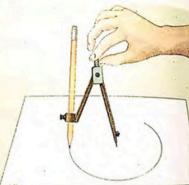
Unit


PRACTICAL GEOMETRY CIRCLE

In this unit the students will be able to

- Locate the centre of a given circle.
- Draw a circle passing through three given non-collinear points.
- O Complete the circle:
 - o by finding the centre,
 - o without finding the centre,

When a part of its circumference is given.

- Circumscribe a circle about a given triangle.
- Inscribe a circle in a given triangle.
- Escribe a circle to a given triangle.
- Circumscribe an equilateral triangle about a given circle.
- Inscribe an equilateral triangle in a given circle.
- Circumscribe a square about a given circle.
- Inscribe a square in a given circle.
- Circumscribe a regular hexagon about a given circle.
- Inscribe a regular hexagon in a given circle...
- Draw a tangent to a given arc, without using the centre, through a given point P when P is
 - o the middle point of the arc,
 - o at the end of the arc.
 - o outside the arc.
- Draw a tangent to a given circle from a point P when
 - on the circumference.
- o outside the circle.
- Draw two tangents to a circle meeting each other at a given angle.
- Draw direct common tangent or external tangent,
- Transverse common tangent or internal tangent to two equal circles.
- Draw
 - o direct common tangent or external tangent,
 - o transverse common tangent or internal tangent to two unequal circles.
- Draw a tangent to
 - o two unequal touching circles,
- o two unequal intersecting circles
- Draw a circle which touches
 - o both the arms of a given angle,
 - o two converging lines and passes through a given point between them,
 - o three converging lines

Unit 13 Practical geometry circle

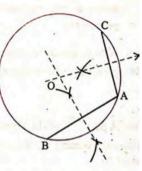
Why it's important

Greek geometers at the time of Euclid believed that circles have a special perfection. With the rediscovery of Euclid's Elements by English philosopher Adelard (twelfth century) this way of thinking made its way into the European world. The designs in many early buildings and churches were based on geometric principles learned from Euclid. Today the practical geometry of circles is at its best in masaiids.

Practical geometry is a very important branch of mathematics. In this branch we mechanical methods of constructing various geometrical figures. It is the branch whi highly essential in all draftsmanship necessary in the work of engineers, architect, surve and others. The huge buildings, bridges and dams around us are all indebted to prageometry.

Historical Bhong Masjid Rahim Yar Khan, Pakistan

Practical Geometry


13.1.1 Locate the centre of a given circle

Given: A circle without any mention of its centre.

Required: To locate the centre of the circle.

Steps of Construction:

- Choose any three points A, B and C on the circumference of the given circle.
- (ii). Join A with B and C.
- (iii). Draw the perpendicular bisector of \overline{AB} and \overline{AC} .
- (iv). These bisectors intersect at O.
- (v). O is the required center of the given circle.

Mathematics X

Draw a circle passing through three given non-collinear points

Given: Any three points A, B and C in a plane which are non-collinear.

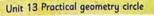
Required: To draw a circle passing through these points. Steps of Construction:

- (i). Join A to B and C respectively.
- (ii). Draw the perpendicular bisectors ℓ_1 and ℓ_2 of \overline{AB} and \overline{AC} .
- Point of intersection of these perpendicular bisectors is O.
- (iv). Taking radius = $m\overline{OA} = m\overline{OB} = m\overline{OC}$, draw a circle.

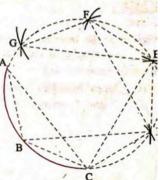
This is the required circle.

13.1.3 (a) Complete the circle, by finding the centre when a part of its circumference is given

Given: A part \widehat{AB} of the circumference of a circle. Required: To complete the circle by finding its centre.


Steps of Construction:

- (i). Choose any point C in the given arc \widehat{AB} at reasonable distance both from A and B with C as such we get \overline{AC} and \overline{BC} .
- (ii). Find the mid-points of \overline{AC} and \overline{BC} and draw the ir perpendicular bisectors ℓ_1 and ℓ_2 .
- (iii). The point of intersection of ℓ , and ℓ , is the centre of the required circle. Denote this point by O.
- (iv). With O as centre draw a circle with radius equal to $m\overline{OA}$ or $m\overline{OB}$ or $m\overline{OC}$. This gives the required circle.
- (b) Complete the circle without finding the center when a part of its circumference is given


Given: A part \widehat{AC} of the circumference of a circle.

Required: To complete the circle without finding the centre. Steps of Construction:

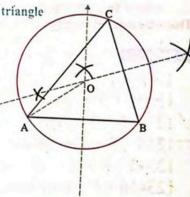
Take any point B on the arc \widehat{AC} .

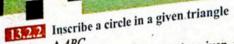
- (ii). Join A to B, B to C and A to C.
- (iii). With C as a centre and radius equal to mAB draw an arc. Again taking B as centre and radius radius equal to \overline{MAC} , draw another ar c. which cuts the first arc at point D.
- (iv). Join B and C to D. With D as centre and radius equal to $m\overline{BC}$, draw an arc and with C as centre and radius equal to mBD, draw another arc which cuts the first arc at point E.

- (v). Join C and D to E. With E as centre and radius equal to mCD, draw an arc and w D as centre and radius equal to $m\overline{CE}$, draw another arc which cuts the first arc a
- (vi). Continue the same process which gives a sequence of points getting nearer a: nearer to the point A. All the points D, E, F, Gso obtained are the points lying the circumference of the required circle.
- (vii). By free -hand drawing of arcs joining the above sequence of points.

This gives the required circle.

Circles Attached to Polygons

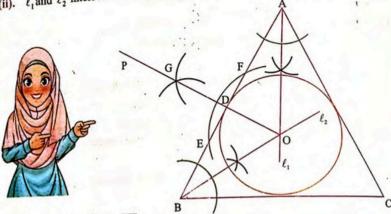

Circumscribe a circle about a given triangle


Given: AABC

Required: To circumscribe a circle about the given $\triangle ABC$.

Steps of Construction:

- (i). Draw $\triangle ABC$.
- Draw perpendicular bisectors ℓ_1 and ℓ_2 of two sides \overline{AB} and \overline{BC} , which intersect each other at O.
- (iii). Draw a circle with centre O and radius equal to mOA or mOB or mOC.
- (iv). This is the required circumscribed circle about the given triangle.



Given: $\triangle ABC$ Required: To inscribe a circle in the given triangle i.e. to construct a circle which touches all the three sides of the given triangle.

Steps of Construction:

- of Construction:

 Draw bisectors ℓ_1 and ℓ_2 of any two angles say $\angle A$ and $\angle B$ of the given $\triangle ABC$ (i). Draw discuss ℓ_1 and ℓ_2 intersect at O which is the centre of the required circle.

- (iii). From O draw $\overline{OD} \perp \overline{AB}$
- (iv). With O as centre and $m\overline{OD}$ as radius draw a circle, which touches all the three sides of the given triangle.

This is the required inscribed circle in the given triangle.

Math Fun

$$1 \times 8 + 1 = 9$$

$$12 \times 8 + 2 = 98$$

$$123 \times 8 + 3 = 987$$

$$1234 \times 8 + 4 = 9876$$

$$12345 \times 8 + 5 = 98765$$

$$123456 \times 8 + 6 = 987654$$

$$1234567 \times 8 + 7 = 9876543$$

$$12345678 \times 8 + 8 = 98765432$$

$$123456789 \times 8 + 9 = 987654321$$

Unit 13 Practical geometry circle

Escribe a circle to a given triangle

Given: AABC

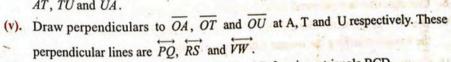
Required: To draw an escribed circle opposite to vertex A of the A ABC.

Steps of Construction:

- (i). Produce \overline{AB} and \overline{AC} to form two exterior angles \(\angle CBD \) and \(\angle BCE \).
- (ii). Draw bisectors ℓ_1, ℓ_2 and ℓ_3 of $\angle BAC$ ∠CBD and ∠BCE respectively.
- (iii). All these angle bisectors intersect at O.
- (iv). Draw $\overline{OF} \perp \overline{AB}$.
- (v). With O as centre and $m\overline{OF}$ as the radius, draw a circle, which touches \overline{BC} , \overline{BD} and \overline{CE} .

This circle is the required escribed circle. Similarly escribed circles opposite to the vertices B and C can be drawn.

Circumscribe an equilateral triangle about a given circle


Given: A circle with centre O.

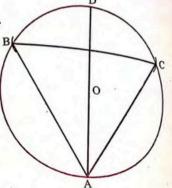
Required: To circumscribe an equilateral triangle about the circle.

Steps of Construction:

- (i). Take any point A on the circumference of the circle and join O to A. \overrightarrow{OA} is radial segment.
- (ii). Construct an angle $\angle AOT$ of measure 120°.
- (iii). Construct another angle ∠TOU measuring 120°.
- (iv). The three points A, T, U which are lying on the circumference of the given circle are such that they divide the boundary of the circle into three equal arcs which are

(vi). These lines intersect each other at B, C and D forming a triangle BCD.

The $\triangle BCD$ is the required equilateral triangle circumscribed about the given circle.


Given: A circle with centre O.

Required: To inscribe an equilateral triangle in the circle.

Steps of Construction:

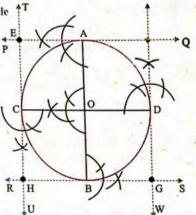
- (i). Draw any diameter \overline{AD} of the given circle.
- (ii). With centre D and radius m OD, draw two arcs which cut the given circle at B and C.
- (iii). Join A to B and C.

 \triangle ABC is the required equilateral triangle.

Exercise 13.1

- 1. Construct a triangle with sides 2 cm, 2.5 cm and 3 cm. Also draw its circumcircle.
- 2. Construct a triangle ABC such that $m\overline{AB} = 3$ " $m\overline{AC} = 4$ " and $m\angle A = 60$ °. Draw circumcircle to this triangle.
- 3. Suppose we have a triangle whose sides are 3 cm, 4 cm and 6 cm respectively. Draw its inscribed circle.
- 4. Construct a triangle ABC with sides $\overline{mAB} = 5cm$, $\overline{mBC} = 6cm$ and $\overline{mCA} = 8cm$. Draw perpendicular bisectors of its sides and then circumscribe a circle.
- 5. Draw a triangle ABC with $m\angle A = 60^{\circ}$ and $m\angle B = 45^{\circ}$. Draw three angle bisectors and then inscribe a circle in it.
- 6. An equilateral triangle is inscribed in a circle. Find the altitude of the triangle if the radius r of the circle varies as under.
 - r=3 units, r=4 units, r=6 units, r=12 units. Can you deduce some result from this?
- 7. An equilateral triangle is circumscribed about a circle. Find the altitude of the triangle if the radius r of the circle varies as r = 2 units, r = 5 units r = 10 units. Can you deduce some result from this?
- 8. Circumscribe an equilateral triangle about a circle of radius 2", 3" and 1".
- 9. Draw a triangle with sides 2.5 cm, 3.5 cm and 4.5 cm long. Draw an escribed circle to the triangle touching the longest side of the triangle.
- 10. For the problem in Q,9 draw an escribed circle to the triangle touching the smallest side.

