

- 7. What number should be added to each of the numbers 3,8,11 and 20 to make them in
- 8. What number must be subtracted from each of 6,8,7 and 11 so that the remaining numbers
- 9. The ratio between two numbers is 8:3 and their difference is 20. Find the numbers.
- 10. Find three numbers in continued proportion such that their sum is 14 and sum of their
- 11. The mean proportional between two numbers is 6 and their sum is 13. Find the numbers.
- 12. Find the angles of a triangle which are in the ratio 3:4:5.

13. If
$$\frac{a}{b} = \frac{c}{d}$$
, then prove that $\frac{ac(a+c)}{bd(b+d)} = \frac{(a+c)^3}{(b+d)^3}$

13. If
$$\frac{a}{b} = \frac{c}{d}$$
, then prove that $\frac{a}{bd(b+d)}(b+d)^3$

14. If a , b , c are in continued proportion then prove that $\frac{a}{c} = \frac{a^2 + ab + b^2}{b^2 + bc + c^2} = \frac{a^2 - b^2}{b^2 - c^2}$

15. If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, then prove that $\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{ace}{bdf}$

Summary

- A rate is a special type of ratio.
- A rate is a comparison of two quantities of different kinds.
- A ratio compares two quantities of the same type.
- A proportion is a statement expressing the equivalence of two rates or two ratios.
- Two quantities are in direct proportion when one quantity is doubled, the other quantity is also doubled; when one quantity increases x times, the other quantity also increases x times.
- Two quantities are in inverse proportion when one quantity is doubled, the other quantity is halved; when one quantity increases y times, the other quantity becomes 1/y of the original.
- If y varies directly to x, then y = kx, where k is a constant and k = 0 is direct variation.
- If y varies inversely to x, then xy = k, where k is a constant and k = 0 is inverse variation. If y varies directly to two or more quantities x and z, then y = kxz, where k is a constant and k=0 is joint variation.
- Let: a:b:c:d be a proportion then = k (say)

Thus
$$a = bk$$
, $c = dk$

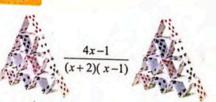
These equation are used to evaluate certain expressions more easily. This method is called K-method.

Unit

PARTIAL FRACTIONS

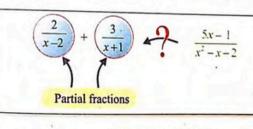
In this unit the students will be able to

- Define proper, improper and rational fraction.
- Resolve an algebraic fraction into partial fractions when its denominator consists of
 - o non repeated linear factors.
 - repeated linear factors.
 - non-repeated quadratic factors.
 - repeated quadratic factors.



Why it's important

The partial fractions is simpler, which can help to solve more complicated fraction. For example, it is very useful in calculus, which is a branch of mathematics.



We can do this directly: $\frac{2}{x+1} + \frac{3}{x-2} \rightarrow \frac{5x-1}{x^2-x-2}$

Like this:

$$\frac{2}{x+1} + \frac{3}{x-2} = \frac{2(x-2) + 3(x+1)}{(x+1)(x-2)} = \frac{2x-4+3x+3}{(x+1)(x-2)} = \frac{5x-1}{x^2 - x - 2}$$

... but how do we go in the opposite direction?

$$\frac{2}{x+1} + \frac{3}{x-2} \leftarrow \frac{5x-1}{x^2-x-2}$$

How to find the "parts" that make the single fraction (This is "partial fractions").

A procedure which does splitting up a fraction into two or more fractions whose algebraic in the denominators. a procedure which does splitting up a fraction into two or more fractions whose algebraic in the denominator is called partial fraction. In other words a set of fractions whose algebraic sum is a given fraction. sum is a given fraction is called partial fraction.

