# CHORDS AND ARCS



• Weightage = 5%

#### **Students Learning Outcomes (SLOs)**

#### After completing this unit, students will be able to:

- Understand the following theorems along with their corollaries and apply them to solve allied problems.
  - \* If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chords are equal.
  - If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor,major, semi-circular) are congruent.
  - Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
  - If the angles subtended by the two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.





#### **Introduction:**

In this unit, we discuss the theorems related to chords and arcs of a circle.

#### Theorem 27. 1

If two arcs of a circle (or congruent circles) are congruent then the corresponding chords are equal.

We shall prove the theorem:

- i. For one circle
- ii. For two congruent circles

#### i. For one circle

Given: A circle with center O whose  $\widehat{AB}$  and  $\widehat{CD}$  arc congruent arcs i.e.  $\widehat{AB} \cong \widehat{CD}$ .

 $\overline{AB}$  and  $\overline{CD}$  are the corresponding chords of the given congruent arcs.

**To prove:**  $\overline{AB} \cong \overline{CD}$ 

Construction: Join the points O with A,B,C and D.

**Proof:** 

| Statement                                             | Reason                                     |  |
|-------------------------------------------------------|--------------------------------------------|--|
| In ΔOAB↔OCD                                           |                                            |  |
| $\overline{OA} \cong \overline{OC}$                   | Radii of same circle                       |  |
| $\overline{\mathrm{OB}} \cong \overline{\mathrm{OD}}$ | Radii of same circle                       |  |
| $m\angle 1 = m\angle 2$                               | Central angles of two congruent arcs       |  |
| ΔOAB≅OCD                                              | S.A.S postulate                            |  |
| AB ≅CD                                                | Corresponding sides of congruent triangles |  |

## Q.E.D

# ii. For two congruent circles

Given: Two congruent circles with centers O and O' respectively.  $\widehat{AB}$  and  $\widehat{CD}$  are congruent arcs of these circles where  $\overline{AB}$  and  $\overline{CD}$  are the corresponding chords.

**To prove:**  $\overline{AB} \cong \overline{CD}$ 

Construction: Join O to A and B. Join O' to C and D.

| 4         | 11001.                                                 |                                               |  |
|-----------|--------------------------------------------------------|-----------------------------------------------|--|
| Statement |                                                        | Reason                                        |  |
|           | In ΔOAB↔ΔO′CD                                          |                                               |  |
|           | $\overline{OA} \cong \overline{O'C}$                   | Radii of same circle                          |  |
|           | $\overline{\mathrm{OB}} \cong \overline{\mathrm{O'D}}$ | Radii of same circle                          |  |
|           | <i>m</i> ∠1 = <i>m</i> ∠2                              | Central angles of two congruent arcs          |  |
|           | ∴ ΔOAB≅ΔO′CD                                           | S.A.S postulate                               |  |
|           | ∴ AB ≅CD                                               | Corresponding sides of two congruent triangle |  |
|           |                                                        |                                               |  |





#### **Theorem 27.2 (Converse of theorem 1)**

If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major, semi-circle) are congruent.

Given: Two congruent circles with center O and O' respectively having two congruent arcs i.e.,  $\overline{AC} \cong \overline{PR}$ .

To prove: AC≅PR

**Construction:** Join O with A and C, O' with P and R.

**Proof:** 





| Statement                                         | Reason                                         |  |
|---------------------------------------------------|------------------------------------------------|--|
| In $\triangle AOC \leftrightarrow \triangle PO'R$ |                                                |  |
| $\overline{OA} \cong \overline{O'P}$              | Radii of congruent circles                     |  |
| $\overline{OC} \cong \overline{O'R}$              | Radii of congruent circles                     |  |
| $\overline{AC} \cong m\overline{PR}$              | Given                                          |  |
| ΔOAC≅ΔPO'R                                        | S.S.S≅S.S.S                                    |  |
| $m\angle AOC = m\angle PO'R$ (i)                  | Corresponding angles of congruent $\Delta s$ . |  |
| Hence                                             |                                                |  |
| $\widehat{AC} \cong \widehat{PR}$                 | From eq: (i)                                   |  |

Q.E.D

# Example 1:

A point P on the circumference of a circle is equidistant from the radial segments  $\overline{OA}$  and  $\overline{OB}$ . Prove that  $\widehat{mAP} = \widehat{mBP}$ 

**Solution:** 

Given: AB is the chord of a circle with center O. Point P on the circumference of the circle is equidistant from the radial segment

 $\overline{OA}$  and  $\overline{OB}$ . i.e.  $m\overline{PR} = m\overline{PS}$ 

To prove:  $\widehat{mAP} = \widehat{mBP}$ 

Construction: Join O with P. Write  $m \angle 1$  and  $m \angle 2$  as shown in the

figure. Proof:







#### Theorem 27.3

Equal chords of a circle (or of congruent circles) subtend equal angles at the center (at the corresponding centers).

