods
approximation. computing the successive
The MNewton-Raphson
method
of the tangent lines o the graph of a r‘:’:’ﬂ:‘:ﬂ slopes
approximate roots of the equation fix) =0 el
If £(x) and f(x) are continuous 1
cont
roots, then this extra information mﬁ;f;;: actual ”

of fi(x) can be used to develop =
; a sequence of itera
{x,}.that will converge faster to actual root than eiﬂ:s g y'ﬂ ik o
the bisection and regula-falsi methods.
Figure 12.3

If r is any actual root of an =¢
equation of the fo -
the actual r, then the t i rm f(x) =0, and x, is an init; -
The point (x, O]i;;u.:ns-::lm_‘ecnafm S(x) atapoint (x,, 1) % u:lmﬂt.a'lsppmxmmmnm
point ofm:c;;mm' pno _°£ ntersection of the tangent line and the x-axi m;“ﬂ a point(x,.0).
it the (%,,0) is our first approximation to the actual Jw: x, of the
/m in the Figure 12.3. root r of an equation f(x)= 0.This is

The slope of the & i
angent line on a curve y = f (x) at a point (x5, /) i used 10 obiain the first

_{(x)
tanf=—=2
approximation (iterate) x, : FHTT Il
. = - =ae) = Jr #
_ Flay=LE) T R TG O
Similarly, the slope of the Bt
o Inngeutllncc;l[z;lmy-f(r]uapoim (x;, ;) is used to obtam the second
iterate . - mﬁ,=—:'- -
y s 3 II’:'%‘*':=M=>L=J:—I{:')
m)a ) TGRS )
H=X

This procedure of i i
f{;:;. s?opcﬁnﬂngmthod:smmndtﬂlﬂmmmcth 1)-th fterate:
f,{x'],r-lll.z,... (1)

‘rhl =Xh-=

which is called the Newton-Raphson method.

To find
Approxime i -
te root of an equation of the form f(x) 0 with initial iterate x,, the iteration method

I )
“——'f(x‘},r=ﬂ,l.2,3,..,, =123,
a

sequence of successive i a
"Ogula-falsi methods, ve iterates {, } that will converge faster 1o actual root  han either the biscction and
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INT

Exam

iz e actual root r = 0.438447 of the
I3 ] Use Newton-Raphson iteratiye method to appmxm"‘"w " be accurate to six decimal
non-linear cquation  (x) = —Sx+2 with initial start %, =04 {
o - — (x)=2x+5 are used in
@I The given non-linear equation f(x)=x"—5x+2 and its derivative /'

i ive iterates

the Newton-Raphson iterative method to obtain the successive iterd
fix)

Xia=%—"5 1* i=0,1,2

fix)
£ix) _xi-2 _(04) =2 _q 438095, i=0

BRI e A=

tl
g fln) _xio2 (QA805) 22 gpaar, i1
- iy

f‘{-ﬁ] 3 21{_5 1 Z[Ddssws}—s

actual = 0,438447. =3 3
mwﬂ;:cgc tlmnvu:l ite:artto:—gHWT agrees to SiX decimal accuracy of actual root 2 0.43844
seCO =0,

he six decimal accuracy.
We achieved in just two iterates of the Newton-Raphson method the six "
WITIAPLE command “fsolve” to find numerical solution © >
les
emonstrate through examp . . e
e MAPLE command “fsolve” to find the approximate solution of given function 15
The use of ¢
illustrated in the following example. i
Use maple command “fsolve™ to solve. e
fa). Linear equation & —5x+6="0 with initial s‘ta{r;:“-— 1. .0 :
: i ion x* —5x+6=0 with initia xn=0.5.
. Nonlinear equation x S5x+ ' 5 ik
o The command below will show you full detail of the approximate root of
linear equations on line by typing without initial start:

.

> ol 3

> frohel? —5x+6) MWWL The numerical solution through
b . is also a second degree po

The quadratic function f (x) is &

polynomial is:

> Polynomial m= £ —5x+6 Polynomial =3 — 546

> foolvel Polynomial) 2 000D0NR, 3 DOV

b.

> foolvelsin(x) = exp{ %)) 0.SRESIITA
Context Menu:

> sinfx) —expl %)

> foolve sin{x) -exp( =) }

DSESTEIIAN i L nsbhlﬁ <
- i result is obtained through right-click on the Tast end of the expression by selecting
ek et g 105
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. : ¥

L. Find an interval asx<h ar whicy fla |2
) and ; g

functions: an¢. 16) have opposie Signs for the following Lf

. fl:.r]=e'—2-.x 2

b f(x)=cosx+1-x, x isinac e

¢ f(x)=ln(x)=5+x e Rl ¥

; d f(x)=2-10x+23
2, Compute four iterates of

the bisection method for the lowin ; e
T fol g functions with indicated :

a flx)=e'-2-x, [1,19] b f(x)=cosx+1-x, [08, 1.6] x s in radians
¢ f(x)=ln(x)-5+x [32, 4] d f(x)=r-10c423 [32, 4)
3. Compute four iterates of the regula-falsi method for
interval[a,,b,]:
2. fx)=e"x, [-24, ~L.¢]
€ f(x)=x"-10x+23, [-24, -1.6)

the following functions with indicated

b f(x)=cosx+1-x, [08, 1.6], xis in radians

4. What will happen if the bisection method is used with the function /()= —\— for the :3
- x=2 |
following inter+.us: A |
a [3,7 b [1,7) ':
5. Find iterate x, of Newton-Raphson iterative method for the following functions with initial start x_:
a flx)=x-3, x =1 b. f(x)=sin(x),x, =1
€ Sx)=x"+2x-1, x,=0 d. f(x)=sinx, x,=-2
6.

