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. | UNIT

INTEGRATION

After studying this unit, students will be able to:

o Find the general antiderivative of a given function.

e Recognize and use the terms and notations for antiderivatives.

. e State the power rule of integrals. _

» State and apply the properties of indefinite integrals.

» Integrate functions involving the exponential and logarithmic functions.

« Identify when to use integration by parts to solve integration problems.

» Apply the integration-by-part formula for definite integrals.

« Solve integration problems involving trigonometric substitution.

» Integrate a rational function using the method of partial fraction.

« State the definition of definite integral.

» Explain the terms integrand, limits of integration and value of integration.
» State and apply the properties of definite integrals.

« State and apply fundamental theorem of calculus to evaluate the definite integrals.
o Describe the relation between the definite integral and net area.

» Find the area of a region bounded by a curve and lines parallel to axes, or between a
curve and a line or between two curves,

« Find volume of the revolution about one of the axes.
o Demonstrate trapezium rule to estimate the value of a definite integral.

« Apply concept of integration to real world problems such as volume of a container,
consumer and producer surplus, growth rate of a population, investment return time
; period, drug dosage required by integrating the concentration.

There is a lot of applications of integration in various fields. For
example, we use definite integrals to calculate the force exertedon | |
the dam when the reservoir is full and we examine how changing
water levels affect that force. Hydrostatic force is only one of the
many applications of definite integrals. From geometric
applications such as surface area and volume, to physical
applications such as mass and work, to growth and decay models,
definite integrals are a powerful tool to help us understand and
model the world around us. A view of Tarbela dam is shown below.

e+ iR | el : DNoticus! Books Enepesion



__UNIT-03: INTEGRATION R T

‘3.1 Integration

This unit examines the process by which we determine functions from their derivatives. We are
already familiar with inverse operations. For example, addition and subtraction are inverse of each
other. Similarly, multiplication and division are inverse of each other. In the same way, the inverse
operation of differentiation is anti-differentiation or integration.

This unit provides two processes and their relationship to one another. One step is to find function
from their derivatives. In the second step, we can determine things like area and volume through
successive approximations. This process is called integration. This is very important area in
mathematics and was discovered independently by Leibnitz and Newton.

The process of finding a function from one of its known values and its derivative f(x) has two steps:

The first is to find a formula that gives us all the functions that could possibly have £ (x) as a
derivative. If f'(x) is defined as derivative, then f(x) is called anti-derivative and the formula that
gives them all is called the indefinite integral of f (x). The reverse process of derivative or anti-
differentiation is the main topic of this unit.

Definition 3.1:
A function F'(x) is called an anti-derivative of another function f(x) if:
Fix) = f(x)

Forexample:

1 1 1 1 .
xt, 43, xtenm, sx*+c (cisany constant)

are anti-derivatives of x' since the derivative of eachisx’,
Above example shows that a function can have many anti-derivatives. In fact, if F(x) is any anti-
derivative of f(x) and cis any constant, then F(x) + ¢ is also an anti-derivative of f(x)since:

d =4 2 ril=- =

L[F(x) +c] = = [F()] + 5 [c] = f@&) + 0= F(x)
Therefore, if F(x) is any anti-derivative of f(x) on a given interval, then for any value of ¢, the
function F(x) + ¢ is also an anti-derivative of f(x)on that interval.
Symbolically we write:

[f(x)dx=F(x) +c

Where the symbol, «[" is called “integral sign’and ¥(x) is called integrand. The symbol d indicates
that the integration is performed with respect to the variable x. The arbitrary constant ¢ is called
‘constant of integration’.
For Example,

LI .
As, - (x%) = 4x

Therefore, [4x3dx=x*+ ¢
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As mentioned above, the constant c is arbitrary constant. Therefore,
x*,x"’_+ 1,x* — V2, x* + m etc. all are anti-derivatives of 4x3,

Key Facts

e The vannhle other than x, can also be used in
indefinite integrals.

e Anumber of indefinite integral formulae are
found by reversing derivative formulas.

‘Let us derive some basic and common
integral formulae with the help of
differentiation.

Formula 3.1: fx"dx——+ c, n#-l

Derivation: We have,

ML
dx n+1

Integrating both sides of (i) with respect to x, we have:

d x‘ﬂ.‘l‘l
fd_xln+1+ < dx=[ *dx

N+l

(n+1].t“
& ] -n+1] E[] n+l el ok gt oy {i)

Hﬂ+c-_fx“d.‘r

sty
i fxdx——+c,n=-1

.
Besccssnma ssssss

[F@If' dx =LEEZ 4 ¢ n oz —1

e e

Formula 3.2: I_-:-d.t =lnx+c

Derivation: We have, ” 3 ;
Zlinx+ cl=2 | , (ii)

Integrating both sides of (ii) with respect to-x, we have:
- A 1
IE[Inx+ cldx = f;dx
Inx+ c=[2dx
x

I B EEES s s Is s s aE s aE EE RS E S EE S may

f%dx=£nx+c -

In general,

JEBanl e




Formula33: [e*dx=e*+ ¢

Derivation: As,
iiﬁ'" + c]l=¢e* | (iii)

Integrating both sides of (iii) with respect to x, we have:

J%[e"+ c]dx=fexdx

e* 4 ¢ = [e¥dx .

..........................................................

In' general’ ..........-...'.:.-.;...;.;;.;.---.---_.._---.___.-._--,._
Igf(x}f’(x)d_r ] gﬂﬂ +c :

Formula34: [a*dx= ﬁu" +ca>0, az1l
Derivation: As,

2o+ 4= w

Integrating both sides of (iv) with respect to x, we have:

f% T?;-a"+ c]dx:_fa"dx

In general,

Theorem 3.1: _
(i) A constant factor can be moved through an integral sign. That is:

Jef(x)dx=c [ f(x)dx '
(ii) An anti-derivative of a sum is the sum of anti-derivatives. That is:
[[fG) + g(0)] dx = [ f(x)dx + [ g(x)dx
(iii) An anti-derivative of a difference is the difference of anti-derivatives. That is:
[[f(x) — g(x)] dx = [ f(x)dx — [ g(x)dx
(iv) In general, [[af (x) £ bg(x)ldx =a [ f(x)dx £ b [ g(x)dx




Example 1: Evaluate (i) [(4x7 — 2x® + 9x + 3)dx

Solution: (i) [(4x” — 2x3 + 9x + 3)dx
=4[ x7dx—2 [x*dx+9 [xdx+3 [dx
Integrating term by term, we get:
_ =t x4 (x2 x8  xt gyl
-4(-3—)—2(7)+9(?)+3x+c il g

