ROTATIONALAND &
CIRCULAR MOTION

Student Learning Outcomes (SLOs) y

e e P

i The students will: ._
|« Express angles in radians. _ b
3| « Define and calculate angular displacement, angular velocity and angular acceleration [This involves use of

+ | S=r8,v=rw,w=2n/T, a == rw! and a = v!/r to solve problems].

;i = Use equations of angular motion to solve problems involving rotational motions.

Analyse qualitatively motion in a curved path due to a perpendicular force. i

« Define and calculate centripetal force [Use F = mrw?, F = mv? /r]. >

» Analyze situations involving circular motion in terms of centripetal force [e.g. situations in which centripetal
acceleration is caused by a tension force, a frictional force, a gravitational force, or a normal force].

« Define and calculate moment of inertia of a body and angular momentum.

« State and apply the law of conservation of angular momentum. Illustrate the applications of conservation of

angular momentum in real life. [Such as by flywheels to store rotational energy, by gyroscopes in navigation
systems, by ice skaters to adjust their angular velocity].

Justify how a centrifuge is used to separate materials using centripetal force.

Derive and apply the relation between torque, moment of inertia and angular acceleration.
Explain why the objects in orbiting satellites appear to be weightless.

Describe how artificial gravity is created to counter weightlessness.
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ROTATIONAL AND CIRCULAR MOTION

Rotational motion is the turning or spinning motion of an object about an axis that passes
through it. For rotational motion of rigid objects, which are non-deformable and the particles
forming it stay in fixed positions relativetoone . = =
another as an object is rotated, we consider an Rotation Axis !
axis of rotation. Axis of rotation is a line about "
which rotation takes place. This line remains
fixed during rotational motion, while the other
points of the body move in circles about it.

The axis of rotation may be a pivot, hinge or any |
other support. Every point in a rotating rigid |
object moves in a circle (shown dashed in Fig.
4.1 for points Py, P; and P;) with the center on the axis of rotation. A straight line drawn from
the axis to any point in the object sweeps out the same angle in the same time interval.

4.1 2 ROTATIONAL KINEMATICS

Rotational kinematics deals with motion of objects | Y
along a circular path without any reference to forces or | gt Vg

| e 5 Position "
torques. i . *  wvector "

4.1.1 An"gular Position (e}

Let an object ‘A‘ is rotated through arc length ‘S’ from v
a certain reference axis, along a circle of radius ‘r’ as | " b e |
shown in Fig. 4.2. The angular position of the rigid !
object is the angle ‘8" between this radial line | H‘"" 4.2 hngul!r m"’" |
(represented by position vector ‘r’) and the fixed reference line in space (often chusen as the

+ X axis). Mathematically, prEsg— - e '
r_ e e - mu e e e e - T
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This resembles the way we identlfy the position of an =«
object in translational motion as the distance x : ’
between the object and the reference position, which |
is the origin (x = 0).

4.1.2 Angular Dlsplacement (AB) K

|
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ROTATIONAL AND CIRCULAR MOTION {“
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As a particle on a rigid object travels from position A to position B in a time interval t, as in
Flg 4 3, the reference Ime fixed to the object sweeps out an angle, given by:

- (4. 2}

represents clockwise motion.

Units of Angular Displacement: The Sl unit of angular »”

. Position

displacement is radian. Other units are degrees and g vector A£° .

revolutions. : A ; i 3

Relation between radian and degree: :

In one complete rotation, there are 360°. bepsaianaesss JIONNS el . .
e e g e , : ; [ o reference ,

[ Number of degrees in one re e | P

To find the number of radians in one revelutien we | %, .

put S as circumference of circle, which is 2mr, in L 3

equation 4.1, we get: e 7 T

- number of radians in one revolution = 2w rad | (s radiow (£ rud) is o anigls sulstendhed g€

As for one cemplete revelutien the nu ke contor of i avele by wn ave wieh i lowgen

must be equal to the numher ef degrees therefere. e b e iiclun of e elvele;

Direction of Angu!er D‘Isplacement' Angular displacement is a vector prectionof

quantity, having both magnitude and direction. The right hand rule is
used to specify the direction.

direction of rotation; the thumb gives thc‘

Ldlspl&oement P ; N position
4.1.3. Angular ‘Velecity (w) s
rThe time rate of change of angular displacement of  points in the  points in the

,a body js called angular velocity. . i positive z- direction negative z-direction
lf ‘40" is the small angular displacement in time

y y

‘at’, then angular valucity w’ is:

,t,_ ar—- M - (4.3) q_j A

: =l
Units of Anguler Velncity “The Sl unit of angular
velocity is radian per second (rad s™).

Other units are deg/s or rev/s or rev /min (rpm).
The direction of angular velocity is same as that of
angular displacement.
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UNIT 4 ROTATIONAL AND CIRCULAR MOTION

Average Angular Velocity (wav):
The total angular displacement ‘0’ of a body during time ‘¢’ is called average angular velocity.

rnstantaneous Average Velm:lty {mmst}

~ The limiting value of the ratio between small angular displacement ‘46’ and small time interval
‘at’, such that the time approaches to zero, is called instantaneous angular velocity.
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4 1 4 Angular Acceleratmn (a) " Rotation

Thetlrﬁemlae,of‘dﬁhié‘af il mfm»
If 'm’ is the angular velncity in time ‘t’, then ‘x
angular acceleration ‘a’ is:

: ! '“3 Pty d y
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Units of Angular Acceleration: The SI l-ll'lit of with time
angular acceleration is rad/s’. Other units are
deg/storrev/st. SR X
The direction of angular acceleration is determined ¢
Figure 4.6: Angular acceleration.

by right hand rule.

e It is taken as positive when angular velocity of a body increases. In such case angular
velocity and angular acceleration have same direction.