Use !*‘lewtun-Raphsun iterative method to approximate the actual r of the following non-linear
equations with indicated interval:

L f(x)=x"+3x-1=0 on(0,1)

b, flx)=x"+2x*=x+1=0 on(-3,-2)
¢ Yx=3=x+lon[-3,-2]

; Continue the process until two consecutive iterates will agree to three decimal places.
+ Use MAPLE command ‘fsolve’ to solve 3x* +4x—3 =0 with initial start at xo=0.5

Qun

\ Ton Luga was a Syrian mathematician, astronomer and philosopher. He contribute
many ﬁeu? of scicace, medicine, astronomy. His translation on the difference
mbd“&“iml:}im?mla_milhcmlmnneoflbeﬁewnuismmﬁumdwmm
5 dwhledmahsl?rbuokstobcrmdumdmﬂemllnﬁﬂpﬂmww
B ¢ false position in 10* century. He justified the technique by a formal,
&&mhmmf.wmmmammmm

was known as Hisab-al-Khata'ayn. It was used for centuries to solve
Problems such as commercial and recreational problems.
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Numerical Quadrature
Numerical integration is a primary tool used by ¢
solutions for definite integrals that cannot be solved analytically Fo

f=]'c“'dr

r example, the
[}

is no any integral formula 1

has no actual solution. This means that there z
find out the approximate 5O

obtain the actual solution. The only way is to

UCTION TO NUMERICAL METHODS

- eers and scientists to obtain approximate

integral

hat could be used directly to
fution the: can be found by

using some numerical procedures, such, as numerical imcgr?t_m; pproximate the definite integral of f(x)

chuwwachﬂwsubjednfuumkalmgmthnmw B

] =
1= f(xyax (i)
over the interval [a, b] by cvaluati;g fix) ata finite number of equally spaced grid poiis:
xa=X, X = Xy X, =h
f(x): } A L

m Numerical quadrature

“if a set of points in ihe interval {a. b

Q[.ﬂx}] - Z“'_. fix)= w, (%) + wif () Fee w, f(x,)
e

fr a=X, <X <Xy S € Xy <X,

af the farm

with the property

. - e
is called a numerical integrafion oF guadratire formula.

The term E [ ()] B called the truncation error for integratio
quadrature nodes and {w,’; are called the weights.
=0

s
Depend on the given numerical procedure, the grid points {x,}are cho
irapczoidal rule and Simpson's rule, the
ofptﬁzwoidal rule and Simpson’s rule
approximale area by rectangles. ¥

i Approximate by rectangles 4
cha If f(x)=01isa function over the interval [a, b], then the

definite integral (ﬁjupmmtswﬁac‘mlm under the graph of
Six)onthe interval [, b]. This is shown in the Figure 12.4.
For approximate area, the function f(x) must be known at
f equally spaced grid points in the interval[a, b], each of width
Ax=(b=a)in:

n The values {x,}

=h, then an expnession

are called the
J=l

sen in various ways. For

id points are chosan to be equnﬂr_splptd. Before discussion
yi:dmust be familiar about approximation by rectangles and

-fix)

i i 3
x:a=x, X XpeerXei x,=b 5 Z ey T T =b

: O Jnmssten k=02 Figure 124

' lnlishiofabweammllrspmﬂgﬁdpnims.lheamﬂmﬁnm:mcwf{x)owth‘

: interval[a.h]ismmngedumﬁu‘.

J€ H i ']. .

- 1=} pearde= | et g0t | st =

£ - e B E

oT FoReALE
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Approsimate Area by Rectangles -

rectangle in the initial subinterval js fo
therefore

% 5 ' T(x)Ax,
-{ﬂxmm the actual arca in the init

R Tr e
i 5

@l subinterval, then
the approximate
course the area of the rectangle lies in the intial L2 ea f(x,)Axis of

rectangles is giving approximat ; d
| ap ¢ area undet the curve. f(x)to mlmh?;nﬁnhmﬂlﬂ.
J= = o i :
If{x]d.xn& S(x%)Ax+ £ (x)Ac+ £ (x)Ar+ +£(x.)4x Pk i
htemlﬁtma:ip?ﬁlwm as the number of rectangles i ;
es of ace 3 mcreases, and estimate

values of m are usually required 1o ad':::gmukﬂﬁth n Wt can . the
used in practice. 2
i The Trapezoidal rule

The accuracy of the approximation

: p can be improved i
unpmﬁsart used instead of rectangles. Figure IZSShnwsl_hf ¥
area approximated by n trapezoids instead of n rectangles.

i :
£ i J(x)dxis the actual area in the inidal subinterval,

T

iterval [x,.x,

i

then the approximate area {M‘_-J Axi
2 is of course the

:: of the trapezoid lies in the initial subinterval [x. 1) Thus,
mm of the areas of all # wrapezoids is giving wnml ’
under the curve f{x}) madunlmmw:smadhydcﬁh:'
. i integral {iv):
[reax=1.
-

X

T -
Figure 12.5

1
?[f[nl“ff{x.]]"“'*';[f{*n)+f(-'=}]"“”"'*%[f (e )
In mel%lti}:ﬂ :‘-21;.+ ...... o &
/() is continuous on [a, b], then the trapezoidal ruke is
1= [ 1T =42 w2 b2 4 1],
The subinterval is x,
Value of p,

=x,+nAx = b=a+nAx that gives R O il larger the

the better the approximation. i

RoF Remoans

318




UNIT-12

2
2
l.\;‘l'll.l[l'lé'm Appmx:.-ml.te the definite Meyﬂl I= !:IS dr

for n = 4 subintervals and then compare
integral that must be accurate to 3 decimal places.

T The given interval is [a, b} = [-1.2] and the width for

i

g e Sl -

“-q-ruouucﬂﬂﬂ 7O NUMERICAL METHODS

] ctual value of the definite
. answer with thz a

1 = 4 subintervals is

- ﬁﬂ;%.ms

o = 4 1o obtain:
The trapezoidal rule (¥i) is used for Ax=0.75andn

{de = T, =5 1S +2f * 2y 20+ /JOT) i

k] id points Xy: %y X2 X%
function values fos fisS3» fo» fi3¢ 8714 PO

The tion val 2 ’_f‘,:f(—l)#('ﬂ:'l

2
1 (1) = Loos2s
H-q+l&r=—l+%='§- 5 ( 4} 16

are

x ol

4
1
Al g l) =1o02s
_t::n'-l-wa-—l-l"z;’ix Jr: [2 4
b2 : 25
3.5 _(5) =2 -0=15625
x':.a+3,ﬁx=—1+3:=zn I [4) 16

|

; -
x =a+dbx=-1+47=2 fi=@r=4
I . i 1 + [, |ax
used in (i) to obtain: [;‘muns—i[j;+2,ﬂ+2ﬁ+2f, ) »
-l =
- L[1+2(0.0625)+2(025) +2(1.562 5)+4](0.75) =3281
2z
2 E I A
i is: [= = |— E=—f====
mm«mo&muﬁniumgﬂs.f-;fm M_i 7573
developed an ermor, which we denote by E,:

