Unit

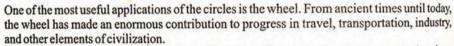
CHORDS OF A CIRCLE

In this unit the students will be able to

To prove the following theorems along with corollaries and apply them to solve appropriate problems.

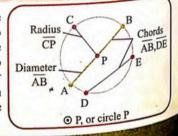
- One and only one circle can pass through three non-collinear points.
- A straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.
- Perpendicular from the centre of a circle on a chord bisects it.
- If two chords of a circle are congruent then they will be equidistant from the centre.
- Two chords of a circle which are equidistant from the centre are congruent.

Why it's important



A circle is the set of all points in a plane that are equidistant from a given point in the plane known as the center of the circle. A radius (plural, radii) is a line segment from the centre of the circle to a point on the circle.

A chord is a line segment whose endpoints lie on the circumference of a circle. It divides a circle into two segments. The larger part is called major segment and the smaller part, the minor segment. If the chord happens to be a diameter, each segment is a semicircle. A diameter is a chord that contains the centre of a circle. A circle can be named by using the symbol @ and the center of the circle. The circle in the illustration is @ P, or circle P.



Unit 9 Chords of a circle

Theorem 2.1

One and only one circle can pass through three non-collinear points.

Given

A. B and C are three non-collinear points

To prove

One and only one circle can pass through the points A, B and C.

Construction

Join B to A and C. Draw perpendicular bisectors \overleftrightarrow{XD} and \overrightarrow{YE} of \overrightarrow{AB} and \overrightarrow{BC} respectively, which intersect at O. Join O to A. B and C.

Proof

Statements	Reasons	
In $\triangle OAD \longleftrightarrow \triangle OBD$	Reasons	
$\angle ODA \cong \angle ODB$	Both are right angles.	
$\overline{AD} \cong \overline{BD}$	D is the mid-point of \overline{AB} .	
$\overline{OD} \cong \overline{OD}$	Common. S.A.S postulate.	
$\therefore \triangle OAD \cong \triangle OBD$	Corresponding sides of congruen	
$\therefore \overrightarrow{OA} \cong \overrightarrow{OB} \longrightarrow (i)$	triangles.	
Again in $\triangle OBE \longleftrightarrow \triangle OCE$ $\angle OEB \cong \angle OEC$	Both are right angles. E is the midpoint of \overline{BC}	
$\overline{BE} \cong \overline{EC}$	Common.	
$\overline{OE} \cong \overline{OE}$	S.A.S postulate. Corresponding sides of congruent	
$\therefore \triangle OBE \cong \triangle OCE$	triangles.	
$\therefore \overline{OB} \cong \overline{OC} \longrightarrow (ii)$		
From (i) and (ii), $\overline{OA} \cong \overline{OB} \cong \overline{OC}$ $\Rightarrow m\overline{OA} = m\overline{OB} = m\overline{OC}$ It means that the point O is equidistant from the three points A, B, C. Therefore a circle with centre O and radius $m\overline{OA}$ or $m\overline{OB}$ or $m\overline{OC}$ will pass through the points A, B and C. Since O	Transitive property of congruence.	
is the only point which is equidistant from the points A,B and C. Therefore one and only one circle can pass through these three non-collinear points.		

A straight line, drawn from the centre of a circle to bisect a chord (which is not a straight line, drawn from the chord. diameter) is perpendicular to the chord.

Given .

A circle with centre at O, \overline{AB} is a chord of the circle. N is the mid point of \overline{AB} which is joined to O.

To prove

 $\overline{ON} \perp \overline{AB}$

Construction

Join O to A and B.

roof			A
	Statements		Reasons
In ΔOA	$\frac{AN \longleftrightarrow \Delta OBN}{OA \cong OB}$		
	$\overline{AN} \cong \overline{BN}$ $\overline{ON} \cong \overline{ON}$ $\therefore \triangle OAN \cong \triangle OBN$ $\therefore \angle 1 \cong \angle 2$		Radii of a given circle Given Common $S.S.S \cong S.S.S$ Corresponding angles of the congruent triangles
But	$m\angle 1 + m\angle 2 = 180^{\circ}$ $\therefore m\angle 1 = m\angle 2 = 90^{\circ}$	\longrightarrow (i)	Supplementary angles postulate
Hence	$\overline{ON} \perp \overline{AB}$		∴ m∠1 = m∠2

Example In $\odot P$, if $\overline{PM} \perp \overline{AT}$, PT = 10, and PM = 8, find MT.

Solution

∠PMT is a right angle.

