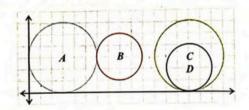
Activity J

Lengths in circles in a coordinate plane

Use the diagram for lengths.

- a. Radius of @A
- b. Diameter of ⊙ A
- c. Radius of ⊙B
- d. Diameter of ⊙ B
- e. Radius of ⊙ C
- f. Diameter of ⊙ C
- g. Radius of @ D
- h. Diameter of ⊙ D



Summary

- A secant to a circle is a line that intersects the circle at two distinct points. If a straight line and a circle have only one point of contact then that line is called a tangent and the point of intersection is known as point of tangency/contact.
- A line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its end point on the circle.
- 1 If a line is perpendicular to a radius at its end points the line is a tangent
- Tangent segments from a common external point are congruent.
- The tangents subtend equal angles at the centre.
- The line joining the external point to the centre of the circle bisects the angle between the tangents
- If two circles touch externally, the distance between their centres is equal to the sum of their radii.
- If two circles touch internally, the distance between their centres is the difference of their radii.

Did You Know?

$$3025 = (30 + 25)^2$$

and

$$2025 = (20 + 25)^2$$

Unit

11

CHORDS AND ARCS

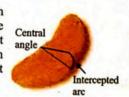
In this unit the students will be able to

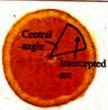
To prove the following theorems along with corollaries and apply them to solve appropriate problems.

- If two arcs of a circle (or of congruent circles) are congruent then the corresponding chords are equal.
- If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent.
- Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
- If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

Why it's important

An orange may consist of nine wedges, seen in cross section here. Thus, an average wedge would form a central angle of about one-ninth of the full circle, or 40°. (When you look at a typical orange wedge, does it seem to be about 40°?)





Major and Minor Ares

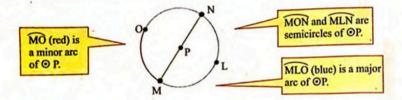
An arc is an unbroken part of a circle. Any two distinct points on a circle divide the circle into two arcs. The points are called the endpoints of the arcs.

Mathematics X

MOT FOR SALE

NOT FOR SALE

Mathematics X



A semicircle is an arc whose endpoints are endpoints of the diameter of the circle. A semicircle is informally called a half-circle. A semicircle is named by its endpoints and another point that lies on the arc.

A minor arc of a circle is an arc that is shorter than a semicircle of that circle

A minor are is named by its endpoints. A major arc of a circle is an arc that is longer than a semicircle of that circle.

A major arc is named by its endpoints and another point that lies on the arc.

Central angles of circles are used to find the measures of arcs.



mazing

A central angle of a circle is an angle in the plane of a circle whose vertex is the centre of the circle. An arc whose endpoints lie on the sides of the angle and whose other points lie in the interior of the angle is the intercepted arc of the central angle.

Math Fun

$$1 \times 9 + 2 = 11$$

 $12 \times 9 + 3 = 111$
 $123 \times 9 + 4 = 1111$
 $1234 \times 9 + 5 = 11111$
 $12345 \times 9 + 6 = 111111$
 $123456 \times 9 + 7 = 1111111$
 $1234567 \times 9 + 8 = 11111111$
 $12345678 \times 9 + 9 = 11111111$
 $123456789 \times 9 + 10 = 111111111$

Unit 11 Chords and arcs

Theorem 111.1

If two arcs of a circle (or of congruent circles) are congruent then the correspond chords are equal.

Case (a) For one circle

Given

A circle with centre O \widehat{AEB} and \widehat{CFD} are congruent arcs i.e. $\widehat{AEB} \cong \widehat{CFD}$. \overline{AB} and \overline{CD} are the corresponding chords of the given congruent arcs.

To prove

 $\overline{AB} \simeq \overline{CD}$

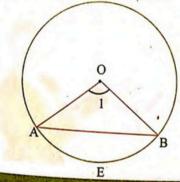
Construction

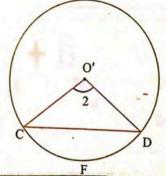
Join O to A, B, C and D respectively and name the central ∠1 and ∠2.

Proof

Statements	Reasons
In $\triangle OAB \leftrightarrow \triangle OCD$.	2000
$\overline{OA} \cong \overline{OC}$	Radii of the same circle.
$\overline{OB} \cong \overline{OD}$	Radii of the same circle.
∠1≅∠2	Central angles of two congruent arcs.
$\therefore \Delta OAB \cong \Delta OCD$	S.A.S Postulate
$AB \cong \overline{CD}$	Corresponding sides of two congruent triangles.