4.1 Proper and improper rational fractions

(a) Rational fraction A rational function can be written in the form:

$$f(x) = \frac{P(x)}{Q(x)}$$

Where P(x) and Q(x) are polynomials where $Q(x) \neq 0$

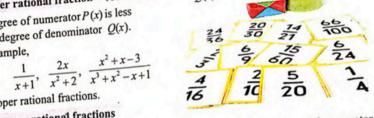
Proper rational fraction A rational fraction $\frac{P(x)}{Q(x)}$, $Q(x) \neq 0$ is proper fraction, if the degree of numerator P(x) is less

if the degree of numerator P(x) is less than the degree of denominator Q(x).

For example,

$$\frac{1}{x+1}, \ \frac{2x}{x^2+2}, \ \frac{x^2+x-3}{x^3+x^2-x+1}$$

are proper rational fractions.



the bottom 8 - Numerator

number on the top than on

[G] Improper rational fractions A rational fraction $\frac{P(x)}{Q(x)}$, $Q(x) \neq 0$ is as an improper fraction, if the degree of numerator a fraction that has a larger

P(x) is greater than or equal to the degree of denominator Q(x).

For example,

For example,

$$\frac{x^3+4}{(x+1)(x+2)}$$
, $\frac{x}{2x+1}$, $\frac{x^2+3x+2}{x^2+2x+3}$, $\frac{x^3-x^2+x+1}{x^2+x-1}$

Any improper rational fraction can be reduced into sum of

6 ← Denominator For example, consider $\frac{2x^2+1}{x-1}$, an improper rational fraction. Divide numerator by denominator as

$$\begin{array}{r}
2x+2 \\
x-1)2f^2+1 \\
\underline{2x^2 + 2x} \\
2k+1 \\
2x-2
\end{array}$$

Therefore we have
$$\frac{2x^2+1}{x-1} = 2x+2+\frac{3}{x-1}$$

Unit 4 Partial fractions

4.2 Resolution of fraction into partial fractions

Resolution of rational fraction $\frac{P(x)}{O(x)}$, where $Q(x) \neq 0$ into partial fractions depends upon the factors of denominator Q(x). Thus there are four cases involved in resolution of fraction.

- When denominator Q(x) consists of non-repeated linear factors.
- When denominator Q(x) consists of repeated linear factors
- When denominator Q(x) consists of non-repeated quadratic factors.
- When denominator Q(x) consists of repeated quadratic factors.

When denominator consists of non-repeated linear factors

Let proper fraction $\frac{P(x)}{Q(x)}$ is given, factorize the polynomial Q(x) in the denominator if it is not already factorized. To every non-repeated linear factor ax+b in the denominator corresponds a partial fraction of the form $\frac{A}{ax+b}$ where A is a constant. Thus if

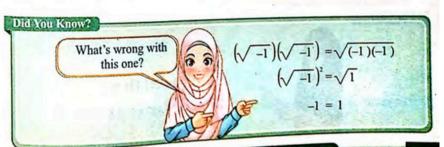
$$Q(x) = (a_1x + b_1)(a_2x + b_2)$$
 then

$$\frac{P(x)}{Q(x)} = \frac{A}{a_1 x + b_1} + \frac{B}{a_2 x + b_2}$$
 where A and B are constants. Similarly if

$$Q(x) = (a_1x + b_1)(a_2x + b_2)(a_3x + b_3)$$
 then

$$\frac{P(x)}{Q(x)} = \frac{A}{a_1 x + b_1} + \frac{B}{a_2 x + b_2} + \frac{C}{a_3 x + b_3}$$

Where A,B and C are constants to be determined.



Unit 4 Partial fractions

Example Resolve $\frac{1}{(x+1)(x+2)}$ into partial fractions.

Solution

$$\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$
 (

$$\Rightarrow \frac{1}{(x+1)(x+2)} = \frac{A(x+2) + B(x+1)}{(x+1)(x+2)}$$

Multiplying both sides by (x+1)(x+2) we get

$$1 = A(x+2) + B(x+1)$$

Putting
$$x = -1$$

$$x = -1$$
 in Eq. (2), we get
 $1 = A(-1+2) + B(-1+1)$

$$\Rightarrow 1 = A(1) + B(0)$$

$$1 = A$$

$$A=1$$

putting x = -2 in Eq. (ii), we get

$$1 = A(-2+2) + B(-2+1)$$

$$\Rightarrow 1 = A(0) + B(-1)$$

$$\Rightarrow$$
 1 = 0 - B

$$B=-1$$

Now putting these values of A and B in equation (i) we have

$$\frac{1}{(x+1)(x+2)} = \frac{1}{x+2} + \frac{-1}{x+2}$$

$$\Rightarrow \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$

These are required partial fractions.