‘o It is taken as negative when angular velocity of a body decreases. In such case angular
velocity and angular acceleration are anti-parallel.

Average Angular Acceleration (a,,)
The total angular veluclty w’ of a body in time ‘t’ is called average angular acceleration.

Instantaneuus Average m:celeratiun [u;nﬁj
The limiting value of the ratio between small change in angular velocity ‘w’ and small time
interval ‘t’, such that the time approaches to zero, is called instantaneous angular acceleration.
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4.1.5 Relationship between Linear and Angular Kinematic Quantities

Linear kinematic quantities like displacement, velocity and acceleration can be related with
their rotational analogue.

A. Relation between Linear and Angular Displacement: Consider the Fig. 4.7, in which a
particle that moves in circle of radius ‘r’ with center at ‘O’. Let the particle moves from point
A to B, and there is another point C such that £ AOC = 1 radian, therefore Arc AC must be equal

to radius ‘r’. By using simple geometry, we can write:

- u
- .y

ArcAB  ZAOB e g
ArcAC ~ ZAOC
Here, Arc AB is linear displacement ‘S’ and £AOC is the ~ / g
angular displacement ‘0’. As Arc AC = r and £AOC = 1 :' .................... L
radian, so the above equation becomes: | 0 ;
“‘l‘ r"'"
Figure 4.7: Linear and angular

acceleration.

B. Relation hetween L1near and Angular 'Jelncity
Multiplying both sides of equation (4.9) by 4/At and taking limit At approaches to zero, we get:

A A
m =S = lim —=(ré)

Since there is no change in radius ‘r’ with respect to time, therefore:

nmﬁ—rxnmﬁ (4.10)
-0 At
Now by definitions of linear and angular velocities:
AS . &0
= Iirn— 4.1 and = Ilrn— 4.12
A (4.11) e (4.12)

Putting values fmm equatinn {4 11} and equatlcm [4 12} in equatmn [4 10}, we get

ThE poinl:s A and B move ::Ioser tngether as At appruaches to zero. And the directiun nf Iinear
velocity is along the tangent to the circle. Therefore, this velocity is also called as tangential
velocity.

C. Relation between Linear and Angular Acceleration: In angular motion, the linear
acceleration has two cnmpnnents tangentlal component and the radial component, as shown
in the Fig. 4.8. .

o7



i =

ROTATIONAL AND CIRCULAR MOTION

:*ln' "I"_ECtDr‘ form: a=ac+ ap

In magnitude a= ,Jaﬁ +ag Pathof motion
A TR R . - : ] = ‘!'. . -
Tangential Component: o
The component of angular
acceleration which is parallel to ¢
linear instantaneous velocity is :
tangential component of
acceleration. Thus, tangential
acceleration occurs due to change

in magnitude of linear velocity. A ekl

Multiplying both sides of equation Figure 4.8: Acceleration components.
(4.10) by 4/At and taking limit as - '

At approaches to zero, we get:

lim Ev = lim £[mr}
at—0 Af At=0 At
Since there is no change in radius ‘r’ with respect to time, therefore:
Aw

Irm&—v=r>¢llm— —(4.149)
ar—0 At ar—+0 Af T

Now by definitions of linear and angular accelerations:

Av
ﬁ':.na o = ay, (4.13)
. Aw
and a = lim — (4.16)
ar—0 Af

SRR SR e AN | h
This enables s to write all the kinematic equatmns in rotational form, as shown in the Table
4.1. Hlnematits fnr rntahunal mutmn is similar to translatlnnal k1nemat1c5.

Equations for Linear Mntion Equatiuns for AngularMotlun
S=vt _ f=wt

vi=v; + at Wws=w;+at

2aS=v'- v 2af8=w¢-w/
S=vt+1%at 0=w;t+ ¥ at?

Radial Component: The component of acceleration i1 angular motion which is along radius of
the circular path is radial component of acceleration. This acceleration arises due to change in
direction of linear instantaneous velocity. For an cbject moving in a circular path with constant
speed, there is only the radial acceleration, also called centripetal acceleration.

Example 4.1: In a workshop, a bicycle tyre of radius 33.1 cm is rolled across the level floor
with an initial velocity of 6.80 m s™'. Assuming constant angular acceleration, the tyre comes
to rest at a distance of 74.8 m. Determine (a) initial angular velocity of the tyre; (b) the

total number of revolutions it made before coming to rest; (c) the angular acceleration of
the tyre; and (d) the time it took before coming to rest.
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ROTATIONAL AND CIRCULAR MOTION & ﬂ

.'IJH(I
Given: Initial velocity ‘vi’ = 6.80 m s™ Final angular velocity ‘wy’ = 0.00 rad s
Radius ‘r' =33.1cm=0.331m Distance ‘S’ =74.8 m
To Find: (a) Angular velocity ‘wi’ =? (b) Number of revolutions ‘N’ =?
: (c) Angular acceleration ‘a’ =7 (d) Time ‘t" =7
Solution: (a) The relation between linear and angular velocityis v=re or o =%
6.80 -1
Putting values: W= 0331 therefore, w=2054rads

(b) When the tyre completes one revolution, it moves a distance equal to the circumference of
the tyre (2nr), as long as there is no slipping or sliding. The number of revolutions will be the

total distance divided by distance covered during each revolution (2nr). — E’?;;
Putting values: N = a5 therefore, N = 35.9rev
o = 2%3.14x0.331 ' :

(c) In one revolution there are 2n radians, the total angular displacement 6 will be 35.9 x 2n
radians = 225.6 radians (0 = 225.6 radians). To find angular acceleration we would use the
equation independent of time (3™ equation) i.e.