Case (b) For two congruent circles





Given

Two congruent circles with centres O and O' respectively. AEB and CFD are two congruent arcs of these circles where \overline{AB} and \overline{CD} are the corresponding chords.

To prove

 $\overline{AB} \cong \overline{CD}$ or $\overline{mAB} = \overline{mCD}$

Construction

Join O to A and B and O' to C and D respectively.

Proof

Statements	Reasons
In $\triangle OAB \leftrightarrow \triangle O'CD$ $\overline{OA} \cong O'C$ $\overline{OB} \cong OD$ $\angle 1 \cong \angle 2$ $\therefore \triangle OAB \cong \triangle O'CD$ $\therefore \overline{AB} \cong \overline{CD}$ Or $m\overline{AB} = m\overline{CD}$	Radii of two congruent circles. Radii of two congruent circles. Central angles of two congruent arcs S.A.S Postulate Corresponding sides of two congruent triangles

Tidbit

The sum of any two odd numbers is even; the product of any two odd numbers is odd.



Theorem 111.2

If two chords of a circle (or of congruent circles) are equal, then their correspondi

Case (1) For one circle

Given

A circle with centre O having two chords \overline{AB} and \overline{CD} such that $\overline{AB} \cong \overline{CD}$.

To prove

 $AEB \cong CFD$ (These are minor arcs of the chords \overline{AB} and \overline{CD} respectively).

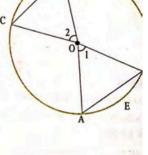
and $\overline{AFB} \cong CED$ (These are major arcs of the chords \overline{AB} and \overline{CD} respectively).

Construction

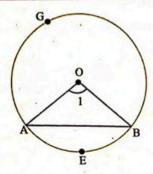
Join O with A, B, C and D respectively.

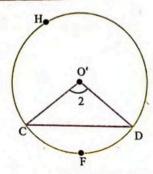
Proof

Statements	Reasons
In the $\triangle AOB \leftrightarrow \triangle COD$	
$\overline{OA} \cong \overline{OC}$	Radii of the same circle.
$\overline{OB} \cong \overline{OD}$	Radii of the same circle.
$\overline{AB} \cong \overline{CD}$	Given
$\triangle AOB \cong \triangle COD$	S.S.S ≅ S.S.S
∴ ∠1≅∠2	Corresponding angles of two congruent triangles.
but ∠1 and ∠2 are central angles	
$\therefore \widehat{AEB} \cong \widehat{CFD}$	Definition of equal or congruent arcs.
Thus the corresponding minor arcs of two	
equal chords $\frac{1}{AB}$ and \overline{CD} of a circle are	
congruent.	THE CHIEF LAND



Let's prove the same result for two congruent circles





Given

Two congruent circles with centres O and O' with two chords \overline{AB} and \overline{CD} respectively which are not the diameters such that $m\overline{AB} = m\overline{CD}$ or $\overline{AB} \cong \overline{CD}$.

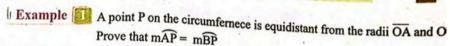
To prove

 $AEB \cong CFD$ (these are minor arcs corresponding to the chords \overline{AB} and \overline{CD}) and $AGB \cong CHD$ (these are the major arcs corresponding to the chords \overline{AB} and \overline{CD})

Construction

loin O with A and B and O' with C and D. This gives central angles labeled 1 and 2.

Statements	Reasons
In the $\triangle OAB \leftrightarrow \triangle O'CD$ $\overline{OA} \cong O'C$ $\overline{OB} \cong O'D$ $\overline{AB} \cong \overline{CD}$ $\triangle OAB \cong \triangle O'CD$ $\angle 1 \cong \angle 2$ $m\angle 1 = m\angle 2$ $mAEB = mCFD$ so the corresponding minor arcs of two all chords \overline{AB} and \overline{CD} of two gruent circles are congruent.	Radii of two congruent circles. Radii of two congruent circles. Given S.S.S ≅ S.S.S Corresponding angles of two congruent triangles. Condition of equality of two arcs.