2 3.2 3
‘ Gi) [ dy=f(5-25) dy = [(&-2) dy

=JO?=2y)dy=[y*dy-2[y dy

=I+1

¥
=Z+1

—2(§)+c = —i—y3+c

+3b
Example 2: Evaluate (i) [ il T dx (i) [e®*dx

axZ+bx+c
1
. ax+=b
— . B v 1 _1p 2ax+b
Sﬁl“mn' (l} Exz +bx+c dx 2 'r ﬂxz +bx+c dx
=Z2In (ax? + bx +¢) +C
(ii) [e¥*dx =3 [ e3*(3)dx = ;e +¢
" Esin':l x
xample 3: Evaluate [ — dx
i = -1 ! = 1
Solution: Here, f(x)=sin"'x = f'N)=7=5
So, by using formula:
Jef@f (x)dx = ef® ¢+ ¢
We have:
e Esln'l x o
] X
7, e sk i

Evaluate the following integrals. _
1. J(x?-3x+9)dx 2. [(2+8y+V2)dy 3. [ (ﬁ i :%) dy
232 o
4. f(4+xP)dx s. JA+x@-xax 6 [(VE+z)dx
@
7. fe*—e +1)dx 8. [(eF+Ddx 9. [xe*dx
10. [S5%dx 1. [77dy 12, [ +5 - Fdx
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2x+1 e 3
13. Ix2+3 14. [ —dz 15 _f(x=+e3’+x°)dx
16.  [(3x% + 2x)(x® + x? + 9)%dx . J(5€5* = x73 4 3%)dx
18. [(z% +V3z+2-Lydz.
3.2 Integration of Trigonometric Functions .
While evaluating the integration of trigonometric functions, keep in mind the following formulae.
As, é (sinx + ¢) = cosx therefore, [ cosx dx = sinx + ¢ .
Similarly, é (cosx + ¢) = —sinx implies, [ sinx dx = —cosx + ¢
In the same way, % (sinkx + ¢) = kcoskx implies, [ coskx dx = “1" +c
And, ﬁ (coskx + ¢) = —ksinkx  implies, [ sinkxdx = — m:kx +c
Using above pattern, following formulae can be deduced easily.
[ sec’xdx = tanx + ¢ and J cosec?x dx = —cotx + ¢
fsecxtanx dx = secx+c¢  and J cosecx cotx dx = —cosecx + ¢
Example 4: Evaluate: ' *
() [sin2xdx (i) fcos < dx (iii) [ sec?mx dx

(iv) [ 5 cosec? % dx V) | 1§ 9 sec3x tan3x dx -

Solution:

o .

i) [sin2xdx = f-%sin?ﬁx @)dx = 2[sin2x(2)dx
_1 __ —cosix € - —COS2x
=s(—cos2x +¢) = . === ol _
(i) fcnsE dx = ; ( ) dx = ;fcosgs-’f- G dx .
5(sm +c) = ; in —+-c - gsins?x+£'

(iii) . [ sec®mx dx

j';seczmx (m)dx = &fsec’mx (m) dx

=$(tanmx-ll-r) = -:-‘-(tanm)+i = -:-l-(tannu)+ﬂ
r_[i\r) _[IScnsecz"?xdx = 5}:;[ cnseczl—x(;)dx = —(-cnt—+)
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= —%cat% +2_‘,—sc - -%cnt%+ c

(v) [9sec3xtan3xdx = [3x3sec3xtan3xdx = 3 [ sec3xtan3x (3)dx
= 3(sec3x+c¢) = 3sec3x+3c = 3sec3x+C

Example 5: Prove that:

(i) [secxdx = In|secx + tanx| + ¢

(i) [ cosecx dx = In|cosecx — cotx| + ¢

(iii) [tanx dx = — In(cosx) + ¢ = In(secx) + ¢

Solution: v
(@) [secxdx= [HEEELEW g0 [Multiplying and dividing by (secx + tanx)]
e - N
- IHM = In|secx + tanx| + ¢ =h[f(m+c
(i) [cosecx dx = _fm“::::“_u:u:"m dx
o e e
=f%“%dx = Infcosecx — cotx | + ¢
y d
(i) [tanxdr = [EEgy = [, _ (@@,
= —ln(cosx) +¢ = In(cosx)™* +¢ ‘ _
= !"Ft::";c _-= In(secx) + ¢ Prove that

J cotx dx = In(sinx) + ¢
3.2.1 Integration of Sin®x and Cos*x
Sometimes it is difficult to evaluate integrals directly. Using trigonometric identities, we can easily
evaluate integrals. For example, the integrals of sin’x and cos’x cannot be solved directly and can be .

handled using following relations.
AR ST L
2 : P i

sin®x cos’x : R
. Evaluate [ cos?x dx
Example 6: Evaluate [ sin®x dx 'r
Solution: [sin?xdx = [*= ﬂ:’hdx = i_[ dx —= [ cos2x dx

1 i (slnzx *

<4 2

z 2

1 1
+c=;x—:sin2x+c
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Example 7: Integrate (i) B8sec9x —tan3x  (ii) cos®7x
Solution:
(i) f(8sec9x — tan3x)dx = [ 8sec9x dx — [ tan3x dx
8 1
= 5[ sec9x (9)dx — 3 [ tan3x (3)dx _
= %Inisecﬂx + tan9x| — In(sec3x) + ¢
(if) _[1:0527.‘:: dx = [2R2% gy =2 dx + [ cosl4x dx

sinl4x
z( )+ —-x+—sm14x+c

' Exercise 3.2 ABEMRIEN 5 ]

Evaluate the integrals and recheck your answer by differentiating.

1.  f(sinmx — 3sin3x)dx ' 2. [ -sec? (;- y) dy
3. - Bn:usecz(Zx)]dx 4, j’% (cosec?x — cosecx cotx)dx
5 Jr cos®z 6. [(1+tan?6)do . 1+c:s4t de
T sw.-t:2 (5x —1)dx 9. [(tanSx +cos7x)dx 10. [(cot9y —3)dy
Evaluate the integral. .
1. f(tan®26 + cot?26)dg 12. fsinz(Ly)dy
[ cosecllx tan11x dx 14. [ cosf(tan@ + secf)do
J cosec? (E;—i) dx 16. [ {cusx)% sinx dx
17. [eYsine¥dy 18. [9tan(x + 7)dx

3.3 Integration by Substitution '

There are many functions that cannot be integrated by simple techniques and can be integrated easily
by using method of substitution. It is an integration technique which involves making a substitution
to simplify the integral. In this method any given integral is transformed into a simple form of
integral by substituting the independent variable by others. The exact substitution depends on the
form of the given integral, as some substitutions are more appropriate for certain problems than
others. The choice of substitution is not always immediately obvious. The ability to recognise an
appropriate substitution comes from practising many different examples.

Mostly, we substitute trigonometric functions in place of variables to integrate algebraic functions.

However, there is no hard and fast rule for selection of trigon ometric functions toreplace variables as
some other substitutions are also used.