Unit 13 Practical geometry circle


13.2.6 Circumscribe a square about a given circle

Given: A circle centre at O.

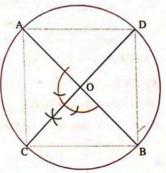
Required: To circumscribe a square about the given circle.

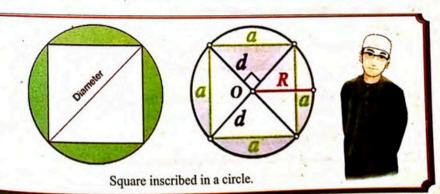
Steps of construction:

- (i). Draw any diameter \overline{AB} of the circle.
- (ii). Draw another diameter \overline{CD} which is perpendicular to \overline{AB} .
- (iii). Draw perpendicular PO, RS, TU and vw at the extremities A, B, C, D of the diameters \overline{AB} and \overline{CD} .
- (iv). These lines cut each other at the points E.F. Gand H.

EFGH is the required circumscribed square about the given circle.

Inscribe a square in a given circle


Given: A circle with centre O.

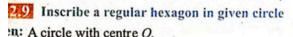

Required: To inscribe a square in the given circle.

Steps of construction:

- (i). Draw any diameter, say AB, of the circle.
- (ii). Draw another diameter \overline{CD} of the circle which is perpendicular to \overline{AB} .
- (iii). Draw \overline{AC} , \overline{CB} , \overline{BD} and \overline{DA} .

ACBD is the required inscribed square.

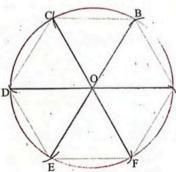
Circumscribe a regular hexagon about a given circle


n: A circle with centre O.

aired: To circumscribe a regular hexagon about the given circle.

s of construction:

- Take any point A on the circumference of the given circle.
- With A as centre and $m\overline{OA}$ as radius, draw two arcs which cut the circumference of the circle at B and F
- i). Through O, draw \overline{AD} , \overline{BE} and \overline{FC}
- v). Draw perpendiculars at the extremities A, B, C, D, E and F of the diameters AD. \overline{EB} and \overline{FC} of the circle. These lines cut each other at points G, H, I, J, K and L.


HIJKL is the required circumscribed hexagon.

uired: To inscribe a regular hexagon in the given circle.

s of construction:

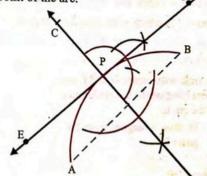
- Take any point A on the circumference of the given circle.
- With A as centre and mOA as radius, draw an arc which cuts the circumference of the

rcle at B. Similarly draw successive arcs which cut the circumference of the circle at D, and F.

). Draw \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} and \overline{EF} .

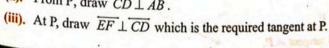
'CDEF is the required hexagon which is inscribed in the given circle.

Exercise 13.2


- Circumscribe a square about a circle of radius 5cm.
- 2 Inscribe a square in a circle of radius 6 cm.
- 2. Inscribe a praw a square of side 6 cm. Circumscribe a circle about that square and then inscribe a circle in the same square. Measure the radii of these two circles.
- 4. First draw a circle of suitable radius, so that the square circumscribed about that circle has sides of length 8 units.
- 5. Inscribe a square of side 10 cm in a circle. What will be the size of the radius?
- Inscribe a regular hexagon in a circle of radius 4 cm.
- Construct a circle of radius 4cm and draw a regular hexagon about the circle.
- Draw a circle of radius 8 cm. Circumscribe a regular hexagon about that circle and also inscribe a regular hexagon in the same circle. Find the areas of these geometrical figures. Comment on the values of these areas
- o Draw two regular hexagons of perimeters 6 cm and 30 cm respectively. Determine their centres. From their centers draw perpendicular to any of their sides respectively. What is the relation of these two perpendiculars?
- 10. Can you construct a square whose area equals the areas of a given circle? Discuss in detail.

Tangent to the circle

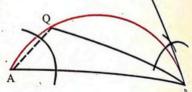
(i) Draw a tangent to a given arc, without using the centre, through a given point P when P is the middle point of the arc


Given: An arc such that P is the mid point of the arc.

Required: To draw a tangent at P.

Steps of construction:

- (i). Draw \overline{AB} .
- (ii). From P, draw $\overrightarrow{CD} \perp \overrightarrow{AB}$.

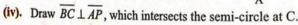

Unit 13 Practical geometry Grad (ii) Draw a tangent to a given arc, without using the centre, through a given

point P when P is at the end of the arc

Given: An arc AP of a circle. Required: To draw a tangent at the end point P.

Steps of Construction:

- (i). Take any point Q on the arc \widehat{AP} and draw the chords \overline{AP} and \overline{PQ} .
- (ii). Join A and Q.
- (iii). Now construct $\angle QPT \cong \angle PAQ$
- (iv). PT is the required tangent at P.



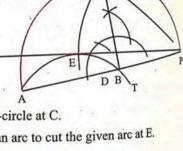
(iii) Draw a tangent to a given arc, without using the centre, through a given point Pwhen Pis outside the arc

Given: \widehat{AT} is an arc and P is a point outside the arc. Required: To draw a tangent from point P on the arc.

Steps of Construction:

- (i). Join A and P. Which cuts the arc at B.
- (ii). Bisect AP at D.
- (iii). With D as centre and radius equal to \overline{mDP} , draw a semi - circle on \overline{AP} .

- (v). With P as centre and \overline{mPC} as radius draw an arc to cut the given arc at E.
- (vi). Draw PE which is the required tangent.


13.3.2 (i) Draw a tangent to a given circle from a point P when P lies on the circumference

Given: A circle with centre O and P is a point lying on the circumference of the circle.

Required: To draw a tangent from the point P.

Steps of construction:

- (i). Draw OP
- (ii). Draw $\overrightarrow{QP} \perp \overrightarrow{QP}$ at P.
- (iii). \overline{PQ} is the required tangent at P.

Unit 13 Practical geometry circle

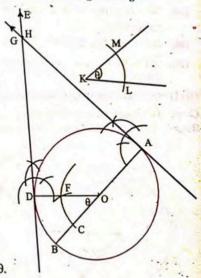
(ii) Draw a tangent to a given circle from a point P when P lies outside the circle

Given: A circle with centre at O. P is a point lying outside the circle. Required: To draw a tangent to the circle from the

given point P.

Steps of Construction:

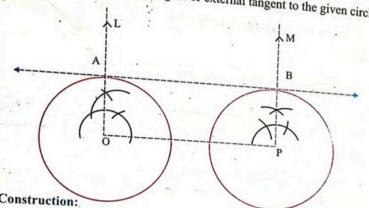
- (i). With P as centre and mOP as radius, draw an arc. OA.
- (ii). With O as center and the diameter of the given circle as radius, draw another arc which intersects arc \widehat{OA} at E.
- (iii) Draw \overline{OE} which intersects the circle at F
- (iv). Through F draw PF which is the required tangent.


Draw two tangents to a circle meeting each other at a given angle

Given: A circle with centre O and an angle equal to angle θ . The vertex of the given angle is k.

Required: To draw two tangents to the given circle such that the tangents are inclined to each other at the angle θ .

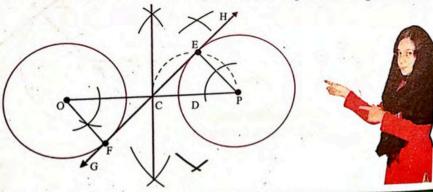
Steps of Construction:


- (i). Draw any diameter \overline{AB} .
- (ii). At O, construct $\angle BOD \cong \angle \theta$.
- (iii). At D draw $\overline{DE} \perp \overline{OD}$.
- (iv). At A draw $\overrightarrow{AG} \perp \overrightarrow{OA}$.
- (v). These two perpendiculars intersect each other at H
- (vi). \overrightarrow{DH} and \overrightarrow{AH} are the required tangents inclined to each other at angle the angle θ .

(i) Draw direct common tangent or external tangent to two equal circles

Given: Two equal circles with centres at O and P respectively.

Required: To draw direct common tangent or external tangent to the given circles.


Steps of Construction:

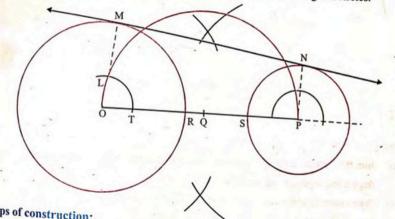
- (i). Join O to P
- (ii). Now draw two perpendiculars on \overline{OP} at O and P which cut the circles at A and B respectively. °
- (iii). Join A and B and produce it towards both ends.
- (iv). \overline{AB} is the required direct common tangent or external tangent to two given equal circles.

(ii) Draw transverse common tangent or internal tangent to two equal circles

Given: Two equal circles with centres at O and Prespectively.

Required: To draw transverse common tangent or internal tangent to the two given circles.

Unit 13 Practical geometry circle

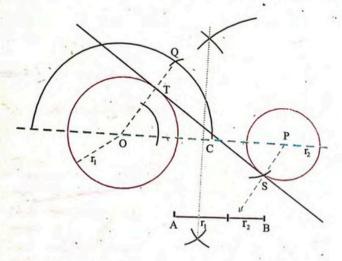

Steps of construction:

- (i). Join O and P, the centers of the given circles
- (ii). Bisect OP at C.
- (iii). Bisect CP at D.
- (ii). Draw a semi-circle on \overline{CP} diameter which cuts the given circle at E.
- (v). Join E and P.
- (vi). Draw OF || EP.
- (vii). Join E and F and extend the line to both directions.
- (viii). GH is the required tangent to both the circles.

(i) Draw direct common tangent or external tangent to two un -equal circles

Given: Two unequal circles with centres at O and Prespectively.

Required: To draw a direct common tangent or external tangent to the given circles.



Steps of construction:

- (i). Join centres of the circles O and P. \overline{OP} cuts the circles at R and S respectively.
- (ii). Bisect \overline{OP} at Q. With Q as centre and $m\overline{QP}$ as radius, draw a semi circle.
- (iii). Take a point T on \overline{OP} in the bigger circle such that $\overline{mRT} = \overline{mSP} = \text{length of the radius}$ of the smaller circle.
- (iv). With center O and $m\overline{OT}$ as radius, describe an arc cutting the semicircle at L.
- (v). Draw \overrightarrow{OL} to meet the bigger circle at M.
- (vi). $D_{\text{raw a}} \ \overline{PN} \parallel \overline{OM}$. Join M and N and produce it to both sides to get the common tangent or external tangent \overline{MN} to the two given circles.

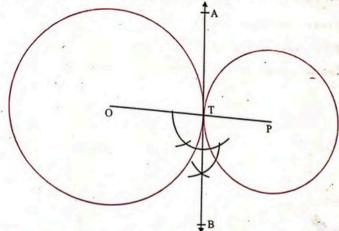
(ii) Draw transverse common tangent or internal tangent to two unequal

Given; Two unequal circles with centres O and P having radii r_1 and r_2 , where $r_1 > r_2$ Required: To draw a transverse common tangent or internal tangent to the given circles.