2 _o -

200 = o} - o phi e
Putting values: a= %2256 or a=-0.94ra

(d) To find ‘t’, we can use any of the equation involving time, however the simpler equation
o, = o, +at, by rearranging this equation for time, we get:

LR i
o
0-20.54
utting values: t=——— therefore, t=21.9s
ipbihi 20.94

So, the tyre will take about 22 seconds before coming to rest.
Assignment 4.1

The front wheel of a tractor travels 700 revolutions while the rear wheel 280 in a time
interval of 40 seconds. Find their angular velocities.

4.2 CENTRIPETAL ACCELERATION AND CENTRIPETAL FORCE

Consider a particle is moving in a circular path of radius r with constant speed, this means that
direction of velocity is changing. This change in velocity of the particle produces acceleration
which is directed towards the center of the circle, this type of acceleration is called centripetal
acceleration.

Co_nsider the Fig. 4.9 (a) in which a particle follows a circular path. The particle is at point A
at time t; with velocity v;. It reaches at point B at a later time t; with velocity v¢. For uniform

circular motion v; and v; differ only in direction; their magnitudes are same, i.e. [V,[ = |Vfi = |V|
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In Fig. 4.9 (b) velocity vectors have been redrawn tail to tail. The vector 4v joins the heads of
two vectors, representing vector addition,

V, =V, +Av .

The angle ‘A8’ between the two position

vector ‘ri’ and ‘ry’ is the same as the angle
‘A0’ between the two velocity vectors ‘v,

and ‘v¢’. This is because the velocity vector |
is perpendicular to the position vector, thus
the two angles must be same. This allows us |
to write a relation for the lengths of the i

sides of the two triangles. |
Av_ar |
¥. T /
Where || =[-’}| =|-"| and IVII - |""fl = |V| | . e -"ﬁf
or AV =v % l“""\-. -""Jf'
Dividing both sides bg .itr, we get: | o mmmﬂ;&umm; to B its velocity
i ~ o | vector changes from v, to v,,

Now imagine the points ‘A’ and ‘B’ in the
figure are extremely close together. As ‘A’
and ‘B’ approach each other, ‘At’
approaches to zero. The acceleration at
this stage will now be instantaneous
acceleration.

v Ar
“‘Fﬂﬂ"ﬂ? Figure 4.9: Centripetal Acceleration.
Since, v = lim E. Therefore, a= Yy
at-0 Af r
This acceleration is referred to as centripetal acceleration ac.

v2 vZ)a
a=— or ac=|—|r
r r

As centripetal acceleration a. is directed towards the center of the circle, the radial vector r
is directed outwards from the center of the circle, thus a negative sign can be added to the

equatinn
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According to Newton’s second law, an object that is accelerating must have a net force acting
on it. for example, to open a door, force must be applied to produce tangential acceleration
thereby creating torque. Similarly, for an object to move in a circle, a force must be applied
to it to keep it moving in that circle. Thereby giving it necessary radial (centripetal)
acceleration.

4.2.1 Centripetal Force

The net force that causes the particle to undergo centripetal acceleration is called centripetal
force Fe.. .. - 5
When Newton's second law is applied toa parl:icle mn*.ring in a uniform circular mntiun we can
write: ' Fc=m ac (4.20)

Putting equation (4.18) or equation (4.19) in equation (4.20), we can write centripetal force F,

2 L]
as: i =_(mv ]r
r

and _ Fe=-mrer. . JA2E) nnniin ol
The direction of the centripetal force is always directed towards the center of the circle.

Centripetal force is not a new force, but any net force that makes an object move towards the
center of the circle can be termed as centripetal force. For example, to swing a ball in a circle
at the end of a string, the tension in the string act as centripetal force. For a moon revolving
around the Earth, or planets revolving around the Sun, gravity act as centripetal force. In other
situation, it can be a normal force, or even an electric force (as in CD players and computer
hard disks).

Frictional force and normal force as centripetal force:

When a car travels without skidding around an un-banked curve, the static frict*onal force
between the tyres and the road provides the necessary centripetal force. The reliance on
friction can be eliminated completely for a given speed, if the roads are banked at an angle
relative to the horizontal while making a turn (Fig. 4.10).

F,s5in @

: mg
(a) (b)
Figure 4.10: Friction and normal force as centripetal force.

Because the roadbed makes an angle with respect to the horizontal, the normal force has a
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component ‘Fy sin@’ that points toward the center ‘C’ of the circle and provides the centripetal
force.

In the Fig. 4. 10 (a) part shows a car going around a friction-free banked curve. The radius of
the curve is ‘r’, where ‘r’ is measured parallel to the horizontal. Part (b) of the figure shows
the normal force ‘Fn’ that the road applies on the car, the normal force is perpendicular to the
road. Because the roadbed makes an angle ‘0’ with respect to the horizontal, the normal force
has a component ‘Fu sin 6’ that points toward the center C of the circle and provides the

centripetal force.

mv?

(4.22)

F, =F,sind =

Since the car does not accelerate along the component of normal force ‘Fy cos 6, this
component only balances the weight ‘mg’ of the car. Therefore, ‘Fn cos 8 = mg’.