GRADE 12 : RS
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Key Faets
Usually, the method of integration by substitution is extremely useful when we make a
substitution for a function whose derivative is also present in the integrand. Doing so, the
function simplifies and then the basic formulas of integration can be used to integrate the

I function.
Example 8: Evaluate [ 3x? cos(x®) dx

Solution:
In the equation given above the independent variable can be transformed into another variable

say t by substituting:

=t @) I"_ oty
: e G e The method of substitution to
Differentiation of (i) gives: flod un s Fis ased vl
S bstiru::ifdtff 'i: £ (i) and Gi) '(iizhe — - itis setup in the special form.
u ng the values of (1) and (11) in given integral. i
J 3x% cos(x®) dx = [ costdt =sint +¢ 'rw%:{r:}:_g{ﬁ;h Iy
Again, substituting back the value of t, we get: &

J 3x% cos(x?) dx =sin(x?) + ¢

e | caeeine —

(

Example 9: Integrate: [ =5 dx Integrate:
Solution: Let u =tan"'x then du= 1 ::, dx x sin(x? — 3) with respect to x.
'Iherefnre.f’: —dx= [e'du =e“+c= e '* 4 ¢

Formula3.5: [ ;:!1_—:5 dx = sin™? (TE) +c
Derivation: Substituting x = a sinf, we have dx = a cosé@ df

1 - ‘_1"__ it 1
J‘w dx-fm ﬂCﬂSHdﬂn—ImﬂCﬂﬁﬂdﬂ

SLsSsrasaREtR iR aRssasdasTarnn

x=asinf = sin@ =E

1 s
=_f—ﬁ ——— a cost df =_f—msg cosé d@

[T T——
"

=jdﬂ=ﬂ+c=siu'1@+c

"
L T —

= @ = sin™?t G)
Note: We can app]y the formula du-ecuy too. i..................“.-.u......"'hu .

Formula3.6: [Va?—x% dx= -Ezisin‘l'(z) +=—=%+¢

Derivation: Substituting x = a siné, we have dx = a cosf d@
K JVaZ=x? dx = [\[a? — (asinf)? a cosf dB = [Va? — aZ sin?@ a cosf d@
= [aV1 - sin?6 acosf dd = [a cosd acosd d8 = a? [ cos? d6
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2 [1c0s20 jg _ & f(1 + c0s20) df =< (9 + ""*‘")

- a? fsin26 2 5in@ cos@ »
-?5"'“( to=Lg4 2 (2ehdeod) o

. a? . e S g A x2
=6 +-(sin6 V1 —sin?8) + c = <-sin 1(;)+?(; ’1—;)”
_—--sin“(a)+ ( ’dz_x='+c——sln'1(n)+" —+rc

1

Example 10: Evaluate: g e

5—4x-—

1 o) 1 _ 1
Soltlon: [ == s = s e

=J‘ﬁ =gin™ (z +x +c (Using direct formula)
Note: We can also solve by substituting x + 2 = 3sinf

Formula3.: [ == dx=In(x +Vx7—a?) + C
Derivation: Substituting x = a secf, we have dx = a secf tanf d@

j';gl_-;gdx =_[E-;!;]_—i__n,nsecﬂtanﬂdﬂ

1 2 i),
=Imﬂ$&tﬂtﬂnﬂdﬂ = Im a secl tan@ d@

_[———asenﬂtanﬂdﬂ = [sec8 df = In[secf + tanb] + ¢

,:-nz
In[secﬂ+ sec?f — +c-!n[ '——*1\+C—-Iﬂ[

!"[E"' ”‘:’ |+c=!n["+-—ii +c=In(x+Vx2—a?)—Ina+c

r

= In(x + V2% — a?) + (c — Ina) = In(x +VxZ —a?) + C
Note;, Expression :;;!t—a; can also be integrated by making the substitution x = acosh@.

Formula 38: [ == dx=In(x +Va?+x%) + C
Derivation: Substituting x = a tan8, we have dx = a sec’6 df

Im ."T——F—-aseczﬂdﬂ IW a sec?6 dé
= [ e 5?00 = [ g asec0do = [sec0 dd
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= In[secf + tanf] + ¢ = In[tand + secd] + ¢ = In[tanf + V1 + tan?8| + ¢

=!ﬂ[£+ ‘1+%\+E=In[£+ 'ni-';xi\*l-f = Iu[i.'._n +x .+l‘.'.'
a a a a a a |
i EW[JH-‘ITLHEI'l"""=‘31'1(3'5+1.r‘¢15+Jc5]|—l.'m:+(:

= In(x + VaZ + x2) + (¢ — Ina) = In(x + Va? + x2) +C

| Formula 3.9: faz”, dx-»-tan"( )+ c
This formula can easily be proved by substituting x = a tané.

Example 11: Evaluate: [

m
o 1 S S
Solution: 'r.t‘-l-ix-l-sdx_ -rx=+4x+4+1dx "-r(xq-z}*ﬂﬂ*dx
=-tan" (x—”) +c=tan"(x + 2)+¢ (Using direct formula)

Note: We can also solve by substituting x + 2 = tanf

3
Example 12: Evaluate: [ x(x? — a?)7 dx
Solution: Putting x? — a? = u

= 2xdx=du = xdx= d?“
o | iall 3 au T
Jx(x*—-a®idx = [(u) 5 = E[(u)z du
1 @it 1, uf 1 :
- 2 = X = Lei2_ 233
“ it = Pp E ppeeiw
. Use suitable substitution, to evaluate the integrals.
L [ 2 = 3. JQx+7)(x2+7 :
5 o " fw . J@x+7)(x* + 7x + 3)F dx
x2 y dx
4. Jx’-i-:dx 3. -ryz-u-ny-l-:ﬂ 6. Im
L. 43755 _2ax+b
7 J (4x7 +1)3 8. Jxtvax dx %4 ax? +bx+cdx
dx z
9. I[1-3x}= i I1+:4 dz o, -"1+.1|:z




3.4 Integrationby Parts

Integration by parts is a special method of integration that is very helpful technique to evaluate a
wide variety of integrals that sometimes do not fit any of the basic integration formula. This method
is used to find the integrals by reducing them into standard forms.
[ f)g(x)dx = f(x) [ gG)dx — [[f'(x) [ g(x)dx] dx m
Formula (1) is called the formula for integration by parts. Using this formula, we integrate the
product of two functions. The important thing to use this formula is the selection of given functions
given in the product as a first or second function. The function whose integration can easily be found .
is considered as the second function while the first function is chosen whose derivative could be
easily found. In formula(1), f (x) is treated as first function while g (x) asa second function.

- Key Facts
- Integration by parts is not applicable for functions such as [v/x sinx dx.

+ Wedo not add any constant while finding the integral of the second function.

« Usually, ifany function is a power of x or a polynomial in x, then we take it as the first
function. However, if the other function is an inverse trigonometric function or
logarithmic function, then we take them as first function.

« Ifthe product of functions contains exponential and trigonometric functions, then we
can select any one of the two as a first function.