—3-328125=-0.28125
idal formula overestimated

1,=328125and E,[9)=

The tr.:~»zoidal spproximation T,
E, = Actual - Approximation =1-T.
The negative sign indicates that the 1rep
e & of numerical quadrature notaion, @ (+)]=
o VRV A (e 1
withnodes x, =L G =7 =30 r i A
The Simpson's rule idal srips, e PO
ii. e imat improved if instead of trapezoi
f the approximation can be improved if o on to the proct®™
i u?mdmmzemmmtmmmﬂ?wﬁs!ﬂpnmmmmgmn S

the true value of B¢

028125

strips datiat : hs‘mmli;mislheﬂnmn‘smk, po
i e R
plxy=Ax +Bx+C. mw
;319

UNIT-12
Sﬁ:ﬂPWH's'ruI_e g INTRODUCTION Ty NUMERICAL METHODS
imates the actual : :
replaced by second degree ?'D‘.'ﬁ'“ﬂmia]p{;:, area in an interval (a, b] by parabolic e ke
[ » ‘
[/ = [ plade = (AL + B+ Coe = [bw][p(amp[ﬁb}*— p(bl]
i i 6 N
that requires three  consecutive grid points i
interval [a, b]. The definite integral °fI:0h‘cm:g;:ndmd ::::
polynomial in equation (i) is simplificd by a rule called
prismoidal rule. This rule is valid for a polynomial SOxY af
degree less than or equal to 3.

For Simpson's rule, the function f(x)is known at equally
even spaced grid points in the interval [a, 4];

flx): £ fifies Jran S
X3, =X, +2nAx, n=0,1,2,....

XA=X, X XyuXa s X, X, =b
- , with

b=a+2nhx, x,, =b,x,=a = A=zt “(i'.i) ;
2n
In light of even spaced grid points, the definite integral (V) is rearranged as under:
b e Ey Ha
1= [ f(x)dv=[ £ (x)ae+ [ F ()t ot | £(x)e (i)
& £ = L

If | f(x)dis the actual area in the initial even subintcrval[x,,x,], then the parabolic arc in the
Xy

subinterval [x,,x,] represents the approximate area:

1 76 = pirsde, amx, b1,
!

5

=[i;-ﬁ)[p(m +4p(5'%]+ pw] ™

If the width of one subinterval is m:—“’;") ,then the width of two consecutive subintervals is

_ %=X =2Ax. The subintervals are of equal widih that gives % = x,. Using these in equation (iv) to

obtain

[ reode = prara =£[pm)+4ﬂ["’_‘x +x']*”"‘*‘]="—‘[m1+w-}+ml )
,. 3 6 2 3

Since the polynomial passes through the three consecutive grid points on the curve, the best
approximations would be the function itself: that is p(x,) = £(x,), and p(x) = f(x)), and p(x;) = f(xy).
These are substituted in equation (V) to obtain: ?

Tf(x)atr =Tp(m=%[p(:.mptx.l+p[x,)]=%E[It:.)nﬂx.nfcxa] i)
~ T

L .

L) e
K

L - -

0} E \

g 3
o
W
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UNIT-12 INTRODUCTION TO NUMERICAL METHODS = 3
IT-12
:.4' Thus, the sum S, of the areas of all m parabolic sirips is giving the approximate area under the curve s _ INTROBUCTION
=4 S(x) 10 actual area represented by definite integral (ii): ¥ ‘EE[' +40.0625+1.5625) BRI MTons
- =P+ 2(0.25)4 4]
Ax Ax z
= 4f(x)+2 £ af (x)+ S{x) =0.2:(144,
i :x[f(-}‘ yeas (s (] T ) 47 o) ) The exact valu ofthe ity g, - =
+---+T[f (%) + 4 (x0 )+ S (22)] ) 3
f Ax £ (vii) hf"""F—r LU
i = B5 it St o) # 2 fb ot Fua) o Theerortem i therefore: | > 3
In general: If f(x)is continuous on [a, b], then the Simpson's rule is |
. Ak : This develops the idea that § E;=1-§,=3-3-9
I=If(x}ﬂsh =?[ﬂ+4u+f)+....+f:r4}+2(L+.ﬂ+""+fh-3]+f='] MAP nwsthMhmmm“uﬂnw I ruile. &
a i m LE comm “ .
: (b=a) ; ands mxw .

: The even o™ subinterval is x,, = x,+2nAv = b=a-+2nAx that gives Ax=——"""=. Simpson’s rule and dEmumu-a':e &wmw.sm rule and “Simpson” for ¢
;; Moreover, the larger the value for n, the better the appraximation. The use of MAPLE commang “trapezoid” and g - g
,; ; example, impson™ is ill i K E
4 (RTINS 6 | Approximate the definite integral f=i idx fi - n= 2 subintervals and then compare tllustrated in the following E:
B e =l i Use of MAPLE 4

P your approximate answer with the actual value of the definite integral that must be accurate to 5 ) mmndmﬁlﬂlhﬁnppmm“ IE""'*WM' [0, 11y 1

; decimal places. (@. Trapezoidal rule, B vl i
o T The given interval s [a, b] = (-1, 2] and the width for n =2 subintervals is P Solution ) impson rule ::

J| i b=a 2—-{-]] 3 : & The [
&=l Ar=me—— = = =[.75. > e command below will show b. The command below !
o i . detail about Trapezoidal mlemlﬁny::g?# . detail about Simpson rule oo tn g 20, o
a The Simpson's rule (vii) is used for Av=0.75and n =2 to obtain: 2 : ing: o by typing: ]
2 L Mrapezoid | Trimpson i
¥ [ =5, -0'—3-[L+‘{ﬁ+£]+3(ﬁ)+ﬁ] @ Wik Studend Caleulust)) : I :’W-S“fﬂ'm{&mm : £

‘ 4 PProximatelnt{exp( -x), x=0.1, ‘Pproximatelnt{exp(-x),x=0..1, ',L
& The function values £, i, /. /5, fiat grid points X, %, %, %, %, arc ’“;""""""W output=plof); method = simpson, output =plot); i
i B - - 1 ]
: s =a=-l fom S (=)= (1) =1 os N T o e e e |

= 3 1 1 2_ 1 (11| N i Sy =i —i] 0.6 B S O

e A e S aa TN
2 11 0 e e N —_1 n
1
9 :!=u+2ﬁl'=-l+2%=%r f:‘[%] =:"=0-25 ol —[—{——=] i D-: =1 1=1—t=1=}= o
: 0702 04 05 03 0 02 04 05 08 | _
| +ihem—430w3, £, [5] 2 _0=15625 A C o i F
i =a =— ——— i=l=| =—=0= 2 ¢
x et 3 "6 A0 approximation of S(x) dr using An approximation of‘[‘ S(x) deusing
3 i 0
= - - — - 2 - s
_ X =a+dar=-1+43=2, fi=(2) =4 m'wﬁm::;ﬁw:eﬁ;} =% and the Simpson's rule, where f{x) =¢™ od the
[} These fanction values are used in equation (i) to obtain: L m"“fﬂminm| T:;:pmu\;m,e partition is uniform, The spproximate value ;
\ 2 N o 180.6326472382. of the integral is 0.6321205808. Number of .
! Rden 5, =221 f 440+ [+ 26+ £)] “mber of subintervals used: 10, L S :
‘T_E A 4 subintervals used: 10, §
e :
5 HOT EOREALE N o 3
'.'f' mﬁ |
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INTRODUCTION TO NUMERICAL METHODS