Math Fun

111,111,111 × 111,111,111

= 12,345,678,987,654,321.

Unit 4 Partial fractions

Example Find partial fractions of

Solution Since

$$x^2-x-$$

 $x^2-x-2=(x+1)(x-2)$

Therefore,
$$\frac{3x+2}{x^2-x-2} = \frac{3x+2}{(x+1)(x-2)}$$

Let
$$\frac{3x+2}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}$$
 (i)

$$\Rightarrow \frac{3x+2}{(x+1)(x-2)} = \frac{A(x-2) + B(x+1)}{(x+1)(x-2)}$$

Multiply both sides by (x+1)(x-2) we have.

$$3x+2=A(x-2)+B(x+1)$$
 (ii)

Putting x = -1 in Eq. (ii) we get.

$$3(-1)+2=A(-1-2)+B(-1+1)$$

$$\Rightarrow -3+2=A(-3)+B(0)$$

$$\Rightarrow$$
 $-1 = -3A$

$$\Rightarrow A = \frac{1}{3}$$

Putting x = 2 in Eq. (ii), we get

$$3(2)+2=A(2-2)+B(2+1)$$

$$\Rightarrow 6+2=A(0)+B(3)$$

$$\Rightarrow$$
 8 = -3B

$$\Rightarrow$$
 $A = \frac{3}{3}$

Putting these values of A and B in Eq. (i), we have

$$\frac{3x+2}{(x+1)(x-2)} = \frac{\frac{1}{3}}{x+1} + \frac{\frac{8}{3}}{x-1}$$

$$=\frac{1}{3(x+1)}+\frac{8}{3(x-2)}$$

or
$$\frac{3x+2}{x^2-x-2} = \frac{1}{3(x+1)} + \frac{8}{3(x-2)}$$
 These are required partial fractions.

NOT FOR SALE

Mathematics X

Unit 4 Partial fractions

ase II When denominator consists of repeated linear factors

et, in the proper fraction $\frac{P(x)}{Q(x)}$ the denominator Q(x) contains a repeated linear factor $(x+b)^2$, corresponds to two partial fractions of the form $\frac{P(x)}{Q(x)} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2}$, where A

d B are constant to be determined.

the denominator Q(x) contains the repe ated factor $(ax+b)^3$, then the corresponding three artial fraction are $\frac{P(x)}{O(x)} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \frac{C}{(ax+b)^3}$ where A,B and C are constants to be etermined.

Example 3 Find partial fractions of $\frac{x}{(x+1)^2}$

Solution

Let
$$\frac{x}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}$$
 (i)

$$\Rightarrow \frac{x}{(x+1)^2} = \frac{A(x+1)+B}{(x+1)^2}$$

Multiplying both sides by $(x+1)^2$, we get

$$x = A(x+1) + B \tag{ii}$$

$$x = A(x+1) + B$$

$$\Rightarrow x = Ax + A + B$$
(iii)

Putting x = -1 in Eq. (ii), we get

$$-1 = A(-1-1) + B$$

$$\Rightarrow$$
 $-1 = A(0) + B$

$$\Rightarrow \frac{-1=B}{D}$$

$$\Rightarrow$$
 $B=-1$

To find, the value of A compare the co-efficient of x in Eq. (iii), we get

1 = A

putting these values of A and B in Eq. (i), we get

$$\frac{x}{(x+1)^2} = \frac{1}{x+1} + \frac{-1}{(x+1)^2}$$
$$= \frac{1}{x+1} - \frac{1}{(x+1)^2}$$

These are required partial fractions.