We shall prove theorem:

i) For one circle

ii) For two circles

#### i) For one circle

Given: Circle with centre O, having two congruent chords i.e.,

 $\overline{AB} \cong \overline{PR}$ .

**To prove:**  $m\angle AOB = m\angle POR$ 

**Construction:** Join O with A and B and also O with P and R.

#### Proof:

| Statement |                                                            | Reason                                                                                           |  |
|-----------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
|           | $\overline{AB} \cong \overline{PR}$ (i)                    | Given                                                                                            |  |
|           | $\overline{\mathrm{OB}} \cong \overline{\mathrm{OR}}$ (ii) | $\overline{OB}$ , $\overline{OR}$ , $\overline{OA}$ and $\overline{OP}$ are radii of same circle |  |
| and       | $\overline{OA} \cong \overline{OP}$ (iii)                  |                                                                                                  |  |
|           | $\triangle AOB \cong \triangle POR$                        | S.S.S≅S.S.S                                                                                      |  |
|           | $m\angle AOB = m\angle POB$                                | Corresponding angles of congruent triangles                                                      |  |

Q.E.D

# ii) For two congruent circles Given:

Two congruent circles with center O and O' respectively so that  $m\overline{AC} = m\overline{PR}$ . Where  $\overline{AC}$  and  $\overline{PR}$  are the chords of circles.



$$m\angle AOC = m\angle PO'R$$

#### **Construction:**

Take a point S on arc PR and join S to P and O' such that  $\angle AOC \cong \angle PO'S$ .

| Statement                                          | Reason                                                      |  |
|----------------------------------------------------|-------------------------------------------------------------|--|
| Let $m\angle AOC = m\angle PO'R$                   |                                                             |  |
| But $m\angle AOC \cong m\angle PO'S$               | Construction                                                |  |
| $\widehat{AC} \cong \widehat{PS} $ (i)             | Arcs subtended by equal central angles of congruent circles |  |
| $\therefore m\overline{AC} = m\overline{PS} $ (ii) | From theorem (1)                                            |  |
| But $m\overline{AC} = m\overline{PR}$ (iii)        | Given                                                       |  |
| $\therefore m\overline{PR} = m\overline{PS}$       | Using (ii) and (iii)                                        |  |
| Which is only possible, if R concides              | Because P is common point                                   |  |
| with S.                                            |                                                             |  |
| $\Rightarrow$ $m\angle AOC = m\angle POR$          | Our supposition is working                                  |  |







# **Corollary 1:**

In congruent circles or in same circle, if central angles are equal then corresponding sectors are equal.

# Corollary 2:

In congruent circles or in same circle, arcs will subtend unequal central angles for unequal chords.

# Example 1:

Prove that the internal bisector of a central angle in a circle bisects the corresponding arc.

Given: A circle with center O.  $\overline{OP}$  is an internal bisector of central angle AOB. i.e.  $\angle 1 \cong \angle 2$ 

To prove:  $\widehat{AP} \cong \widehat{PB}$ 

**Construction:** Draw  $\overline{AP}$  and  $\overline{BP}$ , then write  $\angle 1$  and  $\angle 2$  are corresponding angles of  $\widehat{AP}$  and  $\widehat{BP}$  respectively.

| 1 1 0 0 1 1                                      |                                                 |  |
|--------------------------------------------------|-------------------------------------------------|--|
| Statement                                        | Reason                                          |  |
| In $\triangle OAP \leftrightarrow \triangle OBP$ |                                                 |  |
| $m\overline{OA} = m\overline{OB}$                | Radii of same circle                            |  |
| <i>m</i> ∠1 = <i>m</i> ∠2                        | Given                                           |  |
| and $m\overline{OP} = m\overline{OP}$            | Common                                          |  |
| ∴ ∆OAP≅∆OBP                                      | S.A.S postulate                                 |  |
| Hence $\overline{AP} \cong \overline{BP}$        | Corresponding sides of congruent $\Delta s$     |  |
| $\Rightarrow$ $\widehat{AP} \cong \widehat{BP}$  | Arcs corresponding to equal chords in a circle. |  |

Q.E.D



# Example 2:

Prove that in a circle, if two diameters are perpendicular to each other then the lines joining their ends form a square.