F,sin@ mv*/r
FN cos¢ mg

or tané = — {4 23} T _

ZAREATSAE e i bl i :

This Equatmn indicates that for a given 5peed v, the centnpetal furce needed fur a turn of
radius ‘r’ at an angle ‘@’ is independent of the mass of the vehicle. higher speeds and smaller
radii require more steeply banked curves—that is, larger values of ‘@’. At a speed that is too
low for a given ‘0’, a car would slide down a frictionless banked curve; at a speed that is too
higher, a car would slide off the curve.

Tension force as centripetal force:

When objects are connected by a string or (

rope and moving in a circle, the tension in e < E
the string acts as the centripetal force. | .
The tension in the string is responsible to |

provide the necessary centripetal force, |

as it pulls the objects towards the center |

of the circle, preventing them from

maving in a straight line and causing them

Dividing equation (4.22) by this equation, we get:

to follow a curved path instead. For |
example, to swing a ball in a circle on the |
end of a string, the tension in the string | |
act as centripetal force, as shown in Fig. | Side view Top view |

4.10 (c). In this case centripetal force ‘F¢’ Figure 4.10 '['-‘-] Tansim inthe m as ml E
is provided by tension ‘T’ in the string | - force. '
such that:

.

The: rnagmtude of the tensmn in the stnng is dlrectly related l:a the speed of the objects and
the radius of the circle. As the speed of the objects or the radius of the circle increases, the
tension in the string must also increase in order to provide the necessary centripetal force to
keep the objects moving in a circular path.

Gravitational force as centripetal force: The force of gravity keeps planets in orbit around
the sun and satellites in orbit around Earth, serving as the centripetal force. Without the force
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of gravity acting as the centripetal force, planets and satellites would not be able to maintain
their orbits and would instead drift off into space. This force is essential for malntammg the
balance between the
inward force of gravity
and the outward force of
the object's inertia: This
is why the sun's
gravitational pull keep
planets in orbit around it,
and Earth's gravitational i
pull is able to keep Figure 4.10 (d): Examples of nantrlpatal force.

satellites in orbit around

it, as shown in Fig. 4.10 (d). In this case, the gravitational force ‘Fg’ is responsible for providing
the centripetal acceleration required for the circular motion. Mathematically:

It : s F =ﬂf_ S &r.m c#]

ri]

;
E‘..'::._. JJE S R _¢._._._-u.....¢-._._._.=._..!.. e S - i AP e . . -....u.n._.\.a.l'_ =
Centrifuge: A centrifuge is a device that separates substances 5u5pended ina liquid mixture by

spinning a sample of liquid mixture very quickly around an axle. Any small denser particles
found in the liquid travel in a straight line inside the test tube, obeying Newton’s first law. The
liquid in the test tube
applies a centripetal force
on these particles to keep
them moving in a circle.
After running the centrifuge
at high speed for a period of
time, the particles become
clumped together at the
bottom of the test tube,
which can be collected and - —_—

the sample is analyzed, as - Figure 4.11: Centrifuge

shown in Fig. 4.11.

The same centrifugation principle can be applied in the following commonly used devices.
Cream Separator is a centrifugal device that separates milk into cream and skimmed milk.
Washing Machine Dryer consists of a long cylinder with small holes on its walls. Wet clothes
are placed in this cylinder, and then rotated rapidly to dry it.

Example 4.2: The centripetal force on a car of mass 856 kg moving along a curve is 7250 N.
If its speed is 12.0 m s’', what is the radius of the curve?

Given: Mass ‘m’ =856 kg  Centripetal force ‘F’ = — 7250 N.  Speed ‘v’ = 12.0m s,
Solution: Radius ‘r’ =7

Solution: The centripetal force is given as:

mv? mv*

or r=———»

r QY
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A car, with its centre of grr:wil:jil . Eart
whose speed limit is 15 m s, Find radius of the cun

4.3 MOMENT OF INERTIA

onal motion
~ about a fixed axis is called moment of inertia . B i
(or rotational inertia).
The moment of inertia (or rotational inertia)
is the rotational equivalent of mass. Objects
with larger mass have a larger inertia,
meaning that they are harder to accelerate
linearly. Similarly, an object with a larger
moment of inertia is hélrder to angula?;‘ly FUBIng objact I= Zm' n
- accelerate. The moment of inertia is given
:l:n_}_',:,__ S _ . Figure 4.12: Moment of inertia.
7 4t l=mrs i 14, 24} SR
If the budy is rigld we divide the whole body into large number of small portions ha'ﬂng masses
mi, Mz, M3, ...., M, having radii ry, r2, r3, ...., ry from its axis of rotation, as shown in Fig. 4.12,
and rpoment of ll"lEftIa is g!vgn as:

. 4
oy
n
%

l:y'llnder rod Crllndlr rod Rm:tlnm.lllr pl-lll ﬂl’l:tll'll'llllr plnt-
B — 2 = - 2 Y — : - - + bt
I uML ! JHL I uM[ﬂ +b*) / 3M[a _b]
Rotation Rotation Rotation

'nch

axis axis
[ ]

Solid cylinder or disc  Ring or hoop Hgllpw cylinder solid lpl'lll‘ﬂ Hollow sphere
J-%Hn’ I=MR? :-—H(R’+R, l-—MR’ I--z—Mn*
Rotation Oﬂuta tion @ .
e . Ruta!mn Rot ation ﬂnmnun
axis axis ©axis