Steps of Construction:

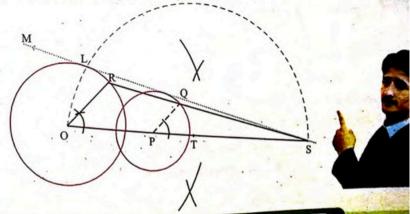
Mathematics X

- (i). Join the centres of the given circles and produce the line to both directions. Also draw a line segment \overline{AB} such that $\overline{mAB} = r_1 + r_2$.
- (ii). With centre O and radius equal to $m\overline{AB}$, draw a semicircle.
- (iii). Bisect \overline{OP} at C. Then choosing C as centre and $m\overline{OC}$ as radius, draw an arc which cuts the semicircle at O.
- (iv). Draw \overline{OQ} cutting the bigger circle at T. Now from P, draw $\overline{PS} \parallel \overline{OQ}$ in the opposite sense cutting the smaller circle at S.
- (v). Join \overline{OQ} cutting the given circle at T. Now draw a line parallel to \overline{OQ} but passing through P which is the centre of the smaller circle. This line cuts the smaller circle at S.
- (vi). Join T and S and produce it in both directions. The line TS so obtained is the required transverse tangent or internal tangent to the given unequal circles.


Unit 13 Practical geometry circle

13.3.6 (a) Draw a tangent to two unequal touching circles

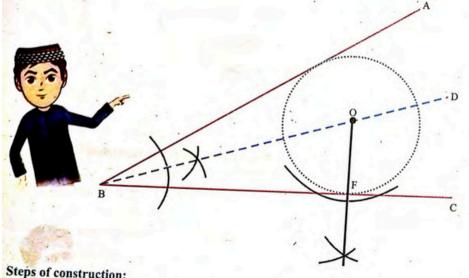
Given: Two unequal circles with centers O and P touching each other at T. Required: To draw a tangent to the circles.


Steps of Construction:

- Join the centers O and P of the given circles. \overline{OP} passes through T, the point contact.
- (ii). At T draw a line $\overline{ATB} \perp \overline{OP}$.
- (iii). ATB is the required tangent to the given circles.

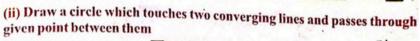
(b) Draw a tangent to two unequal intersecting circles

Given: Two unequal circles with centers O and P and intersecting each other. Required: To draw a tangent to the given circles.


Steps of Construction:

- Join the centers of the given circles and produce it to the right.
- (ii). Draw a line segment \overline{PQ} as a radius of the smaller circle such that \overline{PQ} is not along \overline{OP} . Also draw \overline{OR} , the radius of the bigger circle such that \overline{OR} is parallel to \overline{PQ} .
- (iii). Join R and Q and produce it to meet the line \overline{OP} produced at S. Bisect the line segment \overline{OS} at T and draw a semicircle on \overline{OS} which cuts the bigger circle at L.
- (iv). Finally join S and L and produce it to M. \overline{SM} is the required tangent.

13.3.7 (i) Draw a circle which touches both the arms of a given angle


Given: An angle $\angle ABC$ whose vertex is at B. \overline{AB} and \overline{BC} are its arms.

Required: To draw a circle which touches both the arms \overline{AB} and \overline{BC} of the given angle.

Steps of construction:

- Draw \overline{BD} , the bisector of $\angle ABC$.
- Take any point O on \overline{BD} and draw a perpendicular \overline{OF} on \overline{BC} .
- (iii). Taking O as centre and $m\overline{OF}$ as radius draw a circle.
- (iv). This is the required circle.

Given: Two converging lines \overline{LA} and \overline{KC} meet at B and $\angle ABC$ is an angle formed by these converging lines. Let D be a point lying between these converging lines.

Required: To draw a circle which touches the two converging lines \overline{LA} and KC and passes through given point D.

- (i). Draw the bisector \overline{BE} of the angle $\angle ABC$.
- (ii). Take a point F on \overline{BE} and draw $\overline{FG} \perp \overline{BC}$. With F as centre and \overline{mFG} as radiu: draw a circle. This circle touches the given converging lines tangentially.
- (iii). Join D and B \overline{DB} cuts the circle at H. Join F to H and draw $\overline{DO} \parallel \overline{FH}$.
- (vi). With O as centre and \overline{mDO} as radius, draw a circle C which as required.

Exercise 13.3

- 1. Draw an arc of length 7 cm. Without using the center draw a tangent through a given poir P when P is
 - (i). The middle point of the arc.
 - (ii). End point of the arc.
 - (iii). Outside the arc.
- 2. Draw a circle passing through a point D and touching a given line BC at point D.
- 3. Describe a circle of radius 4cm, passing through a given point C and touching a give straight line AB.
- 4. Radius of a circle is 2.5 cm. A point O is at a distance of 5cm from the centre. Draw tanger to the circle from the point O.
- 5. Radii of two circles are 2 cm and 3cm and their centres are 8 cm apart. Draw direct common tangents to the circles.
- 6. Two congruent circles are of radius 4 cm each. Their centres are 10 cm apart. Drav transverse common tangents to these circles.
- 7. Radii of two circles are 2cm and 2.5 cm respectively. Distance between their centres is 5. cm. Draw transverse common tangents to the circles.
- 8. Draw ∠ABC of measure 60°. Construct a circle having radius 2.5 cm and touching the arms of the angle.

Review Exercise 13

1. At the end of each question, four circles are given. Fill in the correct circle only

- (i). The measure of the external angle of a regular hexagon is

Ste

Gi

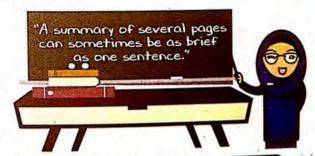
Re

Ste

- $O(\frac{\pi}{4})$ $O(\frac{\pi}{6})$
- O none of these
- (ii) Tangents drawn at the end points of the diameter of circle are
 - O parallel

- O perpendicular
- O intersecting
- O none of these
- (iii). How many tangents can be drawn from a point outside the circle?

- 0 4
- (iv). If the distance between the centers of two circles is equal to the sum of their radii then the circles will
 - O intersect


- O do not intersect
- O touch each other externally O touch each other internally
- 2. Practically find the centre of an arc ABC.
- 3. Escribe a circle opposite to vertex A of a triangle ABC with sides |AB| = 5cm, |BC| = 4cm. |CA|=3cm. Find its radius also.
- 4. Circumscribe a circle about an equilateral triangle ABC with each side of length 5cm.
- 5. Circumscribe a regular hexagon about a circle of radius 4cm.
- 6. Construct a circle of radius 3 cm. Draw two tangents making an angle of 60° with each other.
- 7. Draw two equal circles each of radius 3.5cm. If the distance between their centres is 7cm, then draw their transverse tangents.
- 8. Draw two comon tangents to two intersecting circles of radii 2.5cm and 3.5cm.
- 9. Draw two common tangents to two touching circle of radii 3 cm and 4cm.

Mathematics X

- the perpendicular bisectors of two non-parallel chords of a circle intersect at a point which is known as centre of the circle.
- A circle of any radius can be traced by rotating a compass about fixed point
- A circle can be drawn through given three non-collinear points.
- If a triangle; the circumscribed circle, inscribed circle and escribed circle opposite to each vertex can be constructed
- When a part of circumference of a circle is given, the circle can be completed.
- If a circle is given, then the circumscribed and inscribed equilateral triangles can be constructed.
- For a given circle, the circumscribed an inscribed squares can be drawn.
- For a given circle, the circumscribed and inscribed regular hexagon can be constructed.
- Tangents can be drawn to a given circle, when a point is an its circumference and from a point outside the circle.
- We can draw tangents to a given arc as its mid point, its any end point, and a point not on
- Tangents to two unequal touching circles can be traced.
- We can construct a circle touching the arms of a given angle.
- Direct or transverse common tangents of two equal circles or two unequal circles can be
- A circle passing through a given point between two converging lines and touching each of them, can be traced.

ANSWERS

Exercise 1.1

i. {-1, -4}

iv.
$$\left\{\frac{1}{2}, \frac{5}{3}\right\}$$

iv.
$$\left\{1 + \frac{\sqrt{6}}{3}, 1 - \frac{\sqrt{6}}{3}\right\}$$
 v. $\left\{\frac{3}{2}, \frac{4}{3}\right\}$ vi. $\left\{\frac{1}{2}, -\frac{1}{4}\right\}$

5.
$$\{-13\}$$
 6. $\{1, \frac{3}{2}\}$ 7. $\{\sqrt{85}\}$

ii.
$$\{1, 5\}$$

v. $\{-1, \frac{7}{2}\}$

ii.
$$\{5+\sqrt{14}, 5-\sqrt{14}\}$$

v.
$$\left\{\frac{1}{9}, \frac{5}{9}\right\}$$
 iii. $\{0, -2\}$ vi. $\{-2, 5\}$

ii.
$$\{1+\sqrt{5}, 1-\sqrt{5}\}$$
 iii. $\{0, \frac{-3}{4}\}$

iii.
$$\left\{0, \frac{-3}{4}\right\}$$

$$\left\{\frac{3}{2}, \frac{4}{3}\right\}$$

vi.
$$\left\{ \frac{1}{2}, -\frac{1}{4} \right\}$$

ii.
$$\{-2+\sqrt{3}, -2-\sqrt{3}\}$$

6.
$$\left\{1, \frac{3}{2}\right\}$$

Exercise 1.2

(i)
$$\{\pm 1, \pm 2\}$$

$$\pm 2$$
 (ii) $\{\pm 2, \pm \sqrt{2}\}$

(ii)
$$\left\{\pm 2, \pm \sqrt{3}\right\}$$
 (iii) $\left\{\pm \frac{1}{\sqrt{2}}, \pm \sqrt{\frac{5}{3}}\right\}$ (iv) $\left\{0, \frac{-5}{2}\right\}$

(iv)
$$\left\{0, \frac{-5}{2}\right\}$$

Answers

(vi)
$$\left\{10, \frac{-2}{5}\right\}$$
 (vii) $\left\{1, 3, \frac{1}{3}\right\}$

(vii)
$$\left\{1, 3, \frac{1}{3}\right\}$$

(viii)
$$\{1,4\pm\sqrt{15}\}$$

$$(ix) \left\{ \frac{-1 \pm \sqrt{5}}{2}, 1 \pm \sqrt{2} \right\}$$

(xi)
$$\{0, -2\}$$

(xiii)
$$\{-1 \pm \sqrt{7}, 2, -4\}$$

$$(xiv) \left\{ \frac{-5 \pm \sqrt{5}}{2} \right\}$$

$$(xv)\left\{-4\pm\sqrt{5}\right\}$$

$$\left\{\pm 1, 1 \pm \sqrt{2}\right\}$$

Exercise 1.3

$$(vi) \{0\}$$

iii. cannot be simplified

ix. x = 3 or x = 5

(ix)
$$\{0, -2\}$$

(ix)
$$\{0, -2\}$$
 (x) $\left\{-\frac{1}{2}, -1\right\}$

Review Exercise 1

i.
$$x = -1, 5$$

i.
$$x = -1, 5$$
 ii. $\frac{1 \pm \sqrt{5}}{2}$

iv.
$$a = 2, b = -1, c = -3$$
 v. $x = 4, -1$ vi. $x = \frac{-2 \pm \sqrt{22}}{2}$

vii.
$$x = \pm \frac{1}{2}$$
 viii. 2 or -9

$$\left\{\pm\sqrt{2},\pm\frac{1}{\sqrt{2}}\right\}$$
 $a=-2,b=0$

$$x = -2$$

$$\left\{6, \frac{22}{49}\right\}$$

Exercise 2.1

- (i) -36
- (ii) 9
- (i) Real (irrational) and unequal (ii) Real (rational) and unequal (iii) Complex and unequal