UNIT-12

{ FExercise
LXereise
b =

1. Use the trapezoidal rule to approximate the value of each definite integral Round the answer to the -

nearest hundredth and compare your results with the exact value of the definite integral:
1 5
x

I=|| =+1|dx, n=4

3 j[z J
2

d. f=j-1d'!.+fdr. n=6
)

% Use Simpson’s rule to approximate the value of each definite integral. Round the answer to the
nearest hundredth and compare your results with the exact value of the definite integral:

b. f=i(-'t31—i}it, n=4
:

1
q f=je"m:, n=4
a

3
a. f=_lr=dz, n=4
1

i
4 tdx
& f=_[? n=6

]
a. f=]-'11lir. n=3 -
2

tdx
C. =!‘T.H=3 .

1. A quarter circle of radius 1 has the equation yp=il-@ for 0<x21, which means that:

i
“-"]Il-:!i =E, n=4
L]

Approximate the definite integral on the left by trapezoidal rule that equals the right side when
n=3.1.
4. A quarter circleof radius 1 has the equation y=+/1-x* for 0=x < 1, which means that

i-.lll—x’c{x=§. n=4

Approximate the definite integral on the left by Simpson’s rule that equals the right side when
=231

5, Use MAPLE commands to find the approximate area in the interval [0, 2] by
2. Trapezoidal rule b, Simpson's rule )

Thomas Simpson was a British mathematician and ereator of Simpson's rule for
approximate definite integrals, This rule was known and used earlier by Bonoventura
Cavalieri in 1639 and later by James Gregory. The long popularity of Simpson's
textbook invites this association with his name therefore many readers would have learmnt
it from them. A challenge propesed by ‘Pierre de Fermat® to find a point ‘D" such that
the sum of the distances to three given poinis A, B and C is least. This challenge was
popularized in Italy Sampson treats this challenge in this first part of Doctrine and
application of Fluxions (1750) by the description of circular arc al which the edges of the =
]
triangle ABC subtend and angle of 5. In second part of the book he extends this goometrical method

323 _ NoT FoRSALE
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UNIT-12

L Choose the correct option,
i When ;“ (x)=10, the roots of the ®quation f(x)
2 =
2z 2 2
o3l ® {5"5}
ii.  When f(x)=0, then the valye of in the
(a). x=-37187... (b). x=0.37187

). {4--’-,_?.
23

equation S(x) =5 1655 is:

‘jii. The Newton Raphson ; (c). x=-037187.
(@). tangent method method is aso known as: : (d). x=d7847,
{c). diameter method (b second methgg
iv.  The iterative formula for newton Raphson m:ﬁ;l‘;dchord method
Sx) H
X =22 Six
W ATey O oA L) )
V. If the function value y {I}) {d). Rt
ety S/(a) andf(c) at x = a and x = ¢ haye U5 oo i ()
¥ the roots lies
o (. [a8] b).
vi.  The Newton Raphson g‘gd] J:,F:gjg i (c). (a,b) ). (a,¢)
: (a). stationary point Lt b ]
U ot pojng oy T
s positive roots = 5 :
Blies s for 3¢ COS‘!‘Ih}'mfbckﬂg‘thﬂlﬂmﬂmmwm@wjd“ 1
(a). 0.507 b). 0.67
viil. The MAPLE cq m; ::' 670 ©. 0570 (d). 0.607

i solve equation x* - :
(@). solve (x* -5x43)=0 EE=Srid el b

(c). Simplon (x* —5x43 =0)

(b). feolve (¥ ~5x43=0)
(d). Psolve (' ~5x+3=0)

{c). 1.49 (d). 1.897
(b). Binary Chopping method
(d). none ofthese

%;
i
;;

¥
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UNIT-12 INTRODUCTION TO NUMERICAL METHODS

“ If f(x) is continuous and f(a) and f(b} have opposite in signs, then the biscction method will

be used to nppnmtﬂhem.nl root rof the non-linear equation
F(x) =0 in the interval [g, 5. In bisection method, the approximate root of r will always be the

midpoint of the interval [a, b).
€ If f(x) is continuous and f(a) and f(b)have opposite in signs, then the regula-falsi method wil]

be used to approximate the sctual root v of the non-linear equation f{x) = 0in the interval [a, ),
In Regula-Falsi method, the approximate root of r will not be the midpoint of the interval [a, 5]
that should be anywhere in the interval [a. b].

< If f{x) and its derivatives are continuous functions and x, is the initial iterate, then the Newton-
Rplot nitbed: 3, 55, -% =L i= 1,2, 3
produces a sequence of succossive iterates{x, } that will converge faster to r than cither the
bisection and regula-falsi methods.

< If f(x) is continuous on [«, b], then the triangle rule

R, = f{x)Ac+ £ (x ).+ f(x, )

is used to approximate the definite integmlif{.r}eﬁ:.
< Iff(x) continuous on [a, b], then the trapezoidal rule is

'I'.'%I[ﬁ-l-z_ﬁ-l-zj;q- ...... 2L+ )], ax=i2t “’"“]’

is used to approximate the definite inte E‘“'iﬂxm
% Iff(x) is continuous on [a, b], then thﬂs‘im;mn’x s
5:--:-3';—*[16&4(}; +f,+....+j;,_,}+2[‘,Q+L+....+ﬁ__:)+fh]
{b a).
n

~——=is used to approximate the definite mmlif{x]n'!