Figure 4.13: Moment of inertia for uniform objects.
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Fig. 4.13 shows the calculated moments of inertia for various ub]ects of uniform composition,
each with mass ‘M’.
4.4 ANGUL/ «

' — A ETrASST AV

NT M

ERR* ]

The angular momentum ‘L’ of an uhject is defined as:

p’ofanubject : L-rxp v

; ] W i .
PR e L 4 Hu..-JuL-.p—._. - |.u.1¢-.- {10 RS =

The SI unit of angular momentum is kg m*s™, and dimensions are [ML‘T‘]

4.4.1. For a Point Mass

Consider a mass ‘m’ rotating at distance ‘r’ from the axis of rotatmn, as shuwn in Fig 4 14 By
definition of angular momentum:

L=rxp or L=rpsin® A

Since 8 = 90° and sin90°= 1, therefore, magnitude of |
angular momentum is given by: '

L=rp (4.26)
From the definition of linear momentum: . . |
p=mv (4.27)

The relation between linear and angular velocity is:

V=ro (4.28)

-
- -
. L

Figure 4.14; Mass ‘m’ rotating at
distance ‘r’ from axisuf rotation.

Putting equation (4.28) in equation (4.27), we get:

o
.
a

p=mre (4.29)
Now putting equation (4.29) in equation (4.26), we get: p=r(mrw)
e L . Tr*dﬂfm__ !ﬂ) l:q_ 3_?? *{ EI TS Ll e . ]_tntaﬂmm’__.___._ ——
Fram Eq {4 30], the angular mumentum of an .

object can also be defined as the product of
moment of inertia and its angular velocity, just
like linear momentum is deﬁned as product of |
mass and velocity.

4.4.2, For a Rigid Body

Consider a rigid body and divide it into large
number of small masses ‘my, mz, m3, ..., My’

having distances ‘ri, 2, i, «c...... r.’ from the !

avic 5f ,uwaiiun, as shown in the Fig. 4.15. The | Figure 4.13: "";EMENM about axis
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net angular momentum will be sum of all the individual angular momenta:
L =L +L+L+L +———+L ___ {4.31}.

The angular momentum about point 1 will be:
L=mrie, ___(4.32)

Similarly, the angular momentum about point 2 will be:

L, = m,rlw, (4.33)
and L, = m,r}w, (4.34)
Similarly, L,=mrlw, (4.35)

Putting equations (4.32), (4.33), (4.34) and (4.35) in equation (4.31), we get:

Lo = Mo, +myr}o, + myrle, +—---+m rio, (4.36)

Since for same rigid body, all points on the body rotate with the same angular velocity ‘w’,
therefore, :

(,g1 :{92 :a}a = — mn = ()
Therefore, equation (4.36) can be written as:
2 2 2 2
Lo =M@+ myry o+ myrio+————+mriw
or Lo =(myr? + myr? + myr? +=———+mr? )

The term in parenthesis in above equation is moment of inertia of a rigid body, so,

i=1

i=n
oo [Zm;q‘]m =lw (4.37)

4.4.3. Relation between Torque and Angular Momentum

The angular momentum L of an object is defined as:
The cross product of position vector r with respect to axis of rotation and linear mnmer‘;‘t‘%n%l*f

L=rxp
A A A
S : — Lom—
Multiplying both sides by e we get v o (r x p)
A
or Bk R (4.38)
At At
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According to Newton'’s second law of motion in terms of momentum:

F=4P (4.39)

At

Putting equation (4.39) in equation (4.38), we get:

%—er (4.40)

By the definition of torque: r=rxF

A

4.4.4. : Cunservatinn nf Angular Momentum

In the absence of any external torque, the angular momentum of a system remains constant. -

AL

.8, -Eﬂﬂ
Therefore, AL=0
Or Le-L=0
Hence, Le=L
< A P le ¢ = | €4

Equation {4 43} implies that

PEMg- ERENSEE S x oA P el GO i & - 3
: 2 :-_IIJ -4k o N ..'; 3] . ..-.; % I. bl
e (4.43) R T

The final angular momentum should be equal to initial angular momentum.

.A spinning ice skater is an interesting
example of conservation of angular

‘momentum. When the skater’s arms
are extended, the rotational inertia
‘I’ is relatively large and the angular |
velocity ‘w’ is relatively small, as |
shown in Fig. 4.16. Often at the end
of the spin, the skater pulls his arms -
close to hi§ body resulting in a much |
faster spin (larger angular velocity)
because of a much smaller rotational
inertia. When a rotating body
contracts, its angular velocity |
increases; and when a rotating body |
expands, its angular velocity |
decreases. This phenomenon is the

I-ilrll. ]
w - small

Figure 4.16: Spinning ice skater.
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result of the conservation of angular momentum. As:

BT Lom G ion, < 1 kboh o R

B W ) Pag e R s S A

And moment of inertia is given by: [ =mr?

Therefore,  m,rf wr = mr?w
As r, <r, and m, = m; therefore his rotational speed

will increase to compensate for the decrease in
rotational inertia. '

Similarly, gymnasts and divers generate their spins |
(torque) from a solid base or a diving board after which
the angular momentum remains unchanged, as shown
in Fig. 4.17. The usual somersaults and twists result by |
making variations in their rotational inertia.

A gyroscope is a device that utilizes the principle of
angular momentum to maintain its orientation relative
to the Earth's axis or resist changes in its orientation.
A very unusual and fascinating type of motion you
probably have observed is that of a gyroscope, which
utilize the principle of angular momentum.