- (ii) ± 12 (iii) $\frac{25}{4}$
- 4. (i) $\left\{ \frac{-5 \pm \sqrt{5}}{2} \right\}$ (ii) $\left\{ \frac{-3}{2}, \frac{-3}{2} \right\}$ (iii) $\left\{ \frac{1}{2}, \frac{-2}{3} \right\}$
- (i) The roots are real (rational) and unequal: 3, $\frac{1}{2}$
 - (ii) The roots are real (irrational) and unequal $:3+\sqrt{5}, 3-\sqrt{5}$
 - (iii) The roots are real (irrational) and unequal : $\sqrt{3}$, $-\sqrt{3}$
- 6. (i) (a) $k \le \frac{9}{8}$ (b) $k > \frac{9}{8}$ (ii) (a) $k \le 1$ (b) k > 1
- (iii) (a) $k \le \frac{25}{4}$ (b) $k > \frac{25}{4}$

Exercise 2.2

- (i) -1, $-\omega$, $-\omega^2$ (ii) 2, 2ω , $2\omega^2$
- (iii) $-3, -3\omega, -3\omega^2$

- (ii) $-128\omega^2$

Exercise 2.3

- (i) Sum of the roots = 1,
- Product of the roots $=\frac{-3}{1}$
- (ii) Sum of the roots = $\frac{-5}{2}$,
- Product of the roots = 3
- (iii) Sum of the roots = $\frac{-2}{3}$,
- Product of the roots = $\frac{-5}{3}$

Answers

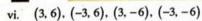
m = 5, n = -3

Exercise 2.4

- (i) $\frac{c(b^2 2ac)}{a^3}$ (ii) $\frac{b^2 4ac}{a^2}$

 - (i) $2x^2 3x + 1 = 0$ (ii) $x^2 x 12 = 0$ (iii) $x^2 6x + 7 = 0$ (iv) $x^2 + ax - 2a^2 = 0$

- $a^2x^2 (b^2 2ac)x + c^2 = 0$
- (i) $\frac{5}{2}$ (ii) 5 (iii) $-\frac{9}{4}$
 - $15x^2 + 26x + 15 = 0$ 6. $2x^2 12x + 17 = 0$


Exercise 2.5

- $Q(x) = 3x^2 7x + 20, R = -61$
- $Q(x) = 2x^2 x + 9, R = 0$
- $Q(x) = 2x^3 4x^2 + 5x 5, R = 3$

- p = -4, q = 1 a = -2, b = -1
- $2\pm\sqrt{3}$

Exercise 2.6

- (i) $(1, -1), (\frac{7}{5}, -\frac{1}{5})$ (ii) (-4, 2), (4, -2) (iii) (2, 12), (-4, 0)
- (iv) $(1, 2), \left(\frac{13}{5}, -\frac{6}{5}\right)$ (v) (1, 0), (-1, 0)

vii.
$$\left(\frac{1}{\sqrt{2}}, 1\right), \left(-\frac{1}{\sqrt{2}}, 1\right), \left(\frac{1}{\sqrt{2}}, -1\right), \left(-\frac{1}{\sqrt{2}}, -1\right)$$

- i. (18, -9)
- ii. (-2, 2), (-1, 3)

Exercise 2.7

- 3, 4, 5 or -3, -4, -5,
- 3, 9 m, 4m

- 6 and 8, -6 and -8
- 6. 21m, 12m

- 9 cm, 6 cm
- 8. 9 cm, 12 cm 9. 3 cm, 5 cm, 4 cm
- 15 goats.

Review Exercise 2

- ii. $x^2 2x + 15 = 0$ iii. none of these

- (i) Sum of roots = 0, Product of roots = $-\frac{1}{4}$
 - (ii) Sum of roots = $-\frac{4}{3}$, Product of roots = 0
- 5. $k = \frac{4}{3}$ 6. k = 1 6. $6x^2 17x + 12 = 0$

- The other root is 1, k = -6
- -1.-2
- 10. (i) (-1,4),(4,-1)
 - (ii) $(\sqrt{2}, \sqrt{2}), (-\sqrt{2}, \sqrt{2}), (\sqrt{2}, -\sqrt{2}), (-\sqrt{2}, -\sqrt{2})$
- 8cm, 6cm

Exercise 3.1

151:208

Answers

- First Partner = Rs. 8,000, Second Partner = Rs. 12,800, Third Partner = Rs. 19,200
- y = 81
- (ii). x = 10, -10
- (ii). x = 1
- r = 54
- (ii). p = 18

x	4	6	7	15
. у	2	3	3.5	7.5

Exercise 3.2

- (i) Continued Proportion
 - (ii) Not in continued proportion
- (iii) Continued Proportion

- - (i) x = -9

Exercise 3.3

$$y = \frac{968}{9}$$

$$f = 405$$
 $a = 2$

$$p = 2400$$

$$p = 2400$$
 $a = \frac{21}{2}$ $k = \frac{3}{2}$

$$y = kx^2z, 32$$

$$y = kx^2z$$
, 32 $p = \frac{12}{5}, \frac{qr^2}{st^2}, -\frac{128}{5}$

Exercise 3.5

$$V = 2816 \, cm^3$$

Review Exercise 3

i.
$$a \propto b$$
 ii. $mn = k$ iii. $3 \text{ to } 2$

iv.
$$\frac{a}{c} = \frac{b}{d}$$
 v. $x = 21$ vi. $\frac{y^2}{x}$

$$y. x = 2$$

vi.
$$\frac{y^2}{r}$$

viii.
$$a = \frac{11}{2}$$

vii.
$$x \propto z$$
 viii. $a = \frac{11}{2}$ ix. $\frac{\ell a + mc + ne}{\ell b + md + nf}$

x.
$$x = \frac{7}{16}y$$

viii.
$$a = \frac{1}{2}$$

$$\ell b + md + nf$$

2.
$$k = \frac{1}{20}$$
 3. $x = 2$

45°, 60°, 75°

276 Mathematics X NOT FOR SALE

Exercise 4.1

$\frac{2}{x} - \frac{1}{2x-1}$ $\frac{3}{2(x+5)} - \frac{1}{2(x+1)}$ $\frac{3}{2(x+1)} + \frac{1}{2(x-1)}$

$$-\frac{1}{2(x+1)} + \frac{1}{2(x-1)}$$

$$\frac{5}{6(x+5)} + \frac{1}{6(x-1)}$$

$$\frac{5}{6(x+5)} + \frac{1}{6(x-1)}$$
5. $\frac{6}{5(x+2)} + \frac{8}{5(2x-1)}$

$$\frac{9}{4(x-1)} - \frac{5}{4(x+2)} + \frac{1}{2(x+1)^2}$$

$$\frac{11}{x+3} - \frac{10}{x+2} + \frac{6}{(x+2)^2}$$

$$\frac{11}{x+3} - \frac{10}{x+2} + \frac{6}{(x+2)^2}$$

$$-\frac{1}{9x} + \frac{1}{9(x-3)} + \frac{5}{3(x-3)^2}$$

$$9 \quad 1 - \frac{2}{x+1} + \frac{1}{(x+1)^2}$$

$$9 \quad 1 - \frac{2}{x+1} + \frac{1}{(x+1)^2}$$

$$\frac{1}{4(x+1)} + \frac{1}{2(x-1)^2} + \frac{3}{4(x-1)}$$

Exercise 4.2

$$\frac{1}{x} - \frac{x}{x^2 + 1}$$

$$\frac{5}{4(x-1)} - \frac{x-11}{4(x^2+3)}$$

$$\frac{-3x+1}{x^2+1} + \frac{3}{2(x-1)}$$

$$\frac{3}{5x^2} + \frac{3}{5(x^2+5)}$$

$$\frac{-5}{x+1} \div \frac{5x-5}{x^2-2} - \frac{5x-10}{(x^2-2)^2}$$

$$\frac{4}{5(x-2)} - \frac{4x+8}{5(x^2+1)} + \frac{x-2}{(x^2+1)^2}$$

$$\frac{4x-5}{(x^2+4)^2}$$

$$-\frac{4}{\left(x^2+1\right)^2}+\frac{2}{x^2+1}+\frac{1}{x+1}-\frac{1}{x-1}$$

4,9
$$\frac{-1-x}{\left(x^2+1\right)^2} + \frac{1}{2} \frac{-3x-3}{x^2+1} + \frac{3}{2(x-1)}$$

Answers

Review Exercise 4

(i)
$$\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$
 (ii) Rational fraction (iii) Improper fraction

(iv)
$$x^2 - 3x + 1$$

i.
$$2 + \frac{1}{x-1} - \frac{1}{x+1}$$

2. i.
$$2 + \frac{1}{x-1} - \frac{1}{x+1}$$
 ii. $2x+3 + \frac{30}{x-2} - \frac{16}{x-1}$

iii,
$$-\frac{1}{x} + \frac{1}{x-1} + \frac{2}{(x-1)^2}$$
 iv. $\frac{1}{x-1} + \frac{2}{(x-1)^2}$

iv.
$$\frac{1}{x-1} + \frac{2}{(x-1)}$$

v.
$$\frac{1}{x^2-2} + \frac{1}{x^2+2}$$

v.
$$\frac{1}{x^2-2} + \frac{1}{x^2+2}$$
 vi. $\frac{2}{x-1} - \frac{1}{2(x+1)} - \frac{3x-1}{2(x^2+1)}$

vii.
$$\frac{x+3}{x^2+1} - \frac{x+2}{(x^2+1)^2}$$

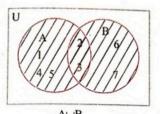
vii.
$$\frac{x+3}{x^2+1} - \frac{x+2}{(x^2+1)^2}$$
 viii. $2 - \frac{1}{x^2} - \frac{3}{x+1} + \frac{1}{x}$

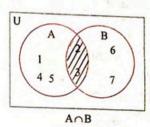
ix.
$$\frac{x-1}{x^2+2x+4} + \frac{3}{x-2}$$

$$\frac{x}{(x^2+1)^2} + \frac{1}{x+1}$$

Exercise 5.1

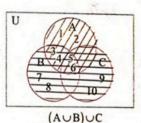
- (i) $\{0, 1, 2, 3\}$ (v) $\{0, 1, 3, 4\}$ (ii) $\{1, 2, 3, 4\}$ (iv) $\{1, 3\}$