Carl Runge was a German mathematician and physicist. He was co-developer of the ninge =
kutta method in the ficld of numerical analysis. He received his PhD degres in mathematics at
Balin in 1380. In 1886 he became the professor in Hanover, Germany. He also sturdied
spectral lines of various elements and was very interested in the application of this work to
astronomical spectrosphy. Runge reached to his retirement in 1923 but he continued to run his
mmﬂmmmummmm

L 2 Dnmu.m ':'m}nlll' Wy

Range: (

e mmm‘ {‘ﬁ-ﬂ)u (h-z m]
Range: (~e0,0) U (0, w)

¢ Domain: (o, =)
Range: [0, «)
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ANSWERS
Lo Mle=aR+lgf@l=2c%2 b flgC))=sin-x) gl =1 -sin’ x =cos’x | &
o Slg@)=x,glf(x)]=x 4 flg(x)= Sin(2x +3), gl (x)] =28inx +3
N A b W=, G0=5 =
K (x) =g f (x) =x-1 k~'{x]=g-’u(x)}=i"T"‘-
: . 1
c. H'(x)=fgx)=x+3 d. K@= {g(x)]=x self-inverse :
e b. f
k' (x)=g '/ (@N= %—3 k'(x)=g '[f(x)]=x self-inverse ;
e — i T B o 3 X
' | Exercise T
N 5
1. 4. Trigonometric b, Algebraic ¢. lnverse trigonometric
d. Lngnnthmu: c. Implicit f. Hyperbolic £ Expli{:‘il
2 a 1ingram 100 b, 0.7089 in gram 70.9g :
¢ 0.5025 in gram 50.3g d. 0.11648 in gram 11.6g
c. Thsummﬂofmdinminthﬂbuumwilhmcpamgeoﬂime.
kA a. b. - -
] Fila=2z] 5 AR e =3 ans
Ll - -1 T‘1 \ 3 T ._ﬂ..____’l - . r
| L ] !
T f = 1
.-‘_-‘E = f 1 o -1 ] e =11 ~{—-t= i
Eat AR | R EREAMEEA Wi 18N o =43
1 -5 s T 1 =T I i .
w ] .- ; :(D.—Il ] Wil b3 1 1!* l ]“) = -4'-"_"'-""""- ]
10— 5 E n 5 10 10 r £ 5 ;e I ! {10,10.8) i
= T T 5 i | | rd 1“2*8'3” I|
L - 1 1 T a I 1 o JAREEENF 4NN }.
ST — T |
: . ' [@0) : ¢
f < P d " :_'IE‘ ~Hr-5- e 15 mA ‘ ll
T N=¢ S T T (I :
Soflabds LT - FEEFHHEE EENENNERT RO AR 8 k
; T 5 a
i 00 ; | 5 H- ; 3
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ANSWERS

1 o b 9 c. 1 d. -1 e |
R -3 2

1 e 0 h. 0

; 1 i e
S keredw - g 25
3. a 5 b =7 e 0
4. a2 5900 b. 5514.29 c. s;:on
1 B, Ear= e = d. does not exist

6. a. Z_J; = 7

G & lor s roe# g ¢!

e
© Exercise

1. a. Continuous on the whole set R qf real numbers
b. Continuous at every real value of x, except x=35 .
¢. Coiltinuous at every real value of x , except the values x =3 and x=-2
f(x) is continuous at x=0 -
a. g(x)is continwous on the open interval (=1,2)
b. g(x)is continuous from the right at x=-1
c. g(x)is contimious from the left at x=2
d. g(x)is continuous on the closed intervai[-1. 21
4. a. f(x)is continuous on the open interval(0, 3)
b. f(x)is continuous from the right at x=0
c. f(x)is continuous from the left atx=3
d. f(x)is continuous on the closed interval[0, 3]
5. a. f(x)is discontinuous at x=1 b. f(x)is discontinuous at x=0
6. o The graphis as under: b. lim E(9)= $1,000 E(10000)= $1,000

¢. lim E(s) does not exist; E(20,000)=52,000. d. Yes at =10,000, no at s=20,000
A=+ 10,000
1. true = =
i) (i). d (iii). a (iv). d v ¢ (vi). b
¥ E::ii]. : (viii). ¢ (ix). a {x). ¢ {xi).d (xil) e
(xiii).a (xiv). a (xv).¢

T

dy
ik E;“g"i"'l"'_‘hlh’-p%__? b @

as bl
3 €21 d.025

a.2 b. Ax=0,1

¢ 4ln al
5

0.01;15 84 unite/second

. . s

Increasing at the rate of Rs.1170 per acre, when the number of 5
cres.

a. Ar=0.1; 14.4 units/second b. Ar
Ar=2; 25; lhemagenhufhﬂninnisﬂs.zsper
Af=30; 1170; the profit is
changes from 20 to 50,
2% - b. 3

PN © 2 dox  e3pg T
a3 b. y=3z-19

<. sl =5
a I, y=x+9 e

b. l, y=x-16 € =6, p=—fr-10

e ——————.

d =
E[f[x}+£(x)]=12x+5. “E[ﬂ’]‘ﬂxﬂ--lhﬂ

d 1o S
¥ ek~ ZU@-s@) =1

d -

E;[f(x]+8(x)]=12a-’-ax. Ed[f(])_g[;)]'_ﬁ:,‘_&

) 3

&l @re@l=2e 11, Lire g]ene £

- -2 6x8

4 3
¢ = iWr-—- 13
e : x 2 d %-?;—12
a &.._7(1__‘.'}-: 3 QEH':‘—"SI’-ZH-S
dr {4:3"_1)2
d _24p*+32p+29
Zx’ ‘rt‘p} ﬁF"‘z)I

b Bx—dy+1=0 © x+25-7=0 d y=-2c+9

?»
P
I"’-la-w ]

e
._'vg"
=
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%v\f’-ﬁﬁv rglg-"”