Example 13: Evaluate the integral: [ xe* dx

Solution:  In the integral [ xe* dx, we take *x” as a first function as its derivative will reduce
it and ‘e*’ as second function.

Jxe*dx =x [e*dx - I[di‘(x)j'e"dx]dx
=xe*— [l.e*dx =xe*—e*+¢
Example 14: Evaluate: (i) [x?Inxdx (i) [xtan™'xdx

Solution: ¢
(i) Inthe integral [ x? Inx dx, we take ‘Inx’ as first function and *x2’ as second function.

~ [x?Inxdx = [(inx) (x¥)dx = Inx [ x*dx = | L;-";(Inx) I x‘dx] dx

=lnx. S - f1 By =X _21x2dx

3 x 3 3
xXinx 1 X _ xinx X
o — .?+ c = : = + ¢
(i) Inthe integral [ x tan~'xdx, we take ‘tan~'x’ as first function and ‘x’ as second

function.
. [xtan™lxdx = [ (tan™x) (x) dx

GRADE 12 =




=tan"'x [ xdx — [ [:t(tan"x}fxdx] dx

x? x2 . P2wanlx IJ- xt

_ =Ly o
tan“x. :z +1 " 2 2 F

tan~2 1 2 tan~—1 1 2
= : x-—;f(l—-xiﬂ)dx - "—E(x—l:an 1x}+|’:

Example 15: Apply integration by parts to evaluate:
(i) [Va¥=xZ dx (i) [VaZ+x%dx
Solution:
(i) [VaZ—=x% dx = [Va? —x? (1) dx,
Here, we take ‘Va? — xZ * as first function and ‘1’ as second function.
. [VaZ=xZ dx = [Va? — xZ (1)dx

=VaT =2 [ 1dx - [ [ (Va¥=x7) [ 1dx| dx
= V=T () - [ B (o)t = VT T — [ iy d
=x/at—x? - [ L dx
= m—fﬁ's{_—’f,dxﬂ'?ﬁiﬁdx
_[\Gi-—_xfdx. = xm—f@—_ﬂdx+a’ﬂn'1(ﬂ+c
fmdx+fmdx=m+azsin'l(§)+c
Zj'mdx=x\h?—_xr+a’sin'1(£)+c
[Vaz =x7 dx =xﬁ=_! sin"(q)+-=
(i) fvaZ+x? dx = [VaZ +x? (1) dx,

+—sm"‘1 (ﬂ) +C

Here, we take ‘VaZ? + x2 ' as first function and ‘1’ as second function.
o JVaT¥x% de= [Va? ¥ x2 (1)dx
=VaT+x [ 1dx — [ [ (VaT ¥ 27) [ 1dx] dx

=VaT T 2% (x) - [ e (W)dx = xVaT 27 — [ iy dx
=xVaT ¥ 2% - [ L Ly
= oVaT ¥ 2% — [ foiydy + [ gy dx

JVaZ¥x% dx = xW—j’mdx+a1x§mn“1(§)+c
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J'\"ui'i*:x:i dx+j'w}ai+xz dx = xVa? + x2 4+ atan™! (E)+c
2 [Va? +x% dx = xm+utan'1(n)+c
_I\JE!-P.'«\'.! a s - 4 ﬂ'_.'l.' a‘*+x a s x
SVRTFR dx = T 20wt (5) 4 = B 42 (G v e

Using integration by parts, prove that:
fVxT=a? dx = rﬁ?—%mshﬂ (’-;-) +ec

Example 16: Apply integration by parts to evaluate: .
[ e**sinbx dx :
Solution: Let, 1 = [e®™sinbx dx = [(sinbx)(e™) dx

= sinbx [ e™dx — [ [i(sinbx) ) e"‘dx] dx
= sinbx (<) — (b cosbx) ()] ax
= sinbx (=) - 2 [[( cosbx)(e*)] dx
= sinbx (?) —_E :msbx [e™dx— [ {;—I (cosbx) [ e®™* dx} dx]

I = sinbx (ﬁ) —-E cosbx (—':) o | {(—b sinbx) (5“—1)] dx]

I = sinbx (——) —-Ecnsbx( ) ——]e“slnbxdx +c

I = sinbx (T“) -Emsbx(—“- -—EI+ c

: 5 e f—l = 1 e sinbx — -E-e""‘cusbx +c
(“H 2 )l e‘“ [ sinbx - —cusbx] +¢
I—e“Lx - sinbx —ix msbx]+cx

a4+ ‘3
———cosbx|+ C

+ b2

b
2T
I=e [a,+ = smbr P vy

VR Firroer . RN

Evaluate the integrals using integration by parts.

1. [ilnxdx 2. [(nx)? dx 3. [ sin(lnx) dx

4, [x*Inxdx 5. [ysin2ydy 6. [e*cosxdx

7. [xsecTlxdx 8. [In(2x+3)dx 9. [x%e*dx

10. Jxcosxdx 11. [ecos™'xdx 12. ftan 'xdx

13. [xsec’xdx 14, [x*sinT'xdx 15. f[in[x+V1+ x?)dx
16. [x3e*dx 17. [x?*sinxdx 18. ‘[1?":
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3.5 Integration by Partial Fraction

When the terms in the sum:
3 4 ;
Prri ey ®
are combined by means of a common denominator, we obtain a single rational expression:
7x + 22 =
- {(x+4)(x4+2) (“}
Suppose that we are faced with the problem of evaluating the integral:

Tx+ 22
/ (x+4)(x+2) e )

From (i) and (ii), we have:

7x + 22 = 3 R 4
) [x+4}(r+2]dx I x+4) * {x+2]] dx = [ (x+4) dx+ [ (x+2)

e f (x+4) {.\'.'+2]

This example illustrates a procedure for integrating certain rational fractions QE::;, where the

degree of P(x) is less than the degree of Q(x). This method, known as partial fractions consists
of decomposing such rational fractions into simplest component fractions and then evaluating the
integral term by term.

" x3-2x
Example 17: Evaluage: [ dx

x2+3x+2

Solution: We observe that degree of numerator is greater than that of denominator.

xi-2x e 5x+6 . ;
| Fmmdx =[x =3+ ax @ B o

Sx+6 _  Sx+6  _ A Lo o fioEe
Now, x2+3x+42  (x+1)(x+2) x+1 T x+z Eﬂlmtn J ﬁfx&ﬁdx
By equating numérat::r, we get:
Sx+6=A(x+2)+B(x+1) (ii)

Ifwesetx = —2 and x = —1, we get B = 4 and A = 1, repectively.
JEZdx=flx—3++]dr=fxde—3[de+ [ Zdx+4[

x243x42 x+1  x+2

5 -3x+in(x+1) +4in(x+2)+c

-

x242x44
{x+1)3 dx

Solution: Given frdction can be written as:

x*+2x+4 _ A B c

(x+1)7  x+1 i (x+1)2 + (x+1)3

Example 18: Evaluate: [
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By equating numerator, we get:
2+2x+4=Ax+1)*+Bx+1+C
2 4+2x+4=Ax2+(2A+B)x+ (A+B+C)
Comparing coefficients of like powers of x from both sides, we gat:
A=12A+B=2andA+B+C=4
Solving the equations, we have:
A=1B=0andC=3
J- x* t2x4d