Unit 4 Partial fractions

Example Find partial fractions of $\frac{2x^2+1}{(x-2)^2(x+3)}$

Let
$$\frac{2x^2 + 1}{(x-2)^2(x+3)} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{x+3}$$

$$\Rightarrow \frac{2x^2 + 1}{(x-2)^2(x+3)} = \frac{A(x-2)(x+3) + B(x+3) + C(x-2)^2}{(x-2)^2(x+3)}$$
discolated at (2)

Multiplying both sides by $(x-2)^2(x+3)$, we get

$$2x^{2} + 1 = A(x-2)(x+3) + B(x+3) + C(x-2)^{2}$$

$$2x^{2} + 1 = A(x^{2} + x - 6) + B(x+3) + C(x^{2} - 4x + 4)$$
(ii)

$$2x^{2} + 1 = (A+C)x^{2} + (A+B-4C)x + (-6A+3B+4C)$$
 (iii)

Putting x = 2 in Eq. (ii), we get

$$2(2)^{2} + 1 = A(2-2)(2+3) + B(2+3) + C(2-2)^{2}$$

$$\Rightarrow 8 + 1 = A(0)(5) + B(5) + C(0)^{2}$$

$$\Rightarrow 9 = 0 + 5B + 0 \Rightarrow 9 = 5B \Rightarrow B = \frac{9}{5}$$

Putting x = -3 in Eq. (ii) we get

$$2(-3)^{2} + 1 = A(-3-2)(-3+3) + B(-3+3) + C(-3-2)^{2}$$

$$\Rightarrow 2 \times 9 + 1 = A(-5)(0) + B(0) + C(-5)^{2}$$

$$\Rightarrow 19 = 0 + 0 + C(25) \Rightarrow C = \frac{19}{25}$$

To find value of A, compare co-efficient of x^2 from Eq. (iii), we get

Putting value of C, we get

$$2 \doteq A + \frac{19}{25} \quad \Rightarrow \quad 2 - \frac{19}{25} = A \quad \Rightarrow \boxed{A = \frac{31}{25}}$$

Putting values of A, B and C in Eq. (i), we get

$$\frac{2x^2 + 1}{(x-2)^2(x+2)} = \frac{\frac{31}{25}}{x-2} + \frac{\frac{9}{5}}{(x-2)^2} + \frac{\frac{19}{25}}{x+3}$$

$$\frac{2x^2 + 1}{(x-2)^2(x+2)} = \frac{31}{25(x-2)} + \frac{\frac{9}{5}}{5(x-2)^2} + \frac{19}{25(x+3)}$$

These are required partial fractions.

FOR SALE

Mathematics X

Exercise 4.1

Resolve the following fractions into partial fractions. (1). $\frac{3x-2}{2x^2-x}$ (2). $\frac{x-1}{x^2+6x+5}$ (3). $\frac{1}{x^2-1}$ (4). $\frac{x}{x^2+4x-5}$ (5). $\frac{4x+2}{(x+2)(2x-1)}$ (6). $\frac{x^2+5x+3}{(x^2-1)(x+1)}$

(1).
$$\frac{3x-2}{2x^2-x}$$

(2).
$$\frac{x-1}{x^2 + 6x + 5}$$

(3).
$$\frac{1}{x^2-}$$

(4).
$$\frac{x}{x^2 + 4x - 5}$$

(5).
$$\frac{4x+2}{(x+2)(2x-1)}$$

(6).
$$\frac{x^2 + 5x + 3}{(x^2 - 1)(x + 1)}$$

$$(7). \frac{x^2 + 4x - 5}{(x + 2)(x^2 + 5x + 6)} \quad (8). \frac{2x - 1}{x(x - 3)^2} \qquad (9). \frac{x^2}{x^2 + 2x + 1}$$

$$(9). \ \frac{x^2}{x^2 + 2x + 1}$$

(10).
$$\frac{x^2}{(x-1)^2(x+1)}$$

Case III When denominator consists of non-repeated quadratic factors

Let the proper fraction $\frac{P(x)}{O(x)}$ is given then to every non-repeated quadratic factor $ax^2 + bx + c$

in Q(x) which is not factorizable corresponds the partial fraction of the form

$$\frac{P(x)}{Q(x)} = \frac{Ax + B}{ax^2 + bx + c}$$
 where A and B are constants to be determined.

| Example | 5 Find partial fractions of $\frac{1}{(x+1)(x^2+2)}$.