## Given:

Given  $\overline{PR}$  and  $\overline{QS}$  are two perpendicular diameters of a circle with center O. So PQRS is a quadrilateral. Naming  $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5$  and  $\angle 6$  as shown in figure.

# To prove:

PQRS is a square.

| 7001:                                                                    |                                           |  |
|--------------------------------------------------------------------------|-------------------------------------------|--|
| Statement                                                                | Reason                                    |  |
| PR and QS are two perpendicular diameters                                | Given                                     |  |
| of a circle with center O.                                               | X                                         |  |
| $m\angle 1 = m\angle 2 = m\angle 3 = m\angle 4 = 90^{\circ}$             | Diameters are perpendicular to each other |  |
| mPQ = mQR = mRS = mSP (i)                                                | Arcs opposite to the equal central        |  |
|                                                                          | angles in a circle                        |  |
| $m\overline{PQ} = m\overline{QR} = m\overline{RS} = m\overline{SP}$ (ii) | Chords corresponding to equal arcs.       |  |
| In right Δ POS,                                                          |                                           |  |
| $m\overline{\text{PO}} = m\overline{\text{OS}}$ (iii)                    | PO and OS are radii of circle             |  |
| $\Delta$ POS is right isosceles, triangle                                | From (iii)                                |  |
| $m \angle 5 = 45^{\circ}$ (iv)                                           | $\Delta$ POS is right isosceles, triangle |  |
| Similarly, ΔPOQ is right isosceles triangle                              | By the above process                      |  |
| $m \angle 6 = 45^{\circ}$ (v)                                            |                                           |  |
| Moreover                                                                 |                                           |  |
| $m\angle P = m\angle 5 + m\angle 6$                                      | Angle addition postulate                  |  |
| $m\angle P = 45^{\circ} + 45^{\circ}$                                    | By using (iv) and (v)                     |  |
| $m\angle P = 90^{\circ}$ (vi)                                            |                                           |  |
| Similarly, $m\angle Q = m\angle R = m\angle S = 90^{\circ}$ (vii)        | By the above process                      |  |
| PQRS is a square                                                         | Using eq (ii), (vi) and (vii)             |  |
| ~ _                                                                      | _                                         |  |

Q.E.D



#### Theorem 27.4

If the angles subtended by two chords of a circle (or congruent circles) at the centres (corresponding centres) are equal, the chord are equal.

# (a) For one circle

#### Given:

Circle with centre O, having chords  $\overline{PR}$  and  $\overline{AB}$ . The angles substended by both arcs are congruent i.e.  $\angle POR \cong \angle AOB$ .

To prove:  $m\overline{AB} \cong m\overline{PR}$ 

**Construction:** Join O with P and R, and also with A and B.



#### **Proof:**

| Statement                                    |                                         | Reason                                    |  |
|----------------------------------------------|-----------------------------------------|-------------------------------------------|--|
|                                              | $\overline{OR} \cong \overline{OB}$ (i) | Radius of same circle                     |  |
| and $\overline{OP} \cong \overline{OA}$ (ii) |                                         | Radii of same circle                      |  |
| ∠POR ≅ ∠AOB (iii)                            |                                         | Given                                     |  |
|                                              | $\Delta PQR \cong \Delta AOB$           | $S.A.S \cong S.A.S$ (Postulate)           |  |
|                                              | $\overline{AB} \cong \overline{PR}$     | Corresponding side of congruent triangles |  |

#### Q.E.D

# (b) For two congruent circles Given:

Two congruent circles with center O and O' with  $\overline{AC}$  and  $\overline{PR}$  are chords. Subtending equal angles at centre i.e.  $\angle AOC \cong \angle PO'R$ .