Def. of perpendicular

ΔPMT is a right triangle. $(MT)^2 + (PM)^2 = (PT)^2$ Def. of right triangle

Pythagorean Theorem $(MT)^2 + 8^2 = 10^2$. Replace PM with 8 and PT with 10.

 $(MT)^2 + 64 = 100$

 $8^2 = 64:10^2 = 100$

 $(MT)^2 + 64 - 64 = 100 - 64$ Subtract 64 from each side.

 $(MT)^2 = 36$

Simplify.

 $\sqrt{(MT)^2} = \sqrt{36}$

Take the square root of each side.

MT = 6

Simplify.

Theorem 9.3

Perpendicular from the centre of a circle on a chord bisects it

Given

chords of a circle

A circle with centre at O, \overline{AB} is a chord. $\overline{ON} \perp \overline{AB}$. To prove

$$\overline{AN} \simeq \overline{BN}$$

Construction

Join O to A and B.

Proof

Statements	
In $\triangle AON \longleftrightarrow \triangle BON$ $\angle ONA \cong \angle ONB$ $\overline{ON} \cong \overline{ON}$ $\overline{OA} \cong \overline{OB}$	Right angles common Radii of the same circle
$\frac{\therefore \Delta AON}{AN} \cong \Delta BON$ Hence $\overline{AN} \cong \overline{BN}$	H.S ≅ H.S Corresponding sides of congruent triangles

Example !

⊙P has a radius of 5 cm. and PX is 3 cm \overline{PR} is perpendicular to \overline{AB} at point X. Find AB.

Solution

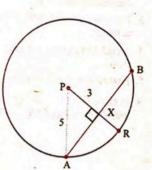
By the Pythagorean theorem:

$$(AX)^2 + 3^2 = 5^2$$

 $(AX)^2 = 5^2 - 3^2$
 $(AX)^2 = 16$

By the radius and chord theorem, \overline{PR} bisects \overline{AB} , so BX = AX = 4.

Therefore, AB = AX + BX = 4 + 4 = 8 cm.



b Example In $\bigcirc R$, XY = 30, RX = 17, and $\overline{RZ} \perp \overline{XY}$. Find the distance from R to \overline{XY} .

Solution

The measure of the distance from R to \overline{XY} is RZ. Since $\overline{RZ} \perp \overline{XY}$, \overline{RZ} bisects \overline{XY} , by Theorem 9.3. Thus, $XZ = \frac{1}{2}(30)$ or 15.

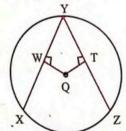
For right triangle RZX, the following equation can be written.

$$(RZ)^2 + (XZ)^2 = (RX)^2$$
 Pythagorean Theorem Replace XZ with 15 and RX with 17. $(RZ)^2 + 225 = 289$ $15^2 = 225$; $17^2 = 289$ $(RZ)^2 + 225 - 225 = 289 - 225$ Subtract 225 from each side. $(RZ)^2 = 64$ Simplify. Take the square root of each side. $RZ = 8$ Simplify.

The distance from R to \overline{XY} , or \overline{RZ} , is 8 units.

Exercise 9.1

- 1. If the radius of a circle is 30 cm, find the length of a chord which is 10 cm from the centre.
- 2. If a chord of a circle is 48 cm long and its distance from the centre is 18 cm. Findth diameter of the circle.
- 3. The diameter of a circle is 5 units long. How far from the centre is a chord which is 4 min
- 4. A chord of a circle is 8 cm in length is drawn 5 cm from the centre. Find the length of the radius
- 5. Find the length of a chord that is at a distance of 5cm from the centre of a circle with radius life.
- 6. In circle Q, $\overline{QW} \perp \overline{XY}$, $\overline{QT} \perp \overline{YZ}$, $\overline{QW} = 5$, $\overline{QT} = 5$ and YT = 12. Find XY.



Unit 9 Chords of a circle

Theorem 9.4

If two chords of a circle are congruent then they will be equidistant from the centre.

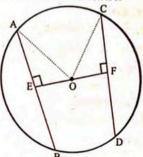
A circle with centre O, \overline{AB} and \overline{CD} are two congruent chords of the circle.

To prove

 \overline{AB} and \overline{CD} are equidistant from the centre O.

Construction

Join O to A and C. Also draw perpendiculars \overline{OE} and \overline{OF} on the given chords \overline{AB} and \overline{CD} respectively.