£ i mﬂ_ﬁ,[ﬂ] Gl
- . . W2 ¥
" VU3) =0 qubic units Isec  YY3) =
LA 20(°-4x+2)'(x’-4) b, %th-f)"ﬂ-l") | WM??;“?_{GMW@
3‘-!'31 d e L "\ --,,.____ii_‘i @
LR - ey L oo 2 b el
! —2x- 4 d &
' 1. a f(H=(2x-5'@0x-67) b f{x)u(xl uz:‘fm . 3 4 @) o 2564408
' A fx#1) & e iy
| 1 o Axt+11 5 : x+2
HI =12(2x=5) - _ 5 " ¥ ;
% & LU=t e 2. o =208 () ﬁa;ﬁﬁ.ﬁ Bk
‘ 3 yai2p M=) g e 2= A" H2) | me” e e g™ -~
| i Ly =42 b =t LI -2 d. & = { B HAET ("¢ —ap™
3, - gt o =3 , G‘"’"*‘i’)’ Palr e A+é & re" "_{?%ﬁ—l
| 4222.8 dollars/hour 3 a fmt»«,s‘m) i +dln : ®
| : RO IR0 I 4 2 o = -
| ol T2y eyl g o 2SR Heos2)] : e
b 4 *+d 1 - ) o
e & <-gifad VI cEw tEr 4 o ReRGD . b SeGH <
i ;2 Mlteos x
t 1. a ;‘!-dlu;‘b"u b. %-—bzﬂn'ﬂll' i d. "‘F’ e. —Z2cosec(hlx) £ ﬂlﬁ"(.!}
i - 5 227 mmofmercurylyr;0.81 mm.of; 041
8. lhpﬁl!g'fT 9. ﬁmhsperlmll‘ = ﬂ!ﬂgﬂﬂmmﬂ A‘{(a_? MW 4 mfm@-
b Exercise @ : A(5)=17,097,827 bactecialbe
_5 o e 5 . ; '.9"
 « 1. a 2Cos(2x) b. —3cosec’ (3x) c. 3[sec (3x)-sin(3x)] Review Exercise | 3
{ 1 " 3 ; _
‘ d. —2cot(x). cosec’ (x) e I'Em‘q'? £ 3sin’(x).cos(x) O & G 4 | (i) & (e Wb (idd (ib a2 pine WE 0
'= f 1 2. =3x'cosec’(3x) +2xcol(3x) b. mh+w3ﬂﬂmn—3ﬁﬂ33ﬂ - T e P——?
| c. —Bcosec2root2x d. Hx+3)sec’(x+3)° _ gy ad
Jx cosfx sec? x+an xsindx 2sec? 2x + Icot3x(l +1an2x) 3 k m__*
C.
; ﬂm:ms‘q_.l'x cosec3x L . =18 b If”m;-% & ﬁ(ﬁ;‘-‘?ﬁuﬂ;}! " _%_”{
l & o o dals e s A b ; _ &
‘ " e d pi+x "‘“’z ) b jr;_;%‘ b. )""d";i e =0 ¥ d. %éﬂ
. é’-_i I ﬂ: -l f. Q u.ﬂ'.(x-'-:] -E- " :
3 T C A gedlre6iss A :(r‘H} s : @ ﬂ'v— K f‘«g? ol e
; . P'(8)= 50 dollars/ week, PY26)=0 dollars | week | : A E
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& D 240 +4) 18640 +4x—5)Bx + 4).x-+1296(P +4x—5)'x’ +288( +4x=5) (3x° +4)
. z Lrdtas
b, 16(L+1an’ x)-tan x+ 24 tan’ x{1+tan® x) e %Ee dnjelf O 24xda(x7)+52x
5. 4 |Jsec(2x)tmn(2x)" +7,/5ecZx) tan(2xN2 +2tan(2x) ¥
b. ‘Wﬂﬁf'ﬂ.ﬂ}ms[x)’+3sin(sin(x)}cos(x)sin(x]—ms(sm(x)}ma(ﬂ
6 2 1663200x3F(x+2) b -2"(181440)2x-4)"
c. (34-cosBx+8+37) o (5)*-Te" 2
‘ " Exercise ( 9
T - - - - 1
x =1
1. a, :‘--(_‘r_:ﬂ b. y=-2x e }’"; d ¥ 3
= - - Lot d. p=—x+l
2. a. y-_l_-gq.[b_'hz] b y-ﬁx-ﬂ c. ;.H-2 y=xt
; = du -1
3 & yt%x-‘-l} b. P=€:+ﬂ)r:ﬂ €. x=i *
5. 2 l—x+x =t b. f-;x"-‘-—x"-m-
F L E PRI AT L
c. l*ﬁ* 4._*' 6!+""" 3 . s
L RT3 ;ﬂ'ﬂ o i L
6. b. 27183 7. A ry b tan 8 x - -
e
1. & i critical point (0-2) y ii. Increasing on (—o,~2)JU(0,+x) decreasing on (-2, 0)
iii. (D,l)ismhﬁwnﬁni:mm;{-&.i)isnhﬁwmﬁm 2 _ ?55)
b. i critical point %—25] ji increasing on (—2,-25) (5""] duwumgon[— "3
4 5
i, relative minimum (-25,0) mhﬁvcumnn[;.-&l&l]
= . x=0,1 d x=0,1
2. 4 x=-3,4 b, x=-3,5 {l')-: LI =
Relative minimum 1 relative minimum at x
= :- nﬂh‘umnmn::;mmm d. Relative minimum at x=4 . T
4. a &mlpit{-l&—l}knh&wmiﬁmm;hanﬁgu(—l&m}: decreasing on

concave up on (—=,+®).

b. Critical poimts: (-3, 20) &
(o0, —3)U 3, +0); decreasing on
down on (—=,0).

" . e . s increasing 00
Mm&lﬂﬂmmmﬁm};mw

(-3,3); inflection point: (0, 2); concave up on
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a Rehtiumiﬁuunufl at x= (), relative mini
b. Relative maximum of 2 at xy= il
a. Relative maximum at x =2,

. ~3 at y=3

=3, relative minimum of -2 at y= —|
relative minimum at x = 4, neither at x = 1, -5
b. Relative maximum at x= —S;Nlalisfemirﬁmunaun% s neither at y=|
. ﬂwexpcndhreonadvmishgﬂmkadswmimmpmﬁ'

b. The maximum profit at x=6 is 512 hundred dollars. e

The number of hundred thousands of tires is x= 1,000,000 tires; the number bundred thousands
tires x that developed the maximum mflis?[lﬂ]"@?mgg;.m. e o

a. The drug concentration is increasing in the interval (0, 3 i ing &

i e , (0, 3) and is decreasing in the
b. The maximum drug concentration time is x = 3,
¢, The maximum drug concentration at a time x= 3 is K (3) = 0.22% = 0,0022. :
d. The concentration is maximum at x =3as k(x}chmm&uminamhgﬂmﬁmmdumg‘
function. Maximum concentration k{x)=0.22%

Hint: C(x) =[G(x)][32]2.25] = 1!ﬁ[g-|-1-.-)1{312}('.!.1.'.'»)=1,5(£+1u,-]
X

cm=1.s['i,w +2]=o = x=+150

Minimum cost at x = 150 =12.2is C (12, 2) = $73.48.
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(vi) b

(i) e
(vii) ¢

(i) b
(vii) d

(iv) a
(ix) ¢

¥} a
(x) b

A r=0, >0
e l#(!n—l]%, n=0,4142,..

a. (1!'-3].?—!0}1{2‘1 f“3JE

b. 2, t20.
d tznr, n=02L42,..

b (2 +a)i-15]+(F + i

¢ (=r)siny A —£ei+r singj+(2e'+ Ssins)




4. i+l ]