To prove:  $m\overline{AC} = m\overline{PR}$ 



Q.E.D



#### **EXERCISE 27.1**

- 1. In a circle prove that the arcs between two parallel and equal chords or equal.
- 2. Prove that in equal circles, equal central angles have equal arcs.
- 3. In the following figure, O is the centre of the circle. Find the value of x and y.



**4.** In the following figure  $m\angle PQR = 35^{\circ}$  and  $m\angle PRQ = 31^{\circ}$ . Find  $m \angle QPR$  and  $m \angle OQR$ .



5. In the figure O is the center of circle, given that 0  $m\angle AOB = 120^{\circ}$  and  $m\angle BCD = 85^{\circ}$ . Find  $m\angle OAD$ 



**6.** In the following figure, AB is diameter of the circle given that  $m\angle DAB = 30^{\circ}$  Find  $m\angle ACD$ 



## **REVIEW EXERCISE 27**

# 1. Multiple Choice Question:

Tick the correct option.

- If a chord of a circle subtends, a central angle of  $60^{\circ}$ . Then the chord and the radial segment are \_\_\_\_.
  - (a) Parallel
- (b) Perpendicular
- (c) Congruent
- (d) Incongruent
- ii. An arc subtends a central angle of 45° then the corresponding chords will subtend a central angle of?
  - (a)  $15^{\circ}$
- (b)  $30^{\circ}$
- (c)  $45^{\circ}$
- (d)  $60^{\circ}$
- iii. A pair of chords of a circle subtending two congruent central angle are.
  - (a) Perpemdicular (b) Non congruent
- (c) Congruent
- (d) None of these



|                                                                                                 | 11. The ares opposite to congruent central angles of a chele are always. |                         |                       |                          |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------|-----------------------|--------------------------|--|
|                                                                                                 | (a) Parallel                                                             | (b) Congruent           | (c) Perpendicular     | (d) None of these        |  |
| v. A 6cm long chord subtends a central angle of 60°. The radial segment of this circle          |                                                                          |                         |                       | gment of this circle is  |  |
|                                                                                                 | (a) 4cm                                                                  | (b) 6cm                 | (c) 5cm               | (d) 8cm                  |  |
| vi. The chord length of a circle subtending a central angle of 180° is always                   |                                                                          |                         |                       | s always                 |  |
| (a) equal to the radial segment                                                                 |                                                                          |                         |                       |                          |  |
| (b) less than radial segment                                                                    |                                                                          |                         |                       |                          |  |
| (c) double of radial segment                                                                    |                                                                          |                         |                       |                          |  |
| (d) half of the radial segment.                                                                 |                                                                          |                         |                       |                          |  |
| viii. The length of a chord and the radial segment of a circle are congruent, the central angle |                                                                          |                         |                       |                          |  |
| made by the chord will be:                                                                      |                                                                          |                         |                       |                          |  |
|                                                                                                 | (a) 60°                                                                  | (b) 75°                 | (c) 90°               | (d) $45^{\circ}$         |  |
|                                                                                                 | ix. Out of two congruer                                                  | nt arcs of a circle, if | one arc makes a centr | al angle of 30° then the |  |
| other arc will subtend the central angle:                                                       |                                                                          |                         |                       |                          |  |
|                                                                                                 | (a) 60°                                                                  | (b) 90°                 | (c) 75°               | (d) 30°                  |  |
|                                                                                                 | x. Diameter divides the                                                  | circle into             | parts.                |                          |  |
|                                                                                                 | (a) Two                                                                  | (b) Three               | (c) Four              | (d) All of these         |  |

iv. The arcs opposite to congruent central angles of a circle are always

## **SUMMARY**

- The circles are congruent of their radii are equal.
- Equal chords of circle subtend equal angles at the centre.
- The straight line joining any two points of the circumference is called a chord of the circle.
- The portion of a circle bounded by an arc and a chord is known as the segment of a circle.
- The boundary traced by a moving point in a circle is called its circumference.
- An portion of the circumference of a circle is called an arc of the circle.
- A straight line, drawn from the centre of a circle bisecting a chord is perpendicular to the
- A perpendicular drawn from the centre of a circle on a chord, it bisect the chord.
- If two arcs of a circle(or of congruent circles) are congruent, then the corresponding chords are equal.
- If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major, semi circular) are congruent.
- Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
- If the angle subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.