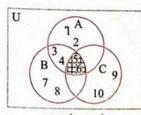

- (ii) {0, 1, 2, 3}, { } (iii) {2, 4, 6, ... }, { }
- (i) {1}, {4, 6, 8}
- (i) {1, 3, 5, 7, ... 19} (ii) {2, 4, 6, ... 20} (iii) {1, 2, 3, ... 20}
 - (iv) {1, 2, 3, ... 20}
 - (v) { } (vii) {1, 2, 3, ... 20}
- (vi) {1, 3, 5, ... 19} (vi) {1, 3, 5, ... 19} (viii) {2, 4, 6, ... 20}
- $(ix)\{\}$
- (x) {1, 2, 3, ... 20}
- (i) {1, 2, 3, ... 15}
- (ii) { }
- (iii) { } (v) {1, 3, ... 15}
- (iv) {1, 2, 3, ... 15} (vi) {1, 2, 3, ... 15}

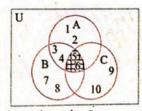

(vii) { }


(viii) {2, 4, 6, ... 14}

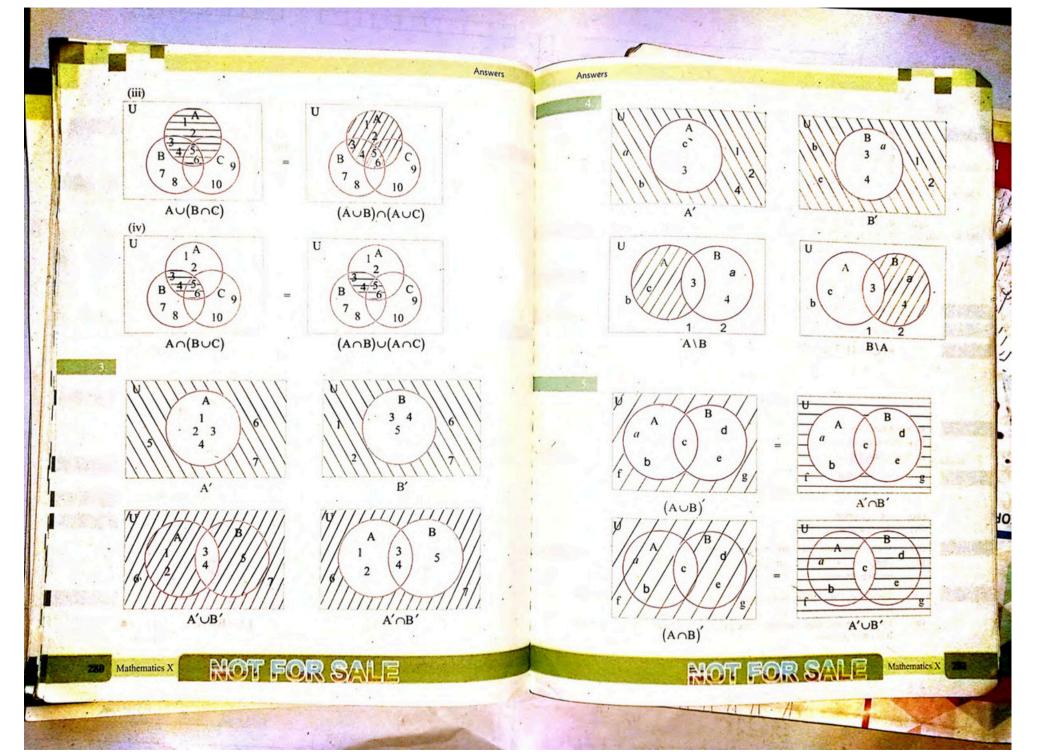
Mathematics X


Exercise 5.3





AU(BUC)



An(BnC)

(AOB)OC

Exercise 5.4

- (i) $R_1 = \{(1, 4), (2, 4)\}$ $R_2 = \{(2, 5), (3, 4)\}$
 - $R_3 = \{(1, 4), (2, 5), (3, 5)\}$
 - (ii) $R_1 = \{(4, 1)\}$
 - $R_2 = \{(5, 1), (5, 2)\}$
 - $R_3 = \{(4, 1), (4, 2), (4, 3)\}$
 - $R_4 = \{(4, 2), (4, 3), (5, 1), (5, 2)\}$
 - (iii) $R_1 = \{(1, 1), (1, 2)\}$
 - $R_2 = \{(1, 3), (2, 2)\}\$ $R_3 = \{(1, 1), (2, 2), (3, 3)\}\$
 - $R_4 = \{(3, 1), (3, 2)\}$
 - (iv) $R_1 = \{(4, 4)\}$
 - $R_2 = \{(4, 4), (4, 5)\}$
- $R = \{(2, 1), (3, 1), (4, 1), (4, 3)\}$
- Range = $\{0, 8, 16\}$
- Range = $\{1, 7, 17, 31\}$

Exercise 5.5

- R₁ is not function.
- R2 is onto function.
- R₃ is into function.
- (i) into function
- (ii) not a function, because both conditions of being a function are not satisfied.
- (iii) not a function
- (iv) into function
- (i) There exists one-one correspondence between set A and set B.
- (ii) There is not one-one correspondence because P∈B remains unpaired
- (i) There does not exist one-one correspondence between set A and set B.

 It is one-one function.
- (ii) There does not exist one-one correspondence between set A and set B.

 It is into function.

Answers

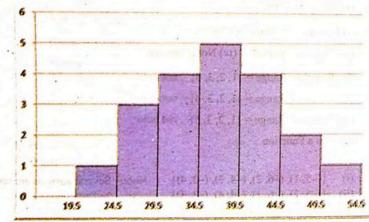
- (i) {(1, 5), (2, 6), (3, 7), (4, 8)} (ii) {(1, 6), (2, 5), (3, 8), (4, 7)}
 - (ii) {(1, 6), (2, 5), (3, 8), (4, 7)} (iii) {(1, 6), (2, 5), (3, 7), (4, 8)}
 - (iv) {(5, 1), (6, 2), (7, 3), (8, 4)}
 - (v) {(5, 4), (6, 3), (7, 2), (8, 1)}
 - (vi) {(1, 5), (2, 6), (3, 5), (4, 6)}
- (i) It is a function.
 Range = {1, 2, 3, 5} ≠ A, not onto
 - (ii) It is a function. Range = {1, 2, 3, 4} ≠ A, not onto
 - (iii) It is a function. Range = {1, 2, 4, 5} ≠ A, not onto

Review Exercise 5

- (i) An onto function from A to B (ii) 2×3 (iii) {0,4,8,12} and {6,10,14,18}
- (iv) $\cdot 13$ (v) Range f = B
 - (vi) {0,8,10,14}
- (i) {1, 2, 3,.... 100} (iv) {1, 3, 5, ... 99} (iii) { (iii) { 2, 4, 6, .. 100}
- (i) Function (ii) Bijective function
- (iii) Bijective function (iv) Not a function
- (i) Function, Range = $\{1, 2, 3, 5\}$, not onto
 - (ii) Function, Range = {1, 2, 3, 4}, not onto
 - (iii) Function, Range = $\{1, 2, 3, 5\}$, not onto
 - (iv) Not a Function
 - (i) $\{(-5, 1), (-6, 2), (-4, 3), (-3, 4)\}$ Note: Several answers are possible.
 - (ii) {(-5, 2), (-6, 1), (-4, 4), (-3, 3)}
 - (iii) {(-5, 4), (-6, 3), (-4, 2), (-3, 1)}
 - (iv) {(-5, 2), (-6, 2), (-4, 1), (-3, 3)}

Exercise 6.1

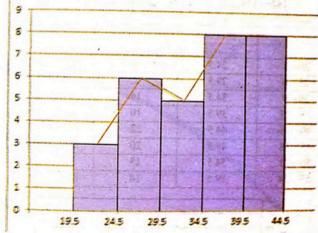
Class-Limits	Tally Marks	Frequency
35 — 45	.11	2
46 — 55	li lill	4
56 — 65	LMI!	6 :
66 —75	MIIII	9
76—85	uni	3
86 —90	H	,


**X PHOTT FOR SALL

NOT FOR SALE

Hematics X

Answers


2.	S. No.	Class interval	Frequency
	1	1—3	01
ato for pull	2	46	. 04
	3 1 1 1 1 1	7—9	04
and the Arms	4	10—12.	03
100	5	13—15	04
	6	16—18	04
M. M. Olas, Sad	14: 10:04 7 THE	19—21	03
	8	22—24	02
			$\Sigma f = 25$

. Class-Limits	Tally Marks	Trequency
20 — 24	· . III	3
25 — 29	, ші	6
30 — 34	шш	5 .
35 —39	min min	8
40 — 44	инш	8

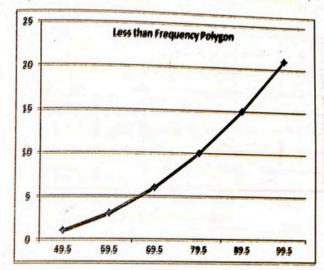
Answers

Class inferval -	- Frequency
1—2	15
3—4	- 11
5—6	4
	Σf=30

MOT FOR SALE

Mathematics X

4 TEXTOO


Answers

Exercise 6.2

Class-Limits	Tally Marks	Frequency
55 64	11	2
65 — 74	111	. 3
75 — 84	I HH I	6
85 —94	IIII	4
95—104	111	3
, 105 — 114		0
115—124	1	1
125 — 134		0
135 — 144		0
145—154	1	1

Age in years	Upper class Boundary	Frequency	Cumulative frequency
	24.5	1	1
20—3	29.5	2 ·	1+2=3
25—6	34.5	16	3+16=19
30—9	39.5	10	19+10=29
35—12	44.5	22	29+22=51
40—15	49.5	20	51+20=71
45—18	54.5	15	71+15=86
5021 5524	59.5	14	86+14=100

 Answers

(iv). 10

NOT FOR CALL

(iii). 5

(i). 20

(ii). 6

Mathematics X

(v). 79.5

Mathematics X

NOT FOR SALE

LEXTROPIC

30 25 20 15 8000.5 9000.5 10000.5 11000.5 7000.5 6000.5 5000.5 Upper class boundaries Exercise 6.3

37.8

53.5 marks

(i) 65.5 inches

37.8

1247(for assumed mean of 1244) (i) 7500

6. Mean = 66, Median = 67, Mode = 71, GM = 64.44

Mean = 154.3 Median = 156.5, Mode = 160

Median = 121.125, Mode = 119.62, G.M = 122.49, HM = 119.44

Median = 12.5th item $Q_1 = 4.25$ th item

Mode = 26.166 $Q_3 = 12.75$ th item

Exercise 6.4

- Range = 12
- (i) 7.72 (ii) 8.01
- (iii) 1.71
- Range = 65,
- Variance = 10.38 and S.D = 3.22
- AM:
- Section A = 7, Section B = 7
- (b) Variance: Section A = 2.4,
- Section B = 6.4

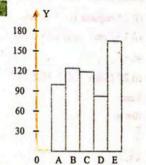
Answers Answers

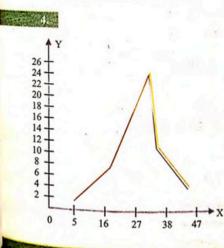
S.D: Maths = 9.96, Physics = 3.15, in Physics students are more consistent. Variance = 2.88, S.D = 1.7