—

j+ 2 a+3k b F'(.:) {L+4s]t+{1s—i)_l+1sk_
a. F(n=i+i+ ;

i j-3sin0k ) & s
c. —m&'-l-m;.!‘ . gl p x}.’ %
a. 28+18)-1 ,
d. :[m‘n-gn'ﬁfﬁws‘a—sin’_ﬂl.f i

b.

a -2e-97 45 +1
;{1}=i+z}+zi.l,vuu=3
-f+-J+-k FO=25 =2/,

2, 2

:—Tl'i' j+1t

a. v{:‘jsfq-hfd-lk‘
mmmnf

b .m--unriwuu-ﬂk [']

H ]:Jl_'mbedmﬁioﬂﬂf —TH-—J-ﬂT
Yl
4

2(1) =—costi-sint J,

- j+2¢pi'- Vulﬂl-ﬂ——;+8£

¢ wW=et
S =elite ;**'i- a{hz}-m—J +w£
. iv) d (v) a
i) b (iiiy © [!'\') ¥
([Ei} : :t?i] a (vii) a (ix) d (x)
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2,c
4
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a.—(x+4)+C b2 =9)
~ —2——+C a 47z
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d-z (2 =T +C z(far‘_-?] T
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25.6 .2
gixt +=(x)i+C P
F3f 5 2(:’+2x+zi+c
agh+ C b,%c“""“ ¢ L gtrtnnn - smﬂ+c
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. 12
“'.-{m b. 0,005 T A w= 0.00054 b.171.5 ponds 8.19,400

B

R e s

(. E!El'clse w.\ﬁ:i/

sin® i
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d -cose'+C . e 2infinya]+c £ ~Injsinx+cosaf+C

1, afx
. z.’an I(EJ+C b. _m-:(mx)_'_c

1 fe
= £
g [z]"c

A Infe +4x+ 8]+ tan"(x+2) 4 € e. !in"[—‘—r-x”)-(i-[':-l-l)’)%-l-c
e!l x x :

a x’—zh_xT.qu.c b —xsinx+cosx+C c;-’lr"'mx-#%l"linx-l-c
i B | N/

3¢ sinx +5e cosx+C exsin™ x+yl-x*+C [—%mtf"}*'c
a. l]" x-3 L

3 T-l-('.' b. 3x-lnx+C c. 3Inx+ln(x+l}+;+:+c
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d 1 | 4
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ANSWERS i § e i : i
? i 4 —gin(2tan X v . perpendicular 3 :
2 4D j cn #HgE E ion Srapad b. - neither perpendicular n _
e 6 1 gl ( _+_.-- +C 2 6. b. 5.1'—}-—5,:0 * r paralle] & e
b b 4. 109.86 feet o dr-p-2e0 b xidpiseq . SO0 T g oy
ol s Toa 2opi2=0 b Groyadag o o lt4m0 a4 :
% 189! foweth R ’"W—Hﬁﬂ“g. ; F;.:\ 13 CoX=2p-8=0 y-di=g
Eﬁ e -----‘\‘._.."rl 8. a y:lx.'.!_'g_ .t—-—?— J""E
fcin 525 B0 g2+ n sl c0s35° sin3s® © Normal form B 4"
5 b, 34816 c. -2 d.14 ;9 8 a4 8 Gl ~ »PoL, xcosd 4 ysing o
1. a. 17. ; : 7 i C. - B i —,
AT T o W , Nl (5
! L. A=40) squeeunis D e B ol me'ing’m“'eﬂppositesidﬁaflhe?u
i 182 § gquare wnits b. Above the line, on the same side of the | ine
3 o A =183 square units ' 2. a. onthe opposite sides line
barrels b, Ladey= 191.6 barrels 4 chacidl ol .3 P b. on the same sides
8 & Lo day= 4440 he amount of oil feaked on 1* and 2" day, the number o of ail RS b. d=% c. d=1
3. c. Asis nw’-“ﬂﬁ"" : g with the passage Bfti-me‘- 4 & : 1;!-
s> freoslx) _2¢800) ¢ il " “ﬂ"(—],lso-un*‘[l 5
s L4 Eox4C s SR 7 7 = 90° b un-'[‘_’]-
R S e % ay b. tan™'(13) 7 '[3] 6
e =f = 4 fanT | — o
! MWEIEI‘ciSe ‘_ 6 B a 119x+I02)'—l25-lD b, 23x+23 . O
N e Y i i (@) =0 ' : y—11=0 . Ir+dp—Sg=
9 S G R @ w@ we e = 2 P ¢ tdy-Se=d 4 2-Y=0
3 ey z ' Ei,fcf.m_ G.1) b. (-16, 12)
1. II."‘"-‘- _'E T i 7 1 iy Ly b. concurrent; l:—l.Z}
xercise . 2 4 . ¢. not concurrent
— BT R b. 15 S
: o 5 a0 i ]
1. a (-1,6) b 0,0 * E’-E 6. £ B : : c. yes
s dits 5 A ziz 5v=0 and x+y=0 b, eyl il fe s
f 117 - — - +Txp+3pi=
3 aon [?.'?) b (-24,-2) 3 ( 9'9} e b= b. #-2tabx-y’=0 ¢ af-Zhy+hei=0
3 i % b 141 _ e
: 71 10 10 4 { Review Exercise { 7
4 = b |= e | =) 1. : s
i 5, a. 303 3l3 3 i ﬂ.‘u) i
{ ' B — o i. (c) i, (a) iv. (8) v [
4 7 Exercise _ vil. (@) . viii. (a) ix. (®) « @
— e ——
: 1, a. x=y+5=0 b. Ix+y=-6=0 o, xsdy+12=0 :
3 ) 1 T
; 2 g b -3 R d. =g \ {:' O
;E | 3. a. x-intercept, a=-3 and y—intercept, b=6 | 1. e ) - —
4 ,335 b. x-!mempl,auiandy—inmup{,bug R y:.=],5 y R AR o Sy Eray+ou0
i . c. x-intercept, a = -2 and y-intercept, b= 2 E’g - 4y 4 2av4 2By —2ab =0 :
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3 =36
1, a. f+?’ni§ ) b‘ ’:;.f 4
d. f+g’+tﬁx+iiy+rj_11=3ﬁ

o Pey-1ixeidy=0 A 3
o o ¢ puidyi 216 b. Vertex (~1,0), focus|—
. (x+57 +(=H [4 ,o], of latus -7 43
5¥ Sy ma&j ]_B{-',- -

b |
_ 1 2 )7 q 7 s of }
T g e (e e
i a. cenler = E(4;3),r =4 b. eomlet <€\ "5 b. S 4'2]-11319{%’_3