Proof

roof	R
Statements	Reasons
Since $\overrightarrow{OE} \perp \overrightarrow{AB}$ and $\overrightarrow{OF} \perp \overrightarrow{CD}$	Construction
$\therefore \overline{AE} \cong \overline{EB} \text{ and } \overline{CF} \cong \overline{DF}$ Or $\overline{mAE} = \overline{mEB}$ and $\overline{mCF} = \overline{mDF}$ But $\overline{mAB} = \overline{mCD}$ or $\overline{mAE} + \overline{mEB} = \overline{mCF} + \overline{mDF}$ $\overline{mAE} + \overline{mAE} = \overline{mCF} + \overline{mCF}$ $2\overline{mAE} = 2\overline{mCF}$ $\overline{mAE} = \overline{mCF}$ or $\overline{AE} \cong \overline{CF} \longrightarrow (i)$	By the use of Theorem 9.3. Given Segment addition postulate $mEB = mAE$ and $mDF = m\overline{CF}$ Adding equal quantities Dividing both sides by 2.
Now in $\triangle AOE \longleftrightarrow \triangle COF$ $\overline{OA} \cong \overline{OC}$ $\overline{AE} \cong \overline{CF} \longrightarrow (ii)$ $\angle AEO \cong \angle CFO$ $\therefore \triangle AOE \cong \triangle COF$ $\therefore \overline{OE} \cong \overline{OF} \text{ or } m\overline{OE} = m\overline{OF}$ $\therefore \overline{AB} \text{ and } \overline{CD} \text{ are equidistant from the centre of the circle.}$	Radii of the same circle From (i) proved above Right angles H.S ≅ H.S Corresponding sides of the congruent triangles.

Corollary

In congruent circles, congruent chords are equidistant from the centres.

Theorem 9.5

chords of a circle which are equidistant from the centre are congruent, ven

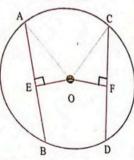
rcle with centre at O, \overline{AB} and \overline{CD} are two chords of the e. $\overrightarrow{OE} \perp \overrightarrow{AB}$, $\overrightarrow{OF} \perp \overrightarrow{CD}$ and $\overrightarrow{OE} \cong \overrightarrow{OF}$. prove

$$\overline{AB} \cong \overline{CD}$$

nstruction

O with A and C.

oof

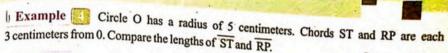


Statements	Reasons
$\overline{OE} \perp \overline{AB}$ and $\overline{OF} \perp \overline{CD}$	Given
$m \overline{AE} = m \overline{EB} \text{ and}$ $m \overline{CF} = m \overline{FD} \longrightarrow (i)$	Theorem 9.3
Now in $\triangle AEO \longleftrightarrow \triangle CFO$ $\angle AEO \cong \angle CFO$ $\overrightarrow{OA} \cong \overrightarrow{OC}$	Both are right angles Radii of the same circle
$\overline{OE} \cong \overline{OF}$ $\Delta AEO \cong \Delta CFO$ $\overline{AE} \cong \overline{CF}$	Given H.S ≅ H.S Corresponding sides of congruent triangles
or $m\overline{AE} = m\overline{CF}$	Double of equal lengths
$2m\overline{AE} = 2m\overline{CF} \longrightarrow (ii)$ Also $m\overline{AB} = m\overline{AE} + m\overline{EB}$ $m\overline{AB} = m\overline{AE} + m\overline{AE} = 2m\overline{AE} \longrightarrow (ii)$	Segment addition postulate $m\overline{EB} = m\overline{AE}$
Similarly $m\overline{CD} = 2m\overline{CF}$ \longrightarrow (iv	
Since $2m\overline{AE} = 2m\overline{CF}$ Therefore $m\overline{AB} = m\overline{CD}$	From (iii) and (iv)
$\overline{AB} \cong \overline{CD}$ and a short sare congruent.	

Hence the two chords are congruent.

ongruent circles, chords equidistant from the centre are also congruent. NOT FOR SALE

Unit 9 Chords of a circle



Solution

Draw OT and OP. OT = OP = 5

OT and OP are radii of circle O. Radii of the same circle have the same measure.

$$(OW)^2 + (WP)^2 = (OP)^2$$

 $3^2 + (WP)^2 = 5^2$
 $(WP)^2 = 25 - 9$
 $(WP)^2 = 16$
 $WP = 4$
 $PP = 2(WP) = P$ (Theorem 2)
 $(OQ)^2 + (QT)^2 = (OT)^2$
 $3^2 + (OT)^2 = 5^2$
 $(OT)^2 = 25 - 9$
 $(OT)^2 = 16$
 $OT)^2 = 16$

 $PR = 2(WP) = B \leftarrow Theorem 9.3 \rightarrow ST = 2(QT) = 8$

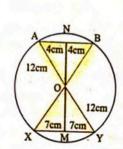
Chord ST and RP are congruent.