Given

AB is the chord of a circle with centre O. Point P on the circumference of the circle is equidistant from the

radii
$$\overrightarrow{OA} = \overrightarrow{OB}$$

so that $\overrightarrow{mPR} = \overrightarrow{mPS}$

To prove

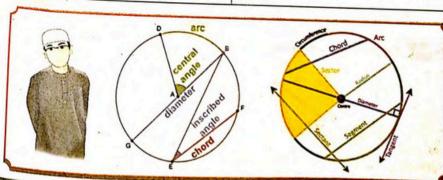
$$\widehat{mAP} = \widehat{mBP}$$

Construction

Join O with P. write ∠1 and ∠2 as shown in the figure.

Proof

Statements	Reasons
In $\angle rt \triangle OPR$ and $\angle rt \triangle OPS$ $m\overline{OP} = m\overline{OP}$	Common
$m\overline{PR} = m\overline{PS}$ $\therefore \Delta OPR \cong \Delta OPS$ So $m \angle 1 \cong m \angle 2$ Chord $AP \cong Chord BP$	Point P is equidistant from radii. (Given) (In ∠rt∆ ^s H.S ≅ H.S) Central angles of a circle.
Hence $\widehat{mAP} = \widehat{mBP}$	Arcs corresponding to equal chords in a circle.



Theorem 111.3

Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).

Case (a) For one circle

Given

A circle with centre O. \overline{AB} and \overline{CD} are two chords of the circle (which are not diameters) such that $\overline{AB} \cong \overline{CD}$ or mAB = mCD.

Arcs subtend ∠1 and ∠2 at the centre.

To prove

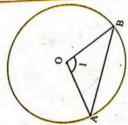
∠1≅ ∠2

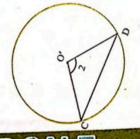
We join O to A, B, C and D respectively so that $m\overline{OA} = m\overline{OB} = m\overline{OC} = m\overline{OD} = \text{radii}$ of a circle.

Proof

Statements	Reasons
In the $\triangle OAB \leftrightarrow \triangle OCD$ $ \overline{OA} \cong \overline{OC} $ $ \overline{OB} \cong \overline{OD} $ $ \overline{AB} \cong \overline{CD} $ $ \therefore \triangle OAB \cong \triangle OCD $ $ \therefore \angle 1 \cong \angle 2 $	Radii of the same circle. Radii of the same circle. Given S.S.S ≅ S.S.S Corresponding angles of congruent triangles.

Case (b) For two congruent circles





Unit 11 Chords and arcs

Given

Two congruent circles with centres O and O' having two equal chords \overline{AB} and \overline{CD} i.e $\overline{AB} \cong \overline{CD}$.

To prove

These chords subtend equal angles at the centre i.e. $\angle 1 \cong \angle 2$.

Construction

Join O with A and B. and O' with C and D.

Proof

Statements	Reasons
In the $\triangle OAB \leftrightarrow \triangle O'CD$	
$\overline{OA} \cong OC$	Radii of two congruent circles.
$\overline{OB} \cong O'D$	Radii of two congruent circles.
$\overline{AB} \cong \overline{CD}$	Given
$\therefore \Delta OAB \cong \Delta O'CD$	S.S.S ≅ S.S.S
∴ ∠1≅∠2	Corresponding angles of congruent triangles.

Theorem 111.4

If the angles subtended by two chords of a circle (or congruent circles) at the cent (corresponding centres) are equal in measures, then the chords are equal in measures.

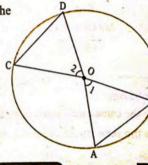
Case (1) For one circle

Given

A circle with centre O. \overline{AB} and \overline{CD} are two chords of the circle and $\angle 1 \cong \angle 2$.

To prove

 $\overline{AB} \cong \overline{CD}$



Unit 11 Chords and arcs

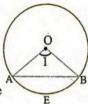
Proof

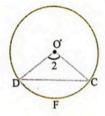
Statements	Reasons
In the $\triangle OAB \leftrightarrow \triangle OCD$ $ \overline{OA} \cong \overline{OC} $ $ \overline{OB} \cong \overline{OD} $ $ \angle 1 \cong \angle 2 $ $ \therefore \triangle AOB \cong \triangle COD $ $ \therefore \overline{AB} \cong \overline{CD} $	Radii of the same circle. Radii of the same circle. Given S.A.S Postulate Corresponding sides of congruent triangles

Case (b) For two congruent circles

Given

Two congruent circles with centres O and O', AB and CD are two chords of these circles such that they subtend equal angles at the centre i.e. ∠1 ≅ ∠2.