Solution Let
$$\frac{1}{(x+1)(x^2+2)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+2}$$

$$\Rightarrow \frac{1}{(x+1)(x^2+2)} = \frac{A(x^2+2) + (Bx+C)(x+1)}{(x+1)(x^2+2)}$$

Multiplying both sides by $(x+1)(x^2+2)$, we get

$$1 = A(x^2 + 2) + (Bx + C)(x + 1)$$

$$1 = A(x^2 + 2) + Bx^2 + Bx + Cx + C$$

$$1 = A(x^2 + 2) + Bx^2 + Bx + Cx + C$$

$$1 = (A+B)x^{2} + (B+C)x + 2A + C$$
 (iii

Putting x = -1 in Eq. (ii), we get

$$1 = A[(-1)^{2} + 2] + [B(-1) + C](-1+1)$$

$$\Rightarrow$$
 1 = $A(1+2)+(-B+C)(0)$

$$\Rightarrow$$
 1 = $A(3)+0$

Unit 4 Partial fractions

$$1 = 3A \Rightarrow \boxed{A = \frac{1}{3}}$$

To find values of B and C comparing co-efficient of x^2 and x in Eq. (iii)

We get,
$$0 = A +$$

and
$$0 = A + B$$

 $0 = B + C$

using value of
$$A$$
 in Eq. (iv), we get

$$0 = \frac{1}{3} + B$$

$$B = \frac{-1}{3}$$

$$B = \frac{-1}{3}$$
 putting

$$\Rightarrow B = \frac{-1}{3}$$
 putting $B = -\frac{1}{3}$ in Eq. (v), $-\frac{1}{3} + C = 0 \Rightarrow C = \frac{1}{3}$

Putting these values of A, B and C in Eq. (i), we get

$$\frac{1}{(x+1)(x^2+2)} = \frac{\frac{1}{3}}{x+1} + \frac{\frac{-1}{3}x + \frac{1}{3}}{x^2+2}$$

$$\frac{1}{(x+1)(x^2+2)} = \frac{1}{3(x+1)} + \frac{-x+1}{3(x^2+2)}$$

$$\frac{1}{(x+1)(x^2+2)} = \frac{1}{3(x+1)} + \frac{1-x}{3(x^2+2)}$$

These are required partial fractions

Example $\frac{4x^2-28}{x^4-x^2-6} = \frac{4x^2-28}{(x^2+3)(x^2-2)} = \frac{Ax+B}{x^2+3} + \frac{Cx+D}{x^2-2}$

Solution $4x^2 - 28 = (Ax + B)(x^2 - 2) + (Cx + D)(x^2 + 3)$

$$=(4x^3 : Bx^2 : 24x : 28x : (C_2^2 + D_2^2 + C_2 + 3D)$$

$$= (A+C)x^3 + (B+D)x^2 + (3C-2A)x - 2B + 3D$$

Equating coefficients of like powers of x,

$$A+C=0, B+D=4, 3C-2A=0, -2B+3D=-28$$

Solving simultaneously, A = 0, B = 8, C = 0, D = -4.

Hence,
$$\frac{4x^2 - 28}{x^4 - x^2 - 6} = \frac{4x^2 - 28}{x^4 + x^2 - 6} = \frac{8}{x^2 + 3} - \frac{4}{x^2 - 2}$$

Case IV When denominator consists of repeated quadratic factors

Example Resolve $\frac{1}{(x-1)(x^2+1)^2}$ into partial fractions.