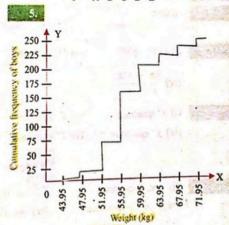
Review Exercise 6

(v) 1, 2, 3, 3, 2, 1, 2

- Class interval
- (vii) 66
- (viii) 51
- (x) 0
- (xi) Rs. 600/


(ii) Ogive


- (xiii) Range
- (xiv) Arithmetic Mean
- (xvii) Mode (xvi) Variance


- (iii) Frequency
- (vi) Geometric mean
- (ix) 7
- (xii) None of these
- (xv) 0.5

	ń
	Ę
Control of the Contro	ű

Classes	f
15 – 16	12
17 – 18	12
19 – 20	3
Total	27

- (ii) 39.8152° (iii) 84.3194°
- (iv) 18.1058°

- (i) 8.2597° (i) 42°15'
- (ii) 57°19'30" (iii) 12° 59'44"
- (iv) 32°37'30"

- (ii) 300°
- (iii) 30°
- (iv) -135°
- (i) 114.6° (i) $\frac{\pi}{4}$ radians (ii) $\frac{2\pi}{3}$ radians (iii) $\frac{-7\pi}{6}$ radians
- (iv) 1.0576 radians

Exercise 7.2

- (i) 1.047 cm (ii) 3.1415 cm
- (iii) 12.57 cm
- (i) 2.5 radians (ii) 5 radians
- (iii) 2.09 radians

- (i) 3.82 cm
- (ii) 0.1632 cm
- (iii) 6.366 cm

- 96 m²
- (i) 2.625 cm (ii) 6.5625 cm²
- 8 cm
- 70π m
- 4πcm
- 6πcm²

Exercise 7.3

- (i) 415°, -305°
- (ii) 315°, -405° (iii) $\frac{13\pi}{6}$, $-\frac{11\pi}{6}$
- (iv) $\frac{5\pi}{4}$, $\frac{-11\pi}{4}$
- (i) 3rd quadrant
- (ii) 1st quadrant
- (iii) 3rd quadrant

- (iv) 3rd quadrant
- (v) 2nd quadrant

Exercise 7.4

- (i) +ve, II quadrant
- (ii)+vc, II-quadrant
- (iii) +ve, III-quadrant
- (iv) -ve, II-quadrant
- (v) -ve, III-quadrant
- (vi) +ve, II-quadrant

Answers

Answers

- $\sin(-180^\circ) = 0$, $\cos(-180^\circ) = -1$, $\tan(180^\circ) = 0$, $\csc(-180^\circ) =$ undefined $sec(-180^\circ) = -1$, $cot(-180^\circ) = undefined$
- $\sin(-270^{\circ}) = 1$, $\cos(-270^{\circ}) = 0$, $\tan(-270^{\circ}) =$ undefined $\csc(-270^{\circ}) = 1$, $\sec(-270^{\circ}) = \text{undefined}$, $\cot(-270^{\circ}) = 0$
- (iii) $\sin 720^\circ = 0$, $\cos 720^\circ = 1$, $\tan 720^\circ = 0$, $\csc 720^\circ = undefined$ sec 720° =1, cot 720° = undefined
- (iv) $\sin(1470^\circ) = \frac{1}{2}$, $\cos(1470^\circ) = \frac{\sqrt{3}}{2}$, $\tan(1470^\circ) = \frac{1}{\sqrt{3}}$, $\csc(1470^\circ) = 2$ $\sec(1470^\circ) = \frac{2}{\sqrt{3}}, \cot(1470^\circ) = \sqrt{3}$
- $\cos \theta = \frac{1}{2}$, $\sin \theta = -\frac{\sqrt{3}}{2}$, $\tan \theta = -\sqrt{3}$, $\csc \theta = -\frac{2}{\sqrt{3}}$, $\cot \theta = -\frac{1}{\sqrt{3}}$
- $\csc\theta = \frac{5}{4}$, $\cos\theta = -\frac{3}{5}$, $\tan\theta = \frac{4}{3}$, $\sec\theta = \frac{5}{3}$, $\cot\theta = \frac{3}{4}$
- (i) 1 (ii) $\frac{1}{\sqrt{3}}$ (iii) $\frac{1}{1+\sqrt{2}}$ (iv) 2 (v) 0
 - (i) 1st quadrant
- (ii) 3rd quadrant
- (iii) 2nd quadrant

- (iv) 4th quadrant
- (v) 4th quadrant
- (vi) 2nd quadrant

- 25.56
- (ii) 26.16
- (iii) 7.79

8 333.92yd

Exercise 7.6

- - 26.56°
 - 260 feet

- $50\sqrt{3}\,m$
- $300(\sqrt{3}+1)m$

Review Exercise 7

- (i) angle of depression (ii) $\frac{\cos \theta}{\sin \theta}$
- (iii) $sec^2 \theta$

- (v) 1^{st} quadrant (vi) $\frac{\pi}{4}$
- (vii) 2.6496
- (viii) 0.4

- (ix) $2\sqrt{2}$
- (x) 45°
- 3. 216°40′12″
- 2. 45.4916°
- 4. (i) $\frac{3\pi}{2}$ radian
- (ii) 2π radian
- 5. (i) 550°, -170° (ii) 110°, -610°
- 6. (i) $\sin 390^\circ = \frac{1}{2}$, $\cos 390^\circ = \frac{\sqrt{3}}{2}$, $\tan 390^\circ = \frac{1}{\sqrt{3}}$ $\cos \cos 390^\circ = 2$, $\sec 390^\circ = \frac{2}{\sqrt{3}}$, $\cot 390^\circ = \sqrt{3}$
 - (ii) $\sin(-240^\circ) = \frac{\sqrt{3}}{2}$, $\cos(-240^\circ) = \frac{-1}{2}$, $\tan(-240^\circ) = -\sqrt{3}$ $\csc(-240^\circ) = \frac{2}{\sqrt{3}}, \sec(-240^\circ) = -2, \cot(-240^\circ) = \frac{-1}{\sqrt{3}}$
 - 8. $\cos \theta = \frac{1}{2}$, $\sin \theta = \frac{-\sqrt{3}}{2}$, $\tan \theta = -\sqrt{3}$, $\csc \theta = \frac{-2}{\sqrt{3}}$, $\cot \theta = -\frac{1}{\sqrt{3}}$
 - 9. 44 m (approximately).
- 10. 194 feet (approximately).

Exercise 8.1

- 1.5 cm
- $\angle B$ and $\angle D$ are obtuse.

Exercise 8.2

- 5√7 cm, √142 cm, √58cm
- $\overline{mCD} = 6 \text{ cm}, \ \overline{mAD} = 6\sqrt{3} \text{ cm}, \ \overline{mAB} = 4\sqrt{13} \text{ cm}$
- $\overline{mAD} = \frac{36}{\sqrt{61}}$ cm, $\overline{mCD} = \frac{25}{\sqrt{61}}$ cm

Review Exercise 8

- (i) Greek
- (ii) Perga
- (iii) Mathematician

- 1.53 units.
- $m\overline{BC} = \sqrt{89}$, $m\overline{AD} = \frac{40}{\sqrt{89}}$ cm, $m\overline{BD} = \frac{25}{\sqrt{89}}$ cm
- $m\overline{BE} = \sqrt{41} \text{ cm}$
- $5x = \frac{86}{10} = 4.53 (approx.)$
 - $y = \frac{275}{10} = 14.47 (approx.)$
 - $h = \frac{4\sqrt{1794}}{19} = 8.92 (approx.)$

Exercise 9.1

- $40\sqrt{2}$ cm 260 60 cm

- $\sqrt{41}$ cm $\sqrt{5}$ $2\sqrt{39}$ cm $\sqrt{6}$

8.39 cm

Exercise 9.2

- - (a) QT>PR
 - (b) \overline{PR} is farther from C than \overline{QT} .

Review Exercise 9

- (i) congruent (ii) CD is closer to O (iii) 24 centimeters

- (v) 14.4 units (vi) 6 cm
- (vii) 8
- (i) AC = 12m, AB = 24m
- (ii) Radius = 10 cm, Diameter = 20 cm

- (iii) 8 cm
- (iv) 48 Units
- (v) 5√2 m

3 17 cm

Answers

Exercise 10.1

- 8cm
- $\sqrt{17}cm$

- (ii) 15.65 (iii) 10

- 16 cm .
- (i) x = 49, y = 14
- (ii) x = 58, y = 15
- (iii) x = 34, y = 14.8
- (iv) x = 35, y = 55

(i) 6 cm

(ii) 3 cm

(iii) $3\sqrt{5}$ cm

(iv) $3(\sqrt{5}-1)$ cm

Exercise 10.2

- 11 cm

- 24 cm

- 12 cm
- 16cm
- 10 cm

- 2√7 cm
- 8. 6 cm

Review Exercise 10

- (i) an arc
- (ii) OT ⊥PQ
- (iii) equal

- 39 ft
- 24°
- (i) 26° (ii) 122°
- 5. (a) i = 8, j = 67.4
 - (b) k = 12.6, l = 50.0

Exercise 11

- (i) x = 12, $y = 90^{\circ}$
- (ii) x = 11, $y = 90^{\circ}$
- (iii) x = 12, $y = 67.4^{\circ}$
- (iv) x = 11.0, y = 61.9°
- x = 16, $y = 53.1^{\circ}$
- (vi) x = 6, $y = 50.2^{\circ}$

Review Exercise 11

- (i) $3\sqrt{2}$
- (ii) AB≅ CD
- \angle ADB = 65°, \angle BDC = 25°, $\widehat{\text{mBC}}$ = 50°

Exercise 12

- $x = 35^{\circ}, y = 145^{\circ}$
- 10 units
- (i) c = 62, x = 10 (ii) a = 45, b = 30

Review Exercise 12

- (i) 160°
- (ii) 60°
- (iii) 110° (iv) 40°

- (vi) 50°
- (vii) 25°
- (viii) 125°
- (i) $x = 98^{\circ}, y = 60^{\circ}$ (ii) $x = 38^{\circ}, y = 25\frac{1^{\circ}}{3}$
- (i) $x = 80^{\circ}$ (ii) $x = 125^{\circ}$ (iii) $x = 50^{\circ}$
 - (iv) $x = 45^{\circ}$ (v) $y = 12^{\circ}$ (vi) $x = 70^{\circ}$

Review Exercise 13

- (i) none of these
- (ii) none of these (iii) 4

- (iv) touch each other internally

GLOSSARY

UNIT 1

Quadratic equation

An equation that can be written in the form

$$ax^2 + bx + c = 0$$

where a, b, and c are real numbers with $a \neq 0$, is a quadratic equation.

Standard form

A quadratic equation written in the form $ax^2 + bx + c = 0$ is in standard form. Zero-factor property of real numbers.

If a and b are real numbers, with ab = 0, then either a = 0 or b = 0Square root property

The solution set of $x^2 = k$ is

$$\{\sqrt{k}, -\sqrt{k}\}$$

Quadratic formula

The solutions of the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Radical equation

An equation in which the variable appears in one or more radicands.