1
{x+1}3 -[ L+1 i [x+1]= [x+1]=] dx = -r Hldx +3 I (x+1)3 dx

= [dx+3[G+DPdx =lnx+ D) -+ D +e

3
=Iﬂ(x+1)—w+ﬂ

3x2+5x+3
(x+2)(x2+1)

Solution: Given fraction can be written as:

3x245x+43 A | Bx4C
(x+2)(x2+1) x+2  x2+1
3x2 +5x+3=A*+ 1)+ (Bx+C)(x+ 2)
3x2+5x+3=(A+B)x*+ (2B + C)x+ (A + 2C)
Equating coefficients:

Example 19: Evaluate: [

A+B, 2B+C=5A+2C=3

| Solving the equations, we have: -
| A=1B=2C=1

i :2+5x+3 2x+1
S [oresveren {x+2}(x=+1} =J (x *an ax
= fmdx + Ix=+1dx + f;mdx

=In(x+1)+n(x*+1)+tan"'x+c

I AP——————————m—————x

Evaluate the integrals using partial fractions.

1. jﬁ% x 2. [ dx 3. [S——dx
4 [ 5. J ﬁ’% dc 6 [ (11:1:?::3}
10. [ dx 1. ij:wTﬂdx 12. _fm dx




3.6 The Definite Integral
This section introduces the definite integral, a ﬁmdamental mathematical tool that establishes
relationships between area and other essential quautmes including length, volume, density,
probability, and work.

3.6.1 Partition of the Interval

A partition of the interval [a, b] is a collection ~ $7 y=f(x)

of points:
a=x<x<x<x3< <X <x,=b
that divides [a, b] into n subintervals of lengths: f(xz)

Axy =x;— x5, Ax; =x; — x4, f(xy) f(xn)

ﬂx; = X3 = X7y ey ﬂx,. =X, — Xp1

The partition is said to be regular provided all £x0) L/

subintervals have the same length: H =
i i _a Xp= ETHYE\ Xn-1 Xn=b x

In the figure, each partmnn looks like a rectangle. M B di

For a regular partition, widths of the rectangles

approach to zero as n is.made large.

Area of first (left most) rectangle = length x width= f(x;) * Ax;

Area under the curve = sum of areas of n rectangles

= f(x1)Ax; + f(x2)Ax; + f(x3)Ax3 + -+ + f(xp)Ax,

T

Axy,

= Z FEETAE: csie D)
k—

Expression (i) represents approximation of sum of areas of n rectangles.
Based on our inductive concept, the area under the curve and between the interval [a, b] is:
n

4= lim Z FG)AXy i e (i)

k=1
Expression (ii) provides the fundamental concept of integral calculus and form the basis of the
following definition.

Definition 3.2: A function f is said to be integrable on a finite closed interval [a, b] if the limit:
mn

Jm, ) fCxe)tne
exists and does not depend upon the choice of partitions or on the choice of the points x;, in the
subintervals. In the such case, we denote the llmll by the symbol:

[ F)dx = Jim Z FO)AK o o (i)

k=1
Expressmn (iii) is called the definite integral of f from a to b. The numbers a and b are called
lower limit and upper limit of integration respectively and f(x) is called the integrand.




Theorem 3.2: If a function f is continuous on an interval [a, b] then f is integrable on [a, b] and
the net signed area under the curve between the interval [a, b] is:

A= fﬁﬂa

In the simplest cases, definite mtegra]s of continuous functions can be calculated using formulas
from plane geometry to compute the shaded area.
Example 20:

Sketch the region where area is represented by the definite integral and evaluate the integral
using an appropriate formula from geometry.

@) Jf3dx G) [2,(x+3)dx i) ) VI—x%dx .
Solution:
(i) Graph of the integral is the horizontal line y = 3. 7

So, the region is a rectangle of height 3 drawn over 3

the interval froml to 5. 2

From figure (1), we have: 1

5 i
3dx = area of rectangle = 4 x 3 = 12 sq. units

h i : T 0 12345 x

(i) Graph of the integral is the line y = x + 3. . - Fig()

Whenx =—2, y=—2+3=1

When x=2, y=2+3=5

So, the region is trapezoid where base ranges
fromx=—-2tox = 2.

From figure (2), we have:

_[_zz(x + 3)dx = area of trapezoid :

=2(1+5)(4) = 12 sq. units Bl A0

Fig. (2)
(iii) Graph of the function y = V1 — x? is the upper

: ¥ ‘
semi-circle of radius 1 centred at the origin. - ‘
So, the region is upper right quarter-circle of radius 1
centred at origin. i
From figure (3), we have:
-1 V] 1 X

fniv'l — x2dx = area of quarter circle
- E x 1(1)% = E $q. units Fig. (3)

Example 21: Evaluate the following.
@) Jo(x—1dx () fy(x—1)dx
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Solution:
(i) The graph of the integral is the liney = x — 1.
When x =0, y=0-1=-1
When x=1, y=1-1=0
The region is a triangle fromx = 0tox = 1.
From figure (4), we get: :
J(x — 1)dx = area of triangle = -;-(1}(1) = 5q. units

(ii) The graph of the integral is the liney = x —1.
Whenx =0, y=0—-1=-1
When x=1, y=1-1=0
When x=2, y=2-1=1
The regions are two triangles fromx = -1tox =0
and-x = 1 to x = 2. From figure (5), we get:
i = 1ydx = [, (x = 1)dx + [ (x = 1)dx
= area of triangle A; + Area of triangle A»
=2 (1)(1)+ (1)(1) = 1 5q. units
Note: In the figure (5), the area of triangle A, is below the x-axis and the area of triangle A; is
above x-axis, therefore:
A1=~3 and A> = > which implies Ay + A2=— += =0
Butmcannmbenegatwe mmfommsuchcases,wetnkenetmm
A1+Az=-+-=l '

3.7 Pmparﬂunf'l‘hammlnm
In the finite closed interval [a, b], when upper limit of integration in the definite integral is greater
than the lower limit of integration (a < b), the following facts are true.
(i) If lower and upper limits of integration are equal, then area is zero. i.e.,
: a

L f)dx =0

2
fxd.r:ﬂ
2

(ii) If the lower limit of integration is greater than the upper limit of integration, then:
a b
[ r@ax == [ saax
b a

Which states that interchanging the limits of integral reverses the sign of integral.
For example, '

Fig. (5)

For example,

[0 —1dx = — [{(c—Ddx = 3
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(iii) If c is the point between a and b then:
b
[ FGYdx = [ f(x)dx + [* dx
For example, in figure (5), we have: |

ﬁ@—nm=ﬂu—nﬁ+ﬁ@-nu
Theorem 3.3:

If f and g are integrable on [a, b] and ¢ is a constant, then cf, f+ gand f — g are integrable on
[a, b] and the following statements are true.