Solution Let
$$\frac{1}{(x-1)(x^2+1)^2} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{(x^2+1)^2}$$
 (i)
$$\Rightarrow \frac{1}{(x-1)(x^2+1)^2} = \frac{A(x^2+1)^2 + (Bx+C)(x-1)(x^2+1) + (Dx+E)(x-1)}{(x-1)(x^2+1)^2}$$

Multiplying both sides by $(x-1)(x^2+1)^2$ we get

 $1 = (A+B)x^4 + (-B+C)x^3 + (2A+B-C+D)x^2 + (-B+C-D+E)x$

Putting x = 1 in Eq. (ii), we get

in Eq. (ii), we get
$$1 = A [(1)^2 + 1]^2 + [B(1) + C](1-1)[(1)^2 + 1] + [D(1) + E](1-1)$$

$$1 = A[1+1]^2 + (B+C)(0)(1+1) + (D+E)(0)$$

$$1 = A(2)^2 + 0 + 0$$

$$1 = A(4)$$

$$\Rightarrow A = \frac{1}{4}$$

Comparing co-efficients of x^4 , x^3 , x^2 , x and constant respectively. (iii)

$$0 = A + B \tag{}$$

$$0 = -B + C (iv)$$

$$0 = 2A + B - C + D \tag{v}$$

$$0 = 2A + B - C + D$$
 (vi)
 $0 = -B + C - D + E$ (vi)

$$1 = A - C - E$$
 (vii)

Using value of A in (iii) we get

$$0 = \frac{1}{4} + B$$

$$\Rightarrow B = -\frac{1}{4}$$

Unit 4 Partial fractions

Using value of B in (4) we get

$$0 = -\left(-\frac{1}{4}\right) +$$

$$0 = \frac{1}{4} + C$$

$$\Rightarrow C = -\frac{1}{4}$$

Using values of A, B and C in Eq. (v), we get

$$0 = 2\left(\frac{1}{4}\right) + \left(-\frac{1}{4}\right) - \left(-\frac{1}{4}\right) + D$$

$$0 = \frac{1}{2} - \frac{1}{4} + \frac{1}{4} + D$$

$$0 = \frac{1}{2} + 1$$

$$D = \frac{-1}{2}$$

Using values of A and C in Eq. (vii), we get

$$1 = \frac{1}{4} - \left(-\frac{1}{4}\right) - E$$

$$1 = \frac{1}{4} + \frac{1}{4} - E$$

$$1 = \frac{1}{2} - E$$

$$E = \frac{1}{2} - 1 = -\frac{1}{2}$$

$$E = -\frac{1}{2}$$

Putting values of A, B, C, D, E in Eq. (i), we get

$$\frac{1}{(x-1)(x^2+1)^2} = \frac{\frac{1}{4}}{x-1} + \frac{\frac{-1}{4}x - \frac{1}{4}}{x^2+1} + \frac{\frac{-1}{2}x - \frac{1}{2}}{(x^2+1)^2}$$

$$= \frac{1}{4(x-1)} + \frac{-x-1}{4(x^2+1)} + \frac{-x-1}{2(x^2+1)^2}$$

$$\frac{1}{(x-1)(x^2+1)^2} = \frac{1}{4(x-1)} - \frac{x+1}{4(x^2+1)} - \frac{x+1}{2(x^2+1)^2}$$

Exercise 4.2

Resolve the following fractions into partial fractions.

(1). $\frac{1}{x(x^2+1)}$ (2). $\frac{x^2+3x+1}{(x-1)(x^2+3)}$ (3). $\frac{2x+1}{(x^2+1)(x-1)}$ (4). $\frac{-3}{x^2(x^2+5)}$ (5). $\frac{3x-2}{(x+4)(3x^2+1)}$ (6). $\frac{5x}{(x+1)(x^2-2)^2}$ (7). $\frac{5x^2-4x+8}{(x^2+1)^2(x-2)}$ (8). $\frac{4x-5}{(x^2+4)^2}$ (9). $\frac{8x^2}{(x^2+1)(1-x^4)}$ Resolve the following fractions into partial fractions.