Gyroscope usually consists of a wheel mounted on an
axle which can rotate freely and is secured in a metal
frame, as shown in Fig. 4.18 (a). When the wheel is
made to spin the gyroscope can be balanced mounted
on a flat surface, however as the wheel stops spinning
the gyroscope will fall. If the gyroscope is tilted it also

Figure 4.17: Board divers.

az .
c:-_:“__.,._....‘..I:r..-q- -u:lu-.... .......-.....___}

L

(8) (0) | L

" Figure 4.18: Spinning Gyroscope.
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keep levitated without falling, but will start precession about gravitational force axis. This is
the gravity-defying part of a gyroscope, as shown in the Fig. 4. 18 (b).

This unusual behaviour can be explained by the vector nature of angular momentum, the change
in direction of gyroscope will require a torque. The torque is provided by gravitational force as
its weight towards the ground. The angular momentum will start to follow the torque, as shown
in the Fig. 4.18 (c), the change in angular momentum ‘AL’ is:

ﬁL =rx A i _
Where the torque has the same direction as ‘AL’ and ‘At’ is the duration of time. The same
effects can also be observed even if it is lifted by string looped around its lower end.

A flywheel (as shown in Fig 4.19) is a mechanical
component that stores energy by spinning a heavy disc
or wheel about an axle. When torque is applied, the
rotational speed increases, storing kinetic energy that
can be used for different tasks. The concept of a
flywheel is based on the principle of conservation of
energy, where the energy input is stored in the form of |
rotational motion. This stored energy can then be
released when needed, such as during power outages or
to provide additional power for machinery.

Flywheels are commonly used in various applications, -
such as in engines, industrial machinery, and energy ared Teeth
storage systems. In vehicles, flywheels can help smooth Figure 4.19: Flywheel.

out the power delivery and improve fuel efficiency. In

industrial settings, they can provide backup power and help regulate the speed of machinery.

The design of a flywheel involves careful consideration of the material, size, and shape of the
disc or wheel, as well as the bearings and axle to minimize friction and maximize energy
storage. Additionally, the speed and torque at which the flywheel operates must be carefully
controlled to ensure safe and efficient operation.

3 2 : S '.Tw“

Hold pair of dumbbells in your hand and find a turntable to rotate i .
at full speed by holding dumbbells close to your body. As soon as 5 o '
you extend your arms your rotation speed (angular velocity) will . @r, ©

decrease. Again, upon drawing your hands nearer towards your s %

o589
chest the angular velocity will increase.
Can you explain why does this happens?

In recent years, there has been growing interest in using flywheels as a form of energy storage
for renewable energy sources, such as wind and solar power. By storing excess energy generated

during peak production times, flywheels can help balance the supply and demand of electricity
on the grid.
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Example 4.3: What is the angular momentum of a 3.6 kg uniform cylindrical grinding wheel
of radius 31 cm rotating at 1150 rpm? (b) How much torque is required to stop it in 7.8 s?

Given: Mass 'm’ = 3.6 kg Radius' R =31 cm=0.31m
Initial angular velocity ‘wi' = 1150 rpm = 120.4 rad s™ Time duration ‘At'=7.8s
To Find: (a) Angular momentum L =7 (b) Torque r =7
Solution: (a) The angular momentum is given as: L=Ilw
Since, moment of inertia for disk is / = -;-mﬁ", therefore L= %mﬁ"m
Putting values, we get: L =2 x3.6x(0.31x120.4 = 20.83 J
(b) From the relation between torque and angular momentum: 7= b=ty

At
Putting values, where initial angular momentum L; is 20.83 kg m? s' and final angular
momentum Ly is zero (0 kg m?s™).

_ 0-20.83

s

Therefore, 1=-267kgm’s?=-267Nm

Assighment 4.3
Earth rotates about its own axis. What will be its angular momentum when its average
angular speed around its axis is 7.29 x 10®° rad s°'?

4.5 TORQUE AND ANGULAR ACCELERATION

Relationship exists between torque and angular
acceleration, just like force and acceleration as in
Newton's second law of motion.

4.5.1 For a Point Mass

Consider a mass ‘m’ rotating at a distance ‘r’ from the : .
axis of rotation, as shown in Fig. 4.20. The force ‘F" ... .. ..._.. o S :
acting on the mass to rotate it is a tangential force. By * :
definition of torque, we have:

T=rFsin@ A (4.44)
Since 8 = 90° and sin90°=1, magnitude of cquation 1 will e
become: T=rF (4.45) Figure 4.20: Mass 'm' rotating at
2 distance ‘r' from axis of rotation.
According to Newton's second Law, F=ma
(4.46)
The relation between tangential and angular acceleratlnn is given by:

a=ra (4.47)
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Putting equation (4.47) in equation (4.46), we get:

F=mra (4.48)

Putting equation (4.48) in equation (4.45), we get:
QB (4.49)

r=r(mra) or r=mria
Since, the term mr? is moment of inertia, therefore,

(4.50)

r=la

Equations (4.50) states that torque is moment of inertia times angular acceleration. This
statement is similar to Newton's second law of motion F = ma, which gives force as equal to
inertia (mass) times acceleration.

4.6 WEIGHTLESSNESS IN SATELLITES

Weightlessness occurs when the feeling of weight is completely or almost completely absent,
meaning there is zero apparent weight. This occurs during free-fall, when the force of gravity
is balanced out by the inertial force from orbital flight, like centrifugal force.