=] 1

e i ==
d. mufﬂ[a-‘)-’ 4 ¢ x4y =2x=4y+25=0

: Sas o dp+by-T2=0 . ; B4
4; i ?-+jtéi;t-z;=.t;§=:ﬁ B Ay b x’+y”"— 'i'-=3)'+;5=[} ‘ﬁﬁ
TR % e b Py =3t x .
e Hfg?:fm-ﬁxs:dny:u b 2yt =Ex=4=0 ; —ei :
i a. 164 ﬂ”uim-. 3 g, o Pey'=ls b. x4y7=10 2 e | e
o ,-;14.1;’481;“51‘*@:” e 3, & =12 ey b ¥ =24x Feg
e a =12y b. i T
F‘! gl o {xusf =£{y_- l) g y; l6x C. y}=!2.\: d g2 g_“s}' :
il ofmgeﬂt'n;;.ﬂ equton of sl 25 = 4 3xeye5=0 : R !
) g i of i 1 =3 TR ~ = 5 y45= |
" :., mwunfuﬁﬂﬁ:a‘niﬁla:oequimc_:_f@@ﬁ! 2::3_}" 0 5. (;-+z;,z=6[ _::_) i L
c. egudtio of tahgefit 24 y-520 equation of sottrl: Y =7 . b. x=1£+/3i which is imaginary so the line does not }
C oL eponortingedt 185418437213 quation of ormal: 183418520+ % Ao i it hczaect 6 plesbit. t
: . " of : i e 2 R ST
¥ o tasgent i+ 9= 23 =0, o of ot 3 =0 8. a. equation of tangént i & i ‘l‘
b. eqition of : s s . dﬁwq;ﬁy.—:ﬁ 5 : gent is x—y+3=0, equation of : !
1 c. ﬁﬂllﬂﬁﬁmﬂmifhﬂ’;kb’ W o + equation of tangent is 4x+3y—1=0 .bqﬂml'mnfml: kb E
I L ognthfl o AR % A dxedysl=o b y=yixs L B e
a 4‘- a. p=tdd i-l-i;; b. ’-"ﬂ’ﬁ . c. cﬁ*gd& y o 10 2 =-12(y+3) 'i-
: arep=3ifem =i 43 fm=nitc=¢ > =0 Sl e b
5, o gl + 0 -2EHE Bfem=h + ; 183441 9.2 .
6 * Ha, 43 b p=d53,=1352  c Doss ot touch the drele C=— 33 1
: g " a'!"ii;”"ﬁ b.}f-l-liy-;f; il b Aif0,5)
= * = r eﬁxt._a— l
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c. B(0.5) Centre: The center is C(h, k) =C(-1,2) !
foci: (17, ~12), F(H=T.-1.2)
Vs End points of major axis A(5.2)4/(-3.2)
Vi3 WW End Points of minor axis B(L,5)B(1,-1)
3 { ‘ 2 ]' kS
Bm.-!-:' 6}2 (}'4‘1)1 1 5 ('xl_?_] +y_=l
2 [-‘:"' far— = 9 %
5—+£— =1 R 16
] B 36 9 [xd- E]I
: 16) (=3 _
3y -2 g Sl il +{—-‘yﬂz) =1 ¢ 1y + 3y =1
e @
4
2
d. £_+ l:_y_:-s—)-:u 1 ¥ Ji
AR &5 o eB
4. a. e=% b. Fﬁ+ﬁ I
5. a c='b¢r§ b c=14 -
ion of tangent is X2 equ.alipﬁufnmmal 3x-9y+10=
: o P B jon of normal 7x—-2y-9=0
b, equation of tangent is 6x+21y-14=0 equatio e
-:- equation of tangent is x+ay-4=0 equation ofn_.uma'l x=y
X e |
1 1. a Bx-9y +30=0 Gx+21y—144
1 /-‘-‘l:-m“n—ﬂ-‘\-ﬂl I': "J-'H‘W:J_'P "
{ Exercise 93 )
a e e
1
'
]
: Centre C(0,0) s K m
Y Vertices ¥,(=2,0). V4(2,0) Centre CO0) 5
et Foci £(13,0), £(3.0) Varios K090 -5
| - Equation of asymptotes y = £3x Foci F(0,429), F A(0,- . 5 :
s i y 2 Equation of asymptotes Y=~ 2 .
LN 343 .

Centre C(ZIS'J
Vertices F(-1, 3), #(5,3)

Foci F(-3, 3), F(7,3)
Equation of asymptotes y -3=13 ()

2
2 a lx_ﬁ_£=] b. lz__.-'rf.-]
16 4 25 16 =
2
3 a. L_f_=]
4 5 2
d 168 -9y’ =144 e
+ a, _;:‘__f_=
16 - 9 b
5

Vertices ¥i(=2,27), #(0,2)
:::! F;('ﬂﬁ-—lﬁ). F;I:E'Lz}
: “quation of asymptotes y —2 =x1(x+1)

.,
i P&, py(~1,~4) b, p,(0,1),

2 e=42f3
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9 16
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A b. c=i-ﬁ
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Equation of tangent is {3y + 2y+4=0,

Equation of normal is 4x-213y+13vI3=0
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U et N

Hence the function takes values with opposite sign in the i_r.tewai .21

b, Hence the function takes yalues with opposite sign in the interval [1,2].

€. chccthcﬁmcﬁonukﬁvaluswhhappuﬁ‘lcstgnfn . Al

& Hence the function takes values with opposite sign I the interval [siqj_ _

=]_!.,c,='—l.15 b. q,—.-l..l.r.‘l=l.4,c=-‘ ,,Clsl__'zs

e, g=36.6= 3.8,c,=3.7.6 =3.65 d. gg=36,6= 14,0, =3.5.5 =355

a ¢, =-1.8300782 4 = —1,8409252, ;= _1.8413854, ¢, =—1.8414048

b. .z:_,=l,2";',r:,—-‘1.283.c,=1133-4i2,.c,=l.283402

c. Asboﬂlf{a,}aﬂdf(ﬁ.)mpnsiriw.ﬂxfcis rootmﬂtcgwm.!mi.;c:w:l,- -

a mwmhmmmuWMWmempsmmmgm_
b i opposite signs in the interval {1,7].
d. x,= —1.89706

- ™

i,

a. gp=146 =1.2,¢
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5.
6.
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b, Ts=117
b S=111

d. Ts= 2.92116(approx)
4 S=3.19

g, Te=itl

c. Ss=110
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