UNIT 2

The discriminant

The expression b^2 - 4ac that appears under the radical sign in the quadratic formula is called the discriminant.

Cube roots of unity

1, ω , ω^2 are the cube roots of unity, where $\omega = \frac{-1 + i\sqrt{3}}{2}$ and $\omega^2 = \frac{-1 - i\sqrt{3}}{2}$.

Properties of the cube roots of unity

- 1. The sum of the cube roots of unity is zero, i.e. $1 + \omega + \omega^2 = 0$
- 2. The product of the cube roots of unity is 1, i.e. $1 \times \omega \times \omega^2 = \omega^3 = 1$.
- 3. Each complex cube root of unity is reciprocal of the other, i.e. $\omega = \frac{1}{\omega^2}$ and $\omega^2 = \frac{1}{\omega}$.

Glossary

Relation between the roots and the coefficients of a quadratic equation

If α , β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then

Sum of the roots =
$$\frac{-b}{a}$$

and product of the roots = $\frac{c}{c}$

Formation of quadratic equation

The quadratic equation whose roots are α , β is given by x^2 – (sum of the roots) x + product of the roots = 0.

More than one equation which are satisfied by the same values of t variables involved, are called simultaneous equations or a system of equations.

UNIT 3

Ratio

A relation between two quantities of the same kind is called ratio.

Proportion

A proportion is a statement, which is expressed as equivalence of two ratios.

If two ratios a: b and c: d are equal, then we can write a: b=c:d

Direct variation

If two quantities are related in such a way that when one change in any ratio so does the other is called direct variation.

If two quantities are related in such a way that when one quantity increases, the other decreases is called inverse variation.

Joint Variation

Joint variation is the same as direct variation with two or more quantities, i.e. Joint variation is a variation where a quantity varies directly as the product of two or more other quantities. If x is jointly proportional to y and z, we can write xkyz=for some constant k. We can also write this relationship as

$$\frac{x}{yz} = k$$

UNIT 4

Rational fraction

If P(x) and Q(x) are two polynomials and Q(x) is non zero polynomials than the fraction $\frac{P(x)}{Q(x)}$ is called rational fraction.

Glossary

Proper rational fraction

A rational fraction, $Q(x) \neq 0$ is a proper rational fraction, if the degree of numerator P(x) is less than the degree of denominator Q(x).

Improper rational fraction

A rational fraction $\frac{P(x)}{Q(x)}$, $Q(x) \neq 0$ is an improper rational fraction, if the degree of numerator P(x) is equal to or greater than the degree of denominator Q(x)

Partial fractions Splitting up a single rational fraction into two or more rational fraction with single factor in denominator, such a procedure is called partial fractions

UNIT 5

A set is a "collection of well-defined distinct objects. Sets are represented by capital English alphabets, A, B, C Z and elements of sets are represented by small English alphabets, a, b, c, ... z.

Union of two sets.

If A and B are two sets, then the union of set A and set B consists of all elements in set A or in set B or in both A and B, and it is denoted by $A \cup B$. Symbolically.

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

Intersection of two sets

If A and B are two sets, then the intersection of set A and set B consists of all those elements which are common to both A and B, and it is denoted by $A \cap B$, -Symbolically,

 $A \cap B = \{x \mid x \in A \land .x \in B\}$

Disjoint sets

Two sets A and B are disjoint if $A \cap B = \varphi$

Complement of a set

If U is universal set and A is a subset of U, then U \ A is called complement of set A, and is denoted by A' or A'.

Difference of two sets

If A and B are two sets, then their difference consists of all those elements of A which are not in B, and it is denoted by A \B or A - B symbolically

 $A \setminus B = \{x \mid x \in A \land x \notin B\}$

Commutative property of union

For any two sets A and B

 $A \cup B = B \cup A$

Commutative property of intersection

For any two sets A and B $A \cap B = B \cap A$

Associative property of union

For any three sets A. B and C.

 $A \cup (B \cup C) = (A \cup B) \cup C$

Associative property of intersection

For any three sets

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive property of union over intersection

For any three sets A. B and C.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Distributive property of intersection over union

For any three sets A, B and C

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

De. Morgan's laws

For any two sets A and B

i)
$$-(A \cup B)' = A' \cap B'$$
 (ii) $(A \cap B)' = A' \cup B'$

Venn diagrams

Concept of sets i.e. union, intersection, complement, difference of sets, can be explained easily with the help of Venn diagrams. In these diagrams, a set is usually represented by a circle and universal set is represented by a rectangle.

Ordered pairs

(a, b) is called an ordered pair of two elements a and b of a set or of different sets, where a is the first element and b is the second element.

$$(a,b)\neq(b,a)$$

Cartesian product

If A and B are two non-empty sets then A × B is called Cartesian product, which is set of all ordered pairs such that the first element of each ordered pair belongs to set A and second element of each ordered pair belongs to set B symbolically.

 $A \times B = \{(x, y) | x \in A \text{ and } y \in B\}$

If $A \neq B$, then $A \times B \neq B \times A$

Binary relation

Any subset of A × B is called a binary relation, where A and B are two nonempty sets.

Domain and range of binary relation

If R is a binary relation from set A to set B, i.e.

 $R = \{(x, y) | x \in A \land y \in B\}$, then domain of R is set of first elements of all ordered pairs in R and is denoted by "Dom R".

The range of R is set of second elements of all ordered pairs in R, and is denoted. by "Range R".

A and B are two non-empty sets, then a binary relation f is said to be a Function function from A to B, if

There should be no repetition in the first elements of all ordered pairs (ii) contained in f. Symbolically

 $f: A \longrightarrow B$

Let $f: A \longrightarrow B$ be a function, then set A is called domain of f, set B is Domain, co-domain and range of a function called co-domain of f and the set of second elements of all ordered pairs contained in f is called range of f. The range is subset of co-domain

i.e. Range f ⊂ B

Into function

Let f be a function from A to B, then f is into function, if

Range f ≠ B

Let f be a function from A to B, then f is one-one function, if for each $x \in A$ One - one or 1-1 function there exist unique $y \in B$, i.e. there is no repetition in the second element of all ordered pairs contained in f.

Let f be a function from A to B, then f is injective (into and one - one) function if Into and one-one function (injective function)

- There is no repetition in the second elements of all ordered pairs (ii) contained in f.

Onto function (surjective function)

Let f be a function from A to B, then f is onto function if

Range f = B

Let f be function from A to B, then f is one-one and onto (bijective) function One-one and onto function (bijective function) if it is both one-one and onto.

If A and B are two non-empty sets then one-one correspondence between A One-one-correspondence and B is a rule for which each element of set A is paired with one and only one element of B and each element of B is paired with one and only one element of A, and non of the members of any set remains unpaired. It is also known as one-to-one function. In one-one correspondence both sets A and B have same number of elements.

Glossary

UNIT 6

Histogram

A graphical representation of data in the form of rectangles is called Histogram.

A number showing the repetition of a value in a given set of data

Frequency Polygons

A curve on the graph showing the frequency of values.

A value lying in the middle of arranged data is called median.

A value repeated maximum times in a given set of data is called mode. It shows the trend of a data and hence is usually used to find public opinion.

Range

The difference between maximum value and minimum value in given set of data.

TNIT 7

An angle is a union of two rays which have a common point (vertex) one of the ray is called "initial side" and other ray is called "terminal side".

Sexagesimal system (degrees, minutes, seconds)

It is the system of measurement of an angle in which one complete rotation is divided into 360 parts called degrees, written as 360°. One degree is divided into 60 parts called minutes, written as 60' and one minute is again divided into 60 parts called seconds, written as 60".

Circular system (radians)

It is another system of measurement of an angle. In this system unit of measure of angle is radian. One radian is an angle subtended at the centre of a circle an arc whose length is equal to radius of the circle.

Length of an arc is measured by the formula $\ell = r\theta$ where ℓ is length of an arc, θ is central angle of a circle measured in radians and r is radius of circle.

Area sector of circle

Area of sector of a circle is given by $A = \frac{1}{2}r^2\theta$. Where r is radius of circle, θ

is central angle of sector measured in radians.

Angles having the same initial and terminal sides are called co-terminal angles Coterminal angles and differ by a multiple of 2π radians or 360° they are also called general angles.

In XY-plane (co-ordinate plane), if the vertex of an angle lies at origin and initial side lies on positive x-axis, then such an angle is said to be in standard Angle in standard position position.

NOT FOR SALE

trants and quadrantal angles .

XY-plane divided into four equal parts each part is called quadrant. Being in the 1st, 2nd, 3rd and 4th quadrants means measure of angle from 0° to 90°, 90° to 180°. 180° to 270° and 270° to 360° respectively quadrant angles are 0°, 90°, 180°, 90, 360°. Trigonometric ratios of unit circle

These are
$$\sin \theta = y$$
, $\cos \theta = x$, $\tan \theta = \frac{y}{x}$

and
$$\cos = \frac{1}{y}$$
, $\sec \theta = \frac{1}{x}$, $\cot \theta = \frac{x}{y}$

Trigonometric identities are

- $\cos^2 \theta + \sin^2 \theta = 1$
- (ii) $1 + \tan^2 \theta = \sec^2 \theta$
- (iii) $1 + \cot^2\theta = \cos^2\theta$

Angle of elevation

If an object is above the level of observer's sight then the angle between the horizontal line and observer's line of sight is called angle of elevation.

Angle of depression

If an object is below the level of observer's sight then the angle between the horizontal line and observer's line of sight is called angle of depression.

UNIT 8-13

Acute angle

An angle is acute if and only if it has a measure greater than 0° and less than 90°.

Acute triangle

A triangle is acute if and only if it has three acute angles.

Adjacent angles

Two coplanar angles are adjacent if and only if they have a common arm but no points in the interior of one angle are in the interior of the other.

Altitude of a triangle

An altitude of a triangle is the perpendicular segment joining a vertex of the triangle to the line that contains the opposite side.

Angle

An angle is the union of two non-collinear rays with the same end point.

Arc of a circle

Any portion of the circumference of a circle is called an arc of the circle.

Bisector of an angle

A ray that divides an angle into two equal adjacent angles is the bisector of the angle:

Central angle

A central angle of a given circle is an angle whose vertex is at the centre of the circle.

Chord

A chord is a segment whose end points are on the circle. Circle

A circle is the set of all coplanar points equidistant from a given point, Circular region

A circular region is the union of a circle and its interior Circumference of a circle

The perimeter of a circle is called its circumference.

Collinear points

Points are collinear if and only if there is a line that contains all of them. Complementary angles

Two angles are complementary if and only if the sum of their measures is 90°. Concentric circles

Two or more circles (in the same plane) are concentric if they share the same centre point.

Concurrent lines

Two or more lines are concurrent if and only if there is a single point that lies on all of them.

Congruent angles

Angles of the same degree measure.

Congruent arcs

Two arcs of a circle are said to be congruent if and only if they have the same degree measures.

Congruent circles

Circles with congruent radii are called congruent circles.

Congruent figures

Geometric figures are congruent if and only if they have the same size and shape.

Congruent segments

Two or more line segments are congruent if and only if they have the same length.