In a weightless environment, objects and individuals float freely, as there is no force pulling
them towards the ground. This phenomenon is commonly experienced by astronauts in space,
where they appear to be float inside their spacecraft with objects around them.

The term zero gravity is often used incorrectly to describe weightlessness, as astronauts in
space stations are not in gravity free environment high above the Earth, 250 miles out in space,
where most space stations orbit, the gravitational field is still quite strong there roughly 95%
of its at on surface of the Earth. Weightlessness T '

can be achieved in two ways. One that to travel
millions of miles from gravitational force of large
object, where the gravitational force reduces to
nearly zero. Or the second and much more
practical is to create weightless environment
through act of free fall. The space stations are in
constant free fall, having the right speed and at
right altitude. Inside the space station the
astronaut is also falling free, so they appear to
float, as shown in Fig. 4.21, and physicists call it
weightlessness.

Figure 4.21: Weightlessness in sate!lites.

Weightlessness can be enjoyed in amusement parks momentarily; it can also be simulated on
Earth through techniques such as parabolic flights or neutral buoyancy tanks, allowing
researchers to study the effects of microgravity on the human body and various mate;ials. Living
in a space station is not easy, besides the dangers of space travel and time spent away from
family in isolation, astronauts feel many health issues related to microgravity. Their benes and
muscles get weakened, cardiovascular system is affected and immune system is compromised.
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Apart from all these health challanges some everyday activities become near-impossible. Their
basic necessities like eating, sleeping, and showering habits are modified. They even can’t cry;
they face difficulty in digesting food and even in urination and excretion. Rotational simulated
gravity has been proposed as a solution in human spaceflight to the adverse health effects
caused by prolonged weightlessness.

Even though things and people may feel weightless in a weightless setting, they still possess
mass and inertia, causing them to maintain their straight-line motion unless an outside force
intervenes.

4.7 LRTIFICIAL C

it N T
s -.-E.-"‘-f— ]

ALY i [ |

o
B |

The gravity produced artificially in the satellites to counteract the effect of weightlessness is
called artificial gravity. A

It can be generated by rotating a space-station around its own axis, as shown in Fig. 4.22. The
surface of the rotating space station exerts a force on objects
with in contact with it and thereby provides the centripetal
force that keeps the object maving on a circular path. In space
stations, the astronauts feel weightless and cannot work
effectively. In order to overcome this difficulty artificial
gravity can be provided by rotating it about its own axis.

To describe artificial gravity, consider a circular tube shaped
part of the space station in which artificial gravity will be
pro:vided to the nccupant_s of the space station. Let .it have t!‘lE Figure 4.22: Artificial gravity.
radius ‘R’ and rotate with velocity ‘v’ as shown in the Fig.

4,21. The centripetal acceleration experienced at any point on the outer rim is:

VE
8 =5 (4.52)
Linear Velocity: From equation (4.52): vi=aR
Therefore, v=,aR

To provide the same force as the force of gravity this centripetal acceleration, and hence
centripetal force, must be equal to the acceleration due to gravity i.e. ac = g

Hence R _V_=qgﬁ:' : (4.33) e 3
Angular Velocity of Satellites: The relation between linear and angular velocity i
' v=aoR (4.54)

By comparing equations (4.53) and (4.54), we get:

mR%JQ_R or m:JiR:Jif
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Time Period of Satellites: Time period is the time required for the satellite to complete one

rotation, i.e., Te= %
Since v =wR, therefore: T = -1
@R
27
or T=5= (4.56)
@

Putting the values from equation (4.55) in equation (4.56), we get:

, 50, from

' 1
Frequency of Satellites: Since frequency is the reciprocal of time period, i.e., f= T

equation (4.57) we get:

EXAMPLE 4.4: An 80.0 kg astronaut stands on the rim of rotating ring-shaped space station
providing him sufficient artificial gravity g = 9.8 m s™. If the radius of the space station is
1.5 km. Calculate his (a) angular velocity, (b) time period and (c) frequency of rotation.

Given: Mass of astronaut = m = 80.0 kg Radius of space ship = R = 1.50 km = 1500 m
To Find: (a) Angular velocity ‘w’ =? (b) Time period ‘T’ =27  (c) Frequency ‘f’ =1
SOLUTION: (a) The angular velocity for artificial satellite is:
<. |2
PNR
Putting values, we get: W= L or " ®=0.08rads™ :
g ’ - 1‘ 1500 =0.08: .

(b) The time period for artificial satellite is:

T=21F
g

Putting values, we get: T=2x3.14 1500 T=77.73s
(c) Since frequency is the reciprocal of time period 0 | =%
' 1
Putting values, get 7773 or 0 {1513Hz



UNIT 4 ROTATIONAL AND CIRCULAR MOTION

Assignment 4.4 :
A space ship, having cylindrical shape, is rotated at a speed of 20 rpm about its axis in order
to provide artificial gravity to its inhabitants. If the spaceship has a diameter of 8 m, find
the artificial gravity it provides.

SUMMARY

< Angular velocity: The rate at which an object changes the angle while moving on a circular
path.

< Tangential acceleration: The acceleration in a direction tangent to the circle at the point
of interest in circular motion.

< Angular acceleration: The rate of change of angular velocity with respect to time.

< Centripetal acceleration: The acceleration of an object moving in a circle, directed toward
the center. -

< Centripetal force: Any net force causing uniform circular motion.

* Moment of inertia: Mass times the square of perpendicular distance from the rotation axis;
for a point mass, it is | = mr? and, because any object can be built up from a collection of
point masses, this relationship is the basis for all other moments of inertia.