(1).
$$\frac{1}{x(x^2+1)}$$

(2).
$$\frac{x^2 + 3x + 1}{(x - 1)(x^2 + 3)}$$

(3).
$$\frac{2x+1}{(x^2+1)(x-1)}$$

$$x(x^2+1)$$

$$(5). \quad \frac{3x-2}{(x+4)(3x^2+1)}$$

(6).
$$\frac{5x}{(x+1)(x^2-2)^2}$$

(7).
$$\frac{5x^2 - 4x + 8}{(x^2 + 1)^2(x - 2)}$$

(8).
$$\frac{4x-5}{(x^2+4)^2}$$

(9).
$$\frac{8x^2}{(x^2+1)(1-x^4)}$$

(10)
$$\frac{2x^2+4}{(x^2+1)^2(x-1)}$$

Review Exercise 4

1. At the end of each question, four circles are given. Fill in the correct circle only.

(i).
$$\frac{1}{r^2-1}$$
=

$$0 \frac{1}{x+1} - \frac{1}{x-1}$$

$$0 \frac{1}{2(x+1)} - \frac{1}{2(x-1)}$$

$$0 \frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

$$O \frac{2}{x-1} - \frac{1}{2(x+1)}$$

(ii). If P(x) and Q(x) are two polynomials then $\frac{P(x)}{Q(x)}$, $Q(x) \neq 0$ is

- O Rational fraction
- O Irrational fraction

O Proper fraction

O Improper fraction

(iii).
$$\frac{x^2+2}{x^2+2x+2}$$
 is

O Proper fraction.

- O Improper fraction
- O Irrational fraction
- O None of these
- (iv). What is the quotient when

$$x^3 - 8x^2 + 16x - 5$$
 is divided by $x - 5$?

$$0 x^2 - x + 5$$

$$0 x^2 - 3x + 2$$

$$0 x^2 - 3x + 1$$

$$0 x^{2} - 3x + 2$$

$$0 x^{2} + 13x - 49 + \frac{240}{(x+5)}$$

Unit 4 Partial fractions

2. Resolve the following fractions into partial fractions.

(i).
$$\frac{2x^2}{(x+1)(x-1)}$$

(i).
$$\frac{2x^2}{(x+1)(x-1)}$$
 (ii). $\frac{2x^3-3x^2+9x+8}{x^2-3x+2}$ (iii). $\frac{3x-1}{x^3-2x^2+x}$

(iii).
$$\frac{3x-1}{x^3-2x^2+x}$$

(iv).
$$\frac{x+1}{(x-1)^2}$$

(v).
$$\frac{2x^2}{x^4-4}$$

(iv).
$$\frac{x+1}{(x-1)^2}$$
 (v). $\frac{2x^2}{x^4-4}$ (vi). $\frac{3x^2+3x+2}{x^4-1}$

(vii).
$$\frac{x^3 + 3x^2 + 1}{(x^2 + 1)^2}$$
 (viii). $\frac{2x^3 - 1}{x^3 + x^2}$ (ix). $\frac{4x^2 + 3x + 14}{x^3 - 8}$

(viii).
$$\frac{2x^3-1}{x^3+x^3}$$

(ix).
$$\frac{4x^2 + 3x + 14}{x^3 - 8}$$

Challenge

3. Resolve the following-fraction into partial fractions. $\frac{x^4 + 3x^2 + x + 1}{(x+1)(x^2+1)^2}$

- If P(x) and Q(x) are two polynomials and Q(x) is non zero polynomial than the fraction $\frac{P(x)}{Q(x)}$ is called a rational fraction.
- A rational fraction, $O(x) \neq 0$ is a proper rational fraction, if the degree of numerator P(x) is less than the degree of denominator O(x).
- A rational fraction $\frac{P(x)}{Q(x)}$, $Q(x) \neq 0$ is a improper rational fraction, if the degree of numerator P(x) is equal to or greater than the degree of denominator Q(x).
- Splitting up a single ration al fraction into two or more rational fraction with single factor in denominator, such a procedure is called partial fractions.

Math Fun