W [ : cf(x)dx=c j': f(x)dx (The constant has no effects of limits on it.)
@) [PUG) +g(@dx= [ fdx 2 [° g(x)dx
Showing that the limit of a sum or difference is the sum or difference of the limits.
i) f;lc fx) £d g())dx=c [2 f(x)dx + d [° g(x)dx
Example 22: Find:
@) A2 +59()dx if [* f(x)dx =2 and ¥ 9(x)dx = 4
@) [, 4f@dx if [2f(x)dx=3 and [} fGIdx =1
Solution:
@ [LI2f() +5g(0)dx = [*, 2f(x)dx + [* Sg(x)dx =2 [* fGydx + 5 [* g(x)dx
=2(2) +5(4) = 24 '
G) 2 4f(dx = 47, f(x)dx = 4[[2, fGIdx + f] f(x)dx]|
=4(3+1)=4%x4=16

1 B e

1. Sketch the region where area is represented by the definite integral and evaluate the
integral using an appropriate formula from geometry.

G) [ xdx (i) JO,xdx i) [7(x— Ddx
(v) [J(x+ 1)dx v 2, 2dx

2 § el
2. Evaluate the integrals in each part when f(x) = ; J::} 1

i L[fede ) [Lfxde i) [f@de () [ fedx




3. Using the area shown below in the figure, evaluate the integrals. o ,

i |
R d 14 | |

y=fix)

¥ £
M
g [

-+

(i) j': f(x)dx (i) [, f(x)dx (iii) j: F(x)dx
(v) J;fx)dx ) [, fGxydx W) [ f@)dx

4. Find: _ '
JBF() - 29(0))dx if [°f()dx =4 and [° g(x)dx =5

5. Find: _ '
[HfGddx if [7f(ddx=1 and [} f()dx =2

6. Find:

7 f@dx if [1fGIdx =1 and [ f()dx = =5

7. Use appropriate formula from geometry to evaluate integrals.
0 [G-xde (i) [jR+VI-*ldx (i) [ Vi®—4dx

3.8 Fundamental Theorem of Calculus

In this section, we will establish two basic relationships between definite and indefinite integrals that

together constitute a result called the 'Fundamental Theorem of Calculus'. We will provide a
. powerful method for evaluating definite integrals using anti-derivatives.

We consider a non-negative and continuous function /" on y

an interval [a, b]. The arca A under the graph f over the

interval [a, b] is represented by the definite integral:

b
A= I f(x]dx e g (i)

From (i), we have:

A(a) =10 [Themundmthecuneﬁnmatuaistbeamnbnvcihesinglepuintamd
hence is zero.] .
Similarly, A(b) = A [The area under the curve from a to b is A.]

o
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The formula A"(x) = f(x) provides that A(x) is an anti-derivative of f (x) which implies that
every other anti-derivative of f(x).on [a, b] can be obtained by adding a constant to A(x).

By definition of anti-derivative, suppose:

F(x) = A(x) + c.........(ii)

We check what happens when we subtract F(a) from F(b). From (ii):

Fla)=A(a) +c......(ili{) and F(b)=AD)+c......(iv)
Subtracting (iii) from (iv):

F(b) — F(a) = 1[1!{!:) +c]-[A(a) +c]=Ab)-A(a)=A-0=4A
Therefore, from (i), we have:

b
A= [ fG)dx = F®) = F(@) e ®)

Statement: The Fundamental Theorem of Calculus states that if f is continuous on [a, ] ad F is
antiderivative of f on [a, b], then: o

b &
[ r@rax=F®) - Fa)

This can be written as:
b
[ Feoax = IFGIZE = F&) - Fea)

We can emphasise that a and b are values for the variable x.

SsssssssssssssdsdaddssdsadadandReRERaEREEEREREEE S TrIrrITrIrrrIrY SamsssssssanEesd

Thua, the definife mtegmlcmhe evaluated by ﬁndmg an:.r ¢ anti-derivative of the mtr.grnl and um
i subtracting the value of this anti-derivative at the lower limit of integration from its value at the :
upparhmn ofi mtcgrauom :

511 AEssAsSEARAARSRAE A T T T e R

Example 23: Evaluate: j; x dx

First, we apply upper limit

32 12
Solution: I xdx = I I =% TN and then lower limit.

=218
g 1_2_4
Example 24: Evaluate: j'z (3x% —x + 1)dx
Solution: [ {3:2—-x+1)dx=|x‘——+x| =?'—%
=(22-% R B o
=(22-Z+2)- (-2° -5+ 2))

=(B8-2+2)-(-8-2-2)=8+12=20

TR - 1::1}{‘;;_
o 110




'Applying limits, we get:

Example 25: Evaluate: [ V2xZ + 1 xdx d _

Solution: We can apply two methods. i Evaluate: .ﬁ" LIRRECE
Method-1: By substitution but without changing the limits. ' »
Let u = 2x? + 1 which implies du = 4x dx

Thus, f:a.-‘zx!+lxdx—1_[zd 2x% + 1 X 4xdx
=12va xdu—-xl-u:I (Substituting for u)

- |; (2x% + l}ilmI ' (Resubstituting for x)

= %[2(2)2 + 1]':' - %[Z[l'l)z % 1]%: _;_[g; it 1;]

=l _21
-5(2'? 1) : .
Method-2: By substitution with changing the limits.
Letu = 2x* + 1 which implies du = 4x dx

Whenx = 0,u =2(0)2+1=1 and whenx=2,u=2(2)’+1=9'
Thus, f:¢2x5+1xdx=%j;1342x!+1 X 4xdx

1,9 1 By ituti -
=11V xdu=2x -u:L (Substituting for u)

——[9z ] =1@7-n=2=2

Example 26: Evaluate: [ dx whena =%,b =1

a i1-cosx 3
b 1 b 1 1+cosx b 14cosx
Solution: [ ——dx=[ =f
a 1—cosx @ 1-cosx  1+cosx a 1-cos®x
b 1+cusx
~ Ja sinZx I [sln’: slnz.r] dx

=f:[cuseczx + cotx cosecx]dx
= |—cotx|} + |—cosecx]’
Applying limits and substituting values of a and b, we get:
b 1 4 3 b4 L e
Ia i A (mt; - cat;) - (msec; - msec:)
P o R R (i = 8 il
=—(5-1)-(F-V2)=F+1-%+V2
=1+V2-3




Example 27;: Evaluate: [ x Inx dx
Solution: Taking Inx as first function and mtegmtmg by parts, we get

J{xnx dx = [{ {Inr)(x)dx‘linxx—l - [ = —dx
=l[nxxr?|1—5_[1 xdx=|!n.rx—l —1:('5-'
=(1nex-‘—z.—ln1x1—z)-i( ) (lx-w——ux )—-—+% .
-20-f43=243

I A= —e—e—a

Evaluate the definite integrals.