“ Torque: The turning effectiveness of a force and is defined as product of moment of inertia
and angular acceleration (1 = la).

< Angular momentum: The product of moment of inertia and angular velocity (L = lw).

< Angular momentum is conserved, i.e., the initial angular momentum is equal to the final
angular momentum when no external torque is applied to the system.

EXERCISE
Multiple Choice Questions

Encircle the correct option.

1) The term “centrifugation” means separation

A. through spinning B. of components at higher temperature

C. through evaporation D. of components at lower temperature

2) A car turns around a curve at 30 km h™. If it turns at double the speed, the tendency to
overturn is:

A. doubled B. quadrupled C. halved D. unchanged

3) The moment of inertia of a spinning body about a certain axis, doesn't depend on:
A. distribution of mass around the axis B. orientation of the axis

C. mass of the body D. angular velocity of the body

4) The change in angular momentum of a rod, when a torque of 2.5 N m is acted upon it for

2s, is:
A.1.25)s B.2.5Js C.5l%s D.0Js

5) If size (length) of the wings of a fan is increased, its rotational speed, for the same voltage
and current, will:
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A. increase B. decrease C. remain constant D. may increase or decrease
6) In a body, angular acceleration is produced by:
A. net force B. power C. pressure D. net torque

7) An astronaut feels weightless inside the International Space Station. It is because the
International Space Station is:

A. outside the gravitational field of Earth B. freely falling

C. at rest _ D. in motion

8) How many radians account for circumference of a circle?

A. 1 rad B. 2 rad C. mrad D. 2n rad
Short Questions

Give short answers of the following questions.

4.1 What is the value of angular acceleration of the minute hand of your wrist watch?

4.2 Is there a real force that removes water from wet clothes in a washing machine? Explain
how the water is removed. '

4.3 Determine the relation between (a) linear and angular displacement. (b) linear and angular
velocity. (c) linear and angular acceleration.

4.4 Is centripetal force a fundamental force or a force provided by any of the fundamental
. forces? Can any combination of the fundamental forces provide centripetal force?

4.5 There are generally double tyres in heavy vehicles on one side of an axle. Will its moment
of inertia be different from that of a single tyre?

4.6 Why is it best to have the blades rotate in opposite directions for a helicopter having two
sets of lifting blades?

4.7 If diameter of Earth becomes half and there is no change in its mass, what affect will be
there on the rotational speed of Earth around its own axis?

4.8 Why does in circular motion, a tangential acceleration can change the magnitude of the
velocity but not its direction?

4.9 Why does usually the value of artificial gravity is smaller than 9.8 m s %

4.10 Why is a gyroscope used in aeroplanes?

4.11 How does the rotation of a flywheel helps to even out the power delivery from the engine?
4.12 A wall clock’s arms show time as 09:15. Express the angle between the arms in radians.

Comprehensive Questions

Answer the following questions in detail.

4.1 What is centripetal force? Explain. Write down at least two applications where centripetal
force plays its role.

4.2 What is moment of inertia? Derive its relation for rigid body.

4.3 Derive the expression for angular momentum of a body. Also deduce the relation between
angular momentum and torque.

4.4 Exp_rlain conservation of angular momentum using practical life examples.
4.5 Derive the relation between torque and angular acceleration.
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4.6 Justify how a centrifuge is used to separate materials using centripetal force.

4.7 Explain why the objects in orbiting satellites appear to be weightless.

4.8 Describe how artificial gravity be produced in a satellite to counter weightlessness.
4.9 Analyse motion in curved path due to perpendicular forces.

Numerical Problems

4.1 What will be the angular velocity of fly wheel of an engine if it completes 3000 revolutions
in a minute? (Ans. 314 rads™)
4.2 A car is passing through a turn that is in the form of an arc of a circle of radius 14.5 m.
What will be the maximum speed limit (the speed at which the car can cross the bridge without
losing contact with the road) if the centre of gravity of the car is 0.5 m from the ground?
(Ans. 12.1 ms™")
4.3 A PT teacher rotates his stick at the axis that passes through its centre. If mass of the stick

is 200 g and its length is 0.8 m, find its moment of inertia. : (Ans. 0.01 kg m?)
4.4 A football of mass 450 g rotates with an angular speed of 10 rev s'. If its radius is 11 cm,
compute its angular momentum. (Ans. 0.137 J s)

4.5 A merryman in a circus is standing with his arms extended on a turn table rotating with
angular velocity 10 rad/s. He brings his arms closer to his body so that his moment of inertia is
reduced to one third of the initial value. Find his new angular velocity. (Ans. 30 rad s™")
4.6 A boy exerts a force of 200 N at the edge of the 30.0 kg merry-go-round, which has a 2.0
m radius. Calculate the angular acceleration produced (a) when no one is on the merry-go-
round and (b) when the boy, having 20.0 kg weight, sits 1.5 m away from the center. (ignore
friction). (Ans. 6.67 rad s?, 3.8 rad s%)
4.7 A wheel-shape space station provides an artificial gravity of 5.00 m s to its inhabitants. If it has a
diameter of 100 m, find its angular speed in rpm. (Ans. 3 rpm)
4.8 The minute hand of a watch is 2 cm long. If it travels 9.4 cm of length, how many radians
will it travel? (Ans. 4.7 rad)
4.9 How many revolutions does the fidget spinner make after being flicked with an initial

angular velocity of 10 revolutions per second and coming to rest in 5 seconds? (ignore air
resistance) (Ans. 25 revolutions)
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