Congruent triangles

Given a correspondence ABC « DEF between the vertices of two triangles, if the corresponding sides are congruent, and the corresponding angles are congruent then the correspondence ABC« DEF is called a congruence between the two triangles.

Coplaner points

points are coplaner if and only if there is a plane that contains all of them.

Corollary

A statement that can easily be proved by applying a theorem.

FOR SA

Diameter

A chord passing through the centre of a circle or in the same circle, two collinear radii form a diameter.

Externally tangent

Two or more circles are externally tangent if they intersect in exactly one point and if their interiors do not intersect.

Half - plane

Given a line and the plane containing it, the two sets separated by the line are called half - planes.

Internally tangent

Two or more circles are internally tangent if they intersect in exactly one point and if the interior of one contains the interior of the other.

Linear pair

Two angles form a linear pair if and only if they are adjacent angles and the noncommon sides are opposite rays.

Major and Minor arcs

The larger of the two arcs is called the major arc and the smaller one is called the minor arc.

Measure of an arc

The degree measure of a minor arc is the measure of the corresponding centre angle.

The degree measure of a major arc is 360° minus the degree measure of the corresponding minor arc.

The degree measure of a semi-circle is 180°. The degree measure of a circle is taken to be 360°.

Median of a triangle

A segment is a median of a triangle if and only if its end points are a vertex of the triangle and the midpoint of the opposite side.

Midpoint

A point B is called the midpoint of \overline{AC} if and only if (i) B is between A and C and (ii) $m\overline{AB} = m\overline{BC}$.

Obtuse angle

An angles is obtuse if and only if it has a measure greater than 90° but less than 180°.

Ohtuse triangle

A triangle is obtuse if and only if it has one obtuse angle.

Glossary

Opposite rays

 \overrightarrow{AB} and \overrightarrow{AC} are called opposite rays if and only if A is between B and C.

Parallel lines

Two lines are parallel if they do not intersect.

Perpendicular bisector

In a given plane, the perpendicular bisector of a segment is the line that is perpendicular to the segment at its midpoint.

Radius of a circle

A radius of a circle is

- (i) Any segment with one endpoint at the centre and the other end point on the circle and
- (ii) The distance from the centre to the circle.

Ray

is the figure that contains A and every point on the same side

of A as B.

Right angle

An angle of measure 90°.

Secant

A secant is a line that intersects a circle in exactly two points.

Sector

If \widehat{AB} is an arc of a circle with centre O and radius r, then the union of all segments \overline{OP} , where P is any point of \widehat{AB} , is a sector.

Segment of a circle

.A segment of a circle is the region bounded by a chord and an arc of the circle.

Supplementary angles

Two angles are supplementary if and only if the sum of their measures is 180°.

A line that intersects a circle at exactly one point is called a tangent, and the Tangent point of intersection is called the point of tangency (or point of contact).

HOT FOR SALE

Index 58 Alternando 192 Angle Angle of depression Angle of elevation Angle in standard position Apollonius theorem 187 187

173 198

Aponomus meorem		
Arc'		226
Area of a circular secto	r	170
Arithmetic mean		133
Associative property		88
В	VOICE:	Pero.
- Basic Statistics		. 120
Bijective function		113
Binary relation		107
Biquadratic		4

; C	110 270
Cartesian product	106
Central angle	206
Central tendency	- 133
Chord	202
Circle	202
Circum-angle	241
Circular system	165
Circumference	240
Circumscribe	257
Circumscribed circle	249
Circumscribed hexagon	258
Class boundaries	123
Class limits	123
Class width	123
. Co-domain	111
Co-efficients .	65,31

	Common tangent		264
۱	Commutative property		88
١	Complement of a set		86
١	Completing square		5
١	Complex cube roots		28
١	Componendo		58,59
١	Componendo-dividendo		58
١	Concentric circles		. 212
	Convergent lines	,	267
	Congruent circles		227
	continued proportion		57
	Correspondence		113
1	Corresponding chords		207
J	Coterminal angles		172
	Cube roots of unity		28
	Cumulative frequency		130
	Cumulative frequency polygon		130
	Cyclic quadrilateral		249
No. of Concession, Name of Street, or other Persons, or other Pers		T.	304

Data				121
De Morgan's Laws				94
Degree				166
Denominator				72
Diameter				202
Disjoint set				86
Difference of sets				86
Direct method				134
Direct method Direct proportion			,	67
Direct proportion				53
Discriminant				23
				153
Dispersion				89
Distributive property	/			58
Dividendo				108,111
Domain				100,

Index

Index

E	The state of	Inverse proportion	
Equidistant .	203	Inverse variation	
Equilateral triangle	256	Invertendo	3
Exponential equations	13	Irrational	2
Externally	219	J.K.L	A CAMPANA
Extraneous roots	16	Joint variation	
Extremes	52,	K-method	6
F	NOT 1589)	Linear equation	63
Factorization		Linear factors	73
Factorization Formation of quadratic equation	3 36	M	/:
Fourth proportional	57	The second secon	
Frequency distribution	122	Major segment	241
Frequency polygon	127	Mean proportion Mean	57
Function .	109	Median	52,133,1
runction .	109	Midpoint	133,13
C TOUR		Minor arc	123
General angle	172	Major arc	226
Geometric mean	143	Minor segment	226
Grouped data	133	Mode	241 139,150
The second	er total	Mose N	139,130
Half circle	226	Nature of the roots	23,2
Harmonic mean	145,146		250
Hexagon	247	Non-collinear points Non-repeated	73
Histograms	125	Numerator	12
		1 vulnerator	
maginary _	23	Obtuse angle	. 194
mproper fraction	72	One-One function .	112
njective function	112	Onto function	113
nscribed angle	249	Ordered pairs	106
nscribed polygon	249	Oldered pans	
nternal tangent	264	L. O. L. S.	712
ntercepted arc	226,249	Partial fractions	5,7
nternally	221	Perfect square	251
ntersecting circles	265	Perpendicular bisectors	253
ntersection of sets	86	Polygon	72
nto function	111	Polynomial	CONTRACT OF THE PARTY OF

Product of the roots	32		
Projection	194,196		
Proper fraction	72		
Properties of cube roots of unity	29		
proportions	52		
Pythagorean theorem	184,205		
0			
Quadrantal angle	174		
Quadrants	173,176		
Quadratic equation	2		
Quadratic formula	6		
Quadrilateral	245		
Quartic equation	42		
Quartiles	151		
Quotient	41.		
R			
Radian	166		
Radical equation	16		
Radius	202		
Range	108,111		
Ratio	57		
Rational fraction	72		
Real life problems	46,68		
Reciprocal equations	11		
Reducible to quadratic form	9		
Remainder	40,41		
Roots	2		
S			
Secant	212		
Sector of a circle	168		
Semi-circle	226		
Sets	85		
Sexagesimal	164		
simultaneous equations	43		
Solution	2		
Solution set	2		
308 Mathematics X	FEO		

	Index
Standard deviation	155
Standard form	5
Standard position	173
Sum of the roots	32
Supplementary	245
Surjective function	113
Symmetric functions	35
Synthetic division	39
System of equations	45
	43.
Tally marks	. 121
Tangent -	212
Third proportional	57.
Touching circles	265
Transverse	264
Trigonometric identities	184
Trigonometric ratios	172
	100
Unequal circles	265
Ungrouped data	133
Union of sets	86
V,/2	
Variable	52
Variance	155
Variations	52
Venn diagrams	95
Weighted mean	147
We love	
(fin) Mathemati	CS TE
A 119	
130	
11. 11/	
9	1 mm 1 mm 1

Pre-Algebra, Student Edition-Glencoe by Carol Malloy, Ph.D., Jack Price, Ed.D. Published by McGraw-Hill (2002)

Algebra and Trigonometry, 3rd Ed. by Judith A. Beecher, Judith A. Penna, Marvin L. Bittinger Published by Addison Wesley; (2007)

Holt Geometry by Schults. Holt Rinehart & Winston Published by Houghton Mifflin Harcourt (2004)

Geometry 1,001 Practice Problems For Dummies by Allen Ma, Amber Kuang (2015)

Fundamentals of college geometry by Edwin M. Hemmerling

Geometry by Cindy J. Boyd, Jerry Cummins, Carol E. Malloy, John A. Carter, Alfinio Flores Published by Mcgraw Hill (2007)

Basic math and algebra-United States NAVY (1985)

Introduction to algebra (the art of problem solving) by Richard Rusczyk Published by AoPS Incorporated (2007)

Eureka-Math-Fun-from-Many-Angles by David Lewis Published by Perigee

Maths-for-Fun-Creative-and-Innovative-Techniques by T. Satyanarayana

Teach yourself algebra by Abbott P. Published by Hodder and Stoughton 10.5 (1988)

Alte Ang Ang Ang

> Ans Ap Ar

> > Ar

About the Authors

Dr. Muhammad Shah

Dr. Muhammad Shah did his M.Sc from University of Peshawar in 1998. He did his PhD in 2012 from Quaid-i-Azam University Islamabad in computational Algebra. In 2010, he was awarded IRSIP scholarship of HEC for Birmingham University UK.

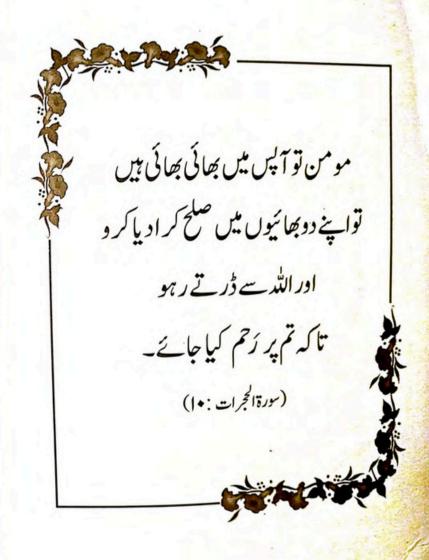
Dr. Shah has been teaching Mathematics on postgraduate level since 2002 in colleges of Khyber Pakhtunkhwa. He has been the Subject Specialist of Mathematics and Computer Science of Khyber Pakhtunkhwa Textbook Board since 2014 to 2017. He is the editor and reviewer of several textbooks of Mathematics and Computer Science.

Mr. Naseer Ahmad

Mr. Naseer Ahmad is a retired Asistant Professor of Mathematics in the Mathematics Department, University of Peshawar. He secured M.Sc from the University of Peshawar with Gold Medal and MS from Temple University USA. He has published a number of research papers.

Ms. Shoukat Qadeer

Ms. Shoukat Qadeer did M.Sc Mathematics from Punjab University Lahore. She is a Lecturer in Maths in Agricultural University Public School And College for Girls Peshawar.


Mr. Zulfiqar Ali Jamil

Mr. Zulifiqar Ali Jamil is Senior Teacher in Islamia Collegiat School Peshawar. He is an M.Phil in Education and has vast experience as a teacher.

Mr. Abdul Salam Kohsary

Mr. Abdul Salam Kohsary is a Senior Subject Teacher in G.H.S.S. Gujar Garhi (Mardan).

He joined several national and international level seminars and competition. He has a vast experience in writing of textbooks.