1
1. [ (x+3)dx 2. [ [y+ady 3. [iex+1Ddx
o
4. [Y6x*-4x+5)dx 5 [ ,(12x5-36)dx 6. [*x cos9do
k|
z 4 x*+8 2
7. [§ sec’20 d6 8. =Sk 9. [% x—cosmxdx
10 4 cosyx : 11 E i 12 _l'-:: 1 + cosé de
. f S dx : _[E sinx cosx - i ey
3 B 3
13. [*: (seex+tanx)®’dx 14. [% cos’xdx 15. [; Inx dx
4 z
r x x m 1 w -
16. [, (E! —24) dx 17 ¢ e dx 18. [# tan~'ydy
m
2 sinx
19. Iﬂ_ (2 + cosx)(5 + cosx) dx 20. -rZ x{x+1}

3.9 Areaand Volume

The definite integrals have applications that extend far beyond the area problems. In this section, we
will also apply definite integrals for finding the volume. We have an inductive idea of what is meant
by the area of certain geometrical figures. It is a number that in same way measures the size of the
region enclosed by the figure. The area of a rectangle is the product of its length and width likewise
the area of a triangle is half the product of lengths of the base and the altitude.

The area of a polygon may be defined as the sum of the areas of triangles into which it is decomposed

and it can be proved that the area thus obtained is independent of how the polygon is decomposed
into triangles.




However, how do we define the area of a region in a plane if the region is bounded by a curve? We

evencertainlhatsm:haregionhasanm?lnmesnm:waywlumeqfwﬁdsmhefmmdbyusing .
definite integration. !

3.10 Area of Bounded Region 4y

3.10.1 Area Between a Curve and the X-axis
If f is a non-negative continuous function on [a, b],
then the area underthegrn;phoffﬁ'omatobis:

A= L )

Example 28: Find the area of the region bounded by the line 2y + x = 8, the x-axis and, the
lines x = 2 and x = 4. 4
Solution: In the graph, CD is the given line. g
2Zy+x=8 = y=':i= }r=4—§-

Required area = area of trapezium ABCD

= area between line CD and x-axis fromx=2tox=4

= fiis = £ (4= e = fox-5];
= [4® -%] - [¢@ -Z] = 16 - 4) - (8- 1) = 5 5q. units

3.10.2 Area Between Curves

If the function f(x) is greater than the function g(x) for all x between a and b, then the area
under the graph of f(x) minus the area under the graph of g(x) is the area between the curves.
Thus, the area between the curves f(x) and g(x) is:

b
e j [f(x) —g(®))dx ; f(x)> g(x)

Example 29: Find the area of the region bounded by graphs of*

fO)=(x~1)?and g(x) =3—x Ln e
Solution: To find the limits of integration, we find
common points of both functions by solving
f)=g(x) = (x-1)?=3-x
= x*-x-2=0
After solving, we get:
x=-—landx =2 :
For-1<x <2, g(x)> f(x) :
(Also clear from the graph of both curves.)

R P
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Thus, the area of region bounded is:
2 2 2
A= 196 - f@Ndx= [ (3= G- D2de [ @+x-xP)dx
-1 -1 -1
= e 2 2 O 2
=lex+ 5 -5 =[2@+5-F] - 20 + G-
= Noluoklydle g 8 el e B ERE s
=[++2-] [2+?+3]—-ﬁ 2+2-2-1=8-3-05=45sq. units

3.11 Volume of Solids of Revolution
3L Dise Method

Consider a region bounded by the graph of y = f(x) and the x-axis between x = a and x = b
that is rotated about x-axis. If a = xy < x; < x; ... < x, = b is partition of the interval [a, b],

the volume V of the resulting 3-D region can approximated by the sum of volumes of discs
obtained after rotation.

The radius and height of discs D; are f(x); and Ax;
Respectively. Thus:
n

=V

V=) nlf)lax,
i=1

Letting Ax; = 0, we have:

Volume of disc = area of base x height = (nrr?)(h)

V= nIbU(x)]zdx

a
Example 30:
Find the volume of the solid
obtained by rotating the graph y = x?
between x = 1 and x = 2 about x-axis.
Solution:

2
V=n j (]2

z 2z
V= nf (x?)%dx =nJ' x*dx
1 1

i
] E 515 = ?.1_“ its
5], =3 (2 ) S~ cu.uni
Note: If a solid is obtained by rotating the regions bounded by the graph x = g(y) about y-axis,

we can also use the disc method to find the volume as follows.

V =n[ lg()]%dx

x!‘r

V=m
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Example 31:

Find the volume of the solid generated when the
region enclosed by y = Vx,y =0andy = 2

is revolved about the y-axis.

Solution:

First sketch the region and the solid. The cross
section taken perpendicular to the y-axis and

disk suggests that we can rewrite y = v¥ as x = y2,
Thus, g(¥) = y? and the volume is:

V=n j Oy = = f “Otiyen f yedy

5|2 32
V=m %- =;_r(25_u5)=_5r£ cu. units
0

3.12 Applications
3.12.1 Consumer and Producer Surpluses
Economists use the definite integral to define the concept of consumer and producer surpluses.
The demand for a commodity by consumers as well as the amount supplied to the market by the
manufacturers can often be expressed as a function of the per unit price. Let D(x) and S(x) be the
number of units demanded and the number of units supplied, respectively, when the commodity sells
ataprice x per unit.
Ifthe demand equals the supply:

D(x) = S5(x) .
The market is said to be in equilibrium and the corresponding price of the commodity is called the
equilibrium price. If p is the equilibrium price and b is the price at which the demand of the
commodity is zero (b (s)=0), the integral:

b
Cs = f D(x)dx
P
is called the consumer surplus. Similarly, the integral:

p
Pr = j S(x)dx

where S(c) = 0, is called the producer surplus.
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Example 32:
Suppose the demand and supply of a commuodity selling for x dollars a unit and
D(x) = 1000 — 20x and S(x) = x? + 10x, respectively. Find the consumer and producer surplus.
Selution: From the graph it is clear that D(x) = 0 when b =.50, §(x) = 0 when ¢ = 0 and
D(s) = 5(x) forp = 20. Cs represents the area under the graph of D(x) on the interval
[20, 50] and Ps is the area under the graph of S(x) on [0, 20]. We have:

: .
Cs = f D(x)dx = j(mou — 20x)dx
600y (20,600)
= |1uuux-—x2| = $9000 c\ 5004
400+ ®
And,
_ 3004 @ %,
Ps = f S(x)dx-j (x% + 10x)dx 0t /o
-+ + /| - ;
Ps =|;;3+5,| - 34665.5? 0 10 20 30 40 ¥
0 > b

3.12.2 Rectilinear Motion

If f(t) is the position function of an object moving in the straight line, then we have:
velocity = v(t) = % and acceleration = a(t :
By using the definition of anti-derivative, the quanuues § and v can be written as indefinite integrals.
S(t) = fv()dt and v(t) = [a(t)dt
By knowing the initial position S(0) and the initial velocity v(0), we can find specific values of
the constants of integration.
[ Key Facts

(i) For upward motion:
B3 S =0, v(0) >0, a=g=-98m/s?* = -32ft/s*?
A (ii) For downward motion:

1 S5(0)=h, v(0) =0, a=g=98m/s* =32ft/s?

Example 33:
The position function of an object that moves on a coordinate line is S(t) = t* — 6t. Where § is
measured in centimetres and t in seconds. Find the distance travelled in the time interval [3, 9].