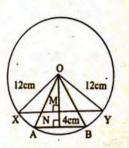
The length of two parallel chords of a circle of radius 12cm are 14cm and Example [5] 8cm respectively. Calculate the distance between the chords.

Solution

In
$$\triangle$$
AON, $(ON)^2 = 12^2 - 4^2$
 $= 144 - 16$
 $ON = \sqrt{128}$
 $ON = 11.31 \text{cm}$
In \triangle YOM, $(OM)^2 = 12^2 - 7^2$
 $= 144 - 49$
 $OM = \sqrt{95}$
 $OM = 9.747$
In first case NM = ON + OM
 $= 11.31 + 9.747$
 $= 21.1 \text{ cm}$
In second case, NM = ON - OM
 $= 11.31 - 9.747$
 $= 1.56 \text{cm}$

Therefore the distance between the chords can either be about 21.1cm or 1.56 cm.



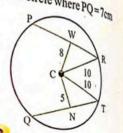


In a circle of radius 5cm, there are two parallel chords of length 8cm and 6cm respectively.

Two Parallel chords PQ and MN are 3cm apart on the same side of a circle where PQ=7cm

Circle C has a radius of 10. Chord QT is 5 units from C and chord PR is 8 units from C.

- a. Compare the lengths of PR and OT.
- b. Compare the distances of PR and QT from C.



leview Exercise 9

At the end of each question, four circles are given. Fill in the correct circle only.

- (i). In a circle, two chords are equally distant from the centre of the circle. The chords are O congruent O not congruent O parallel
- O non parallel (ii) AB and CD are two chords of the same circle @ and AB < CD. Then
 - O AB is closer to O

 \bigcirc \overline{AB} must be parallel to \overline{CD}

O CD is closer to O

- O Can't decide
- (iii). A chord is 5 cm from the centre of a circle of radius 13cm. The length of the chord is O 12 centimeters
 - O 6 centimeters

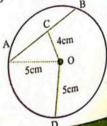
- O 30 centimeters
- (iv). A chord 40 units long is contained in a circle of radius 25. The distance of the chord O 50.1 units from the centre of the circle is O 47.1 units
- (v). A chord $8\sqrt{3}$ units long is 4 units from the centre of a circle. The length of the
- radius of the circle is

- O 8√2 units
- O 8 units
- (vi). In the adjacent circular figure with centre O ad radius 5cm, the length of the chord intercepted at 4cm away from the centre of this circle is: O 6 cm

O 4 cm

9 cm

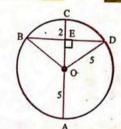
O 7 cm



(vii). In the diagram, circle O has a radius of 5, and CE = 2. Diameter \overrightarrow{AC} is perpendicular to chord BD at E. What is the length of BD?

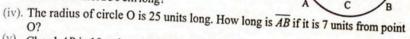
0 12 0 10

0 0 4



2. In circle O, \overline{AB} is a chord, \overline{OA} is a radius and $\overline{AB} \perp \overline{OC}$. (Leave radicals in your answers in simplest form).

- (i). If AO = 13m and OC = 5m, find AC and AB.
- (ii). If AB is 16 cm long and is 6 cm from O. Find the radius and diameter of the circle
- (iii). If the diameter of circle O is 34 cm, how far from the centre is a chord 30 cm long?



- (v). Chord AB is 10 m long and is 5 m from O. Find OA.
- 3. The perpendicular bisector of a chord \overline{XY} cuts \overline{XY} at N and the circle at P. If XY = 16cm and NP=2cm, calculate the radius of the circle.

- A circle is the set of all points in a plane that are equidistant from a given point in the plane known as the center of the circle.
- A radius (plural, radii) is a line segment from the centre of the circle to a point on the
- A chord is a line segment whose endpoints lie on the circumference of a circle. It divides a circle into two segments. The larger part is called major segment and the smaller part, the minor segment. If the chord happens to be a diameter, each segment is a semicircle.
- A diameter is a chord that contains the centre of a circle.
- One and only one circle can pass through three non-collinear points.
- A straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.
- Perpendicular from the centre of a circle on a chord bisects it.
- If two chords of a circle are congruent then they will be equidistant from the centre.
- Two chords of a circle which are equidistant from the centre are congruent.

Mathematics X