To prove

 $\overline{AB} \cong \overline{CD}$

Proof

Statements	Reasons
In the $\triangle OAB \leftrightarrow \triangle O'CD$ $ \overline{OA} \cong \overline{OC} $ $ \overline{OB} \cong \overline{OC} $ $ \angle 1 \cong \angle 2 $ $ \therefore \triangle OAB \cong \triangle O'CD $ $ \therefore \overline{AB} \cong \overline{CD} $	Radii of two congruent circles. Radii of two congruent circles. Given S.A.S Postulate Corresponding sides of two congruent triangles.

orollaries

In the same circle equal central angles have equal arcs. In the same circle equal arcs have equal central angles.

Unit 11 Chords and arcs

Example The internal bisector of a central angle in a circle bisects an arc on w it stands.

Given

In a circle with centre O. \overline{OP} is an internal bisector of central angle AOB.

 $\widehat{AP} \cong \widehat{BP}$

Construction

Draw AP and BP, then write $\angle 1$ and $\angle 2$ as shown in the figure.

Proof

Statements	Reasons
In $\triangle OAP \leftrightarrow \triangle OBP$ $m\overline{OA} = m\overline{OB}$ $m\angle 1 = m\angle 2$ and $m\overline{OP} = m\overline{OP}$ $\triangle OAP \cong \triangle OBP$ Hence $\overline{AP} \cong \overline{BP}$ $\Rightarrow \widehat{AP} \cong \widehat{BP}$	Radii of the same circle. Given OP as an angle bisector of ∠AOB Common (S.A.S ≅ S.A.S) Areas corresponding to equal chords in a

Example Tell whether the red arcs are congruent. Explain why or why not.

DE

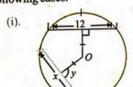
Solution

- a. $\widehat{CD} \cong \widehat{EF}$ because they are in the same circle and $\widehat{mCD} = \widehat{mEF}$.
- b. RS and TU have the same measure, but are not congruent because they are arcs of circles that are not congruent.
- c. $\widehat{VX} = \widehat{YZ}$ because they are in congruent circles and $\widehat{mVX} = \widehat{mYZ}$

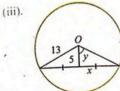
Mathematics X

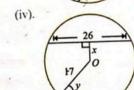
Exercise 11

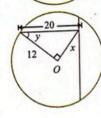
1. Given that O is the centre of each of the following circles, find the value of x and y in the following cases.

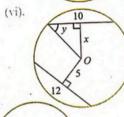


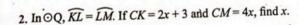
(v).









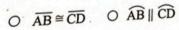


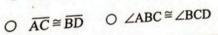
Review Exercise 1

- 1. At the end of each question, four circles are given. Fill in the correct circle only.
- (i) OP has a radius of 3 and AB has a measure of 90°. What is the length of AB?

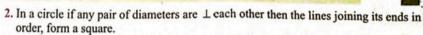
(ii) In the accompanying diagram of circles O, $\widehat{AB} \cong \widehat{CD}$.

Which statement is true?

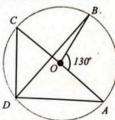




Unit 11 Chords and arcs



3. In a circle with centre O, AOC is diameter. $\angle AOB = 130^\circ$, find $\angle ADB$, $\angle BDC$ and mBC

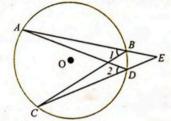


4. Chords AB and CD of a circle meet at the point E outside the circle. Prove that:

(a) $\angle A = \angle C$

(b) $\angle 1 = \angle 2$

Δ ADE and ΔCBE are equiangular.



Summar

- A central angle of a circle is an angle whose vertex is the centre of the circle.
- The measure of a minor arc is the measure of its central angle.
- The measure of the entire circle is 360.
- The measure of major arc is the difference between 360 and the measure of the related minor arc.
- The measure of the semi circle is 180°.
- Two arcs of the same circle are adjacent if they have a common end points.
- The measure of an arc formed by two adjacent arcs is the sum of the measure of the two arcs
- Two circles are congruent circles if they have same radius.
- Two arcs are congruent arcs if they have the same measure and they are arcs of the sam circle or of congruent circles.
- In the same circle, or in congruent circles, two minor arcs are congruent if and only their corresponding chords are congruent.
- In the same circle, or in congruent circles, two chords are congruent if and only if the are equidistant from the center.