Solution: The velocity function:

v(t) =;£=2t—ﬁ

nnpllesthatvz DmeE t < 9. Hence the distance travelled is:

S(t) —Iv(t)dt-I(Zt 6)dt

3
=|t? —6t|} =(81—54)—(9—-18) =4cm
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3.12.3 Work

In physics when a constant force Fmoves an object a distance d in the same direction, the work done
isdefinedas W = Fd.

Definition: Let F(x) be a continuous force acting at a point in the interval [a, b], then the work

done W by the force on moving an object from a to b is:
b

W = f F(x)dx
3.12.4 Motion of Spring a
Hook's law states that “when a spring is stretched (or compressed)
beyond its natural length, the restoring force exerted by the spring is
directly proportional to the amount of elongation (or
compression)”. Thus, in order to stretch a spring, x units beyond its x
natural length, we need to apply the force:

F(x) = kx; k is spring constant.

R
5 [EULION
PaYoRIS
=: LSIEERT

Example 34:
A force of 130 N is required to stretch a spring 50 cm. Find the work done in stretching the
spring 20 cm beyond its natural (unstretched) length.

Solution:

x = 50cm = 0.5m and F = 130N

Substituting values of x and F in F = kx, we have:

130=kx05 = k=260N/m

Thus, F=kx = F=260x

Now,x = 20 cm = 0.2m, so that the work done in stretching the spring by this amount is:

5
é 26
W = f 260x dx = |130x%|3 = =" 52]
0

1. Find the area of region bounded by the curve y = x2, the x-axis, lines x = 1 and x = 3.
2. Find the area under the curve y = v6x + 4 (above x-axis) from x = 0 to x = 2.
3. Find the area of region bounded by the curve y2 = 4x and line x = 3.

4. In the figure, a sketch of the function ]
¥ =3(0.2x? +x) is shown. Find: ;
(i) the area of region A. - 3
(ii) the area of region B. 2
(iii) area of the region fromx = 1to x = 4. !

: A
(iv) area of the region from x = —1tox = —4. 35 S 1 1 3+
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5.  Find the area bunded by the graph:
(i) y=1+cosx ;[0,3m] (ii) y=—1+sinx ; [—3—" =

6.  Find the area of the region bounded by the graphs of y = x,¥y = —2x and x = 3.

7. Find the area of the region bounded above by ¥ = x + 6, bounded below by y = x? and
bounded on the sides by the lines x = 0 and x = 2.

8.  Find the area bounded by the curve y = x® + 1, the x-axis and the line x = 1.

9.  Find the area of the region enclosed by x = y? and y = x — 2 integrating with respect
to y.

10. Find the volume of the solid that is obtained when the region under the curve y = v/x over
the interval [1, 4] is revolved about the x-axis.

11. Find the volume of the sloid that results when the shaded region is revolved about the

indicated axis.
() y=v3-x (i) y=3-2x N\
about x-axis about y-axis
2
] ll i 1 3 2 o 15 \:

12. An object moves in a straight line according to the position function given below. If f is
measured in centimetres, find the distance travelled by the object in the indicated time
interval:

(i) S() =t2-2t; [0,5]
(iii) S(t) = 6 sinmt ; [1,3]

13. It takes a force of 50 N to stretch a spring of 0.5m. Find the work done in stretching the
spring 0.6m beyond its natural length.

14. Aforce F =2 x b is needed to stretch a 10 inch spring an additional x inch. Find the work
done in stretching the spring 16 inch.

15. Find the consumer and producer surpluses, when:

(i) S(x)=24, D(x)=100—-2x
() S(x)=x*—-4, D(x)=—-x+8
(iii) SG) =20 +3x, D(x) =36 —x? .
16. Find the total revenue obtained in 4 years if the rate of increase in dollars per year is:
f(t) = 200(t — 5)2

17. Find the total revenue obtained in 8 years if the rate of increase in dollars per year is:

£(t) = 600V1 + 3t

18. Find the area bounded by the curve f(x) = x* — 2x? + 1 and the x-axis in the first
quadrant bonded by the line x = 1.5.

(i) S(e)=t>-3t2-9t; [0,4]

mm— s T —
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. Select the correct option in the following.

(i) If f is integrable, then it is:

(a) discontinuous (b) unbounded (c) continuous (d) linear
(i) If f'(x) = 3x? + 2x, then f(x) is: : :

(a) 6x+2+¢C b) x*+x%+c  (c) 3x*+2x%+c (d) 1.52° +x°+¢
(iii) [+ (x?)dx is equal to:

(@ x*+c (b) 2x+c¢ © S+c (d) 2x+c¢
(iv) [sin2xdx is:

o) 25, () 2cos2x+c () -T=4c (@) -=E4e
(v) fs d.t is:

(a) 3 (b) 4 (c) 5 (d) 6
(vi) j'r;:"cusxdx is:

@ -3 ®) 3 © 3 @ -3
(vii) <= [, t3dt is equal to:

(a) t* (b) ¢3 (©) x® (d x*—16
(viii) What is relation between [ xdx and [ tdt ?

@ J]xdx< [ ede ®) [ xdx> [} tde

(©) J:xdx# [ tdt @ [Pxdx=[’tdt
(ix) Area under the graph of f(x) =4 ; [2, 5] is:

@ 2 (b) 4 © 5 @ 12
(x) [Vxdx is:

(a) x':' +c (b) ;:’5 +c (c) gxg +c (d) I% +c

. Evaluate:

() [odx (i) [ x(x®+1)%x (iii) [ cos?3x dx
(v) J ;_—‘-}f::-;-f—ﬂdx (v) [sin"lxdx (vi) [ 2xsin3x dx
(vii) [ xZe*dx (viii) ﬁ(sinz:rﬂﬁmsdt-x)dx (ix) J; ’ m;

. Use the substitution u = 2x + 1 to evaluate f W — dx.

4. A model rocket is launched upward from ground level with an initial speed of 60m/s.

(a) How long does it take for the rocket to reach its highest point?

(b) How high does the rocket go?

. Suppose that a parachute moves with a velocity V(t) = cosmt m/s along a coordinate line.
Assuming that the parachute has the coordinate § = 4m at time t = 0 sec, find